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This paper is concerned with 𝐻
∞ control for a networked control model of systems with two additive time-varying delays. A

new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov
functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays
instead of the upper bounds of them.Then the convex polyhedron method is proposed to check the upper bound of the derivative
of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing
ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is
asymptotically stable with a prescribed𝐻

∞ disturbance attenuation level. Finally examples are given to show the advantages of the
stability criteria and the effectiveness of the proposed control method.

1. Introduction

For years systemswith time delays have received considerable
attention since they are often encountered in various practical
systems, such as engineering systems, biology, economics,
neural networks, networked control systems, and other areas
[1–6]. Since time-delay is frequently the main cause of oscil-
lation, divergence, or instability, considerable effort has been
devoted to stability for systems with time delays. According
to whether stability criteria include the information of the
delay, they are divided into two classes: delay-independent
stability criteria and delay-dependent ones. It is well known
that delay-independent stability criteria tend to be more con-
servative especially for small size delays. More attention has
been paid to delay-dependent stability. For delay-dependent
stability results, we refer readers to [7–14]. Among these
papers, [11–13] were of systems with interval time-varying
delay. Recently these delay-dependent stability results were
extended to neutral systems with interval time-varying delay
[14]. It should be pointed out that all the stability results
mentioned are based on systems with one single delay in the
state.

On the other hand, networked control systems have been
receiving great attention these years due to their advan-
tages in low cost, reduced weight and power requirements,
simple installation and maintenance, and high reliability.
It is well known that the transmission delay and the data
packet dropout are two fundamental issues in networked
control systems. The transmission delay generally includes
the sensor-to-control delay and the control-to-actuator delay.
In most of existing papers the sensor-to-control delay and
the control-to-actuator delay were combined into one state
delay, while the data packet dropouts were modeled as delays
and absorbed by the state delay, thus formulating networked
control systems as systems with one state delay [15]. Among
recently reported results based on this modeling idea, to
mention a few, event-triggered communication and𝐻

∞ con-
trol codesign problems were addressed for networked control
systems in [16], while exponential state estimation problems
were considered for Markovian jumping neural networks in
[17]. Note that the sensor-to-control delay and the control-to-
actuator delay are different in nature because of the network
transmission conditions. The transmission delay and the
data packet dropout also have different properties. It is not
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rational to lump them into one state delay. In this paper,
to study networked control systems we adopt the model of
systems with multiadditive time-varying delay components.
For simplicity, the system with two additive time-varying
delay components will be employed to address 𝐻

∞ control
problem for networked control systems. Now we write the
system as follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝑑

1
(𝑡) − 𝑑

2
(𝑡)) + 𝐸𝑤 (𝑡) + 𝐵𝑢 (𝑡) ,

(1)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑡 − 𝑑

1
(𝑡) − 𝑑

2
(𝑡)) + 𝐹𝑤 (𝑡) + 𝐷𝑢 (𝑡) ,

(2)

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] , (3)

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑦(𝑡) is the measurement; 𝑢(𝑡) is
the control; 𝑤(𝑡) ∈ 𝐿

2
[0,∞] is the disturbance; 𝐴, 𝐴

1
, 𝐸, 𝐵,

𝐶, 𝐶
1
, 𝐹, and 𝐷 are known real constant matrices; 𝑑

1
(𝑡) and

𝑑
2
(𝑡) are two time-varying delays satisfying

0 ≤ 𝑑
1
(𝑡) ≤ ℎ

1
, 0 ≤ 𝑑

2
(𝑡) ≤ ℎ

2
, (4)

̇
𝑑
1
(𝑡) ≤ 𝜇

1
,

̇
𝑑
2
(𝑡) ≤ 𝜇

2
; (5)

and 𝜙(𝑡) is a real-valued initial function on [−ℎ, 0] with

ℎ = ℎ
1
+ ℎ

2
. (6)

Stability analysis for this kind of system was conducted in
[18], and a delay-dependent stability criterion was obtained.
An improved stability criterion was derived in [19] by con-
structing a Lyapunov functional to employ the information
of the marginally delayed state 𝑥(𝑡 − ℎ). However, another
marginally delayed state 𝑥(𝑡 − ℎ

1
) was not considered,

which caused −∫

𝑡−𝑑
1
(𝑡)

𝑡−ℎ
1

�̇�(𝛼)
𝑇

𝑍
1
�̇�(𝛼)𝑑𝛼 to be discarded when

bounding the derivative of the Lyapunov functional. On
the other hand, in the process of the bounding, many free
weighting matrices were introduced, making the stability
result complicated.

In this paper we first revisit delay-dependent stability
for system (1) and (2). We will construct a new Lyapunov
functional to employ the information of the marginally
delayed state 𝑥(𝑡 − ℎ

1
) as well as 𝑥(𝑡 − ℎ). Motivated by [13],

when bounding the derivative of the Lyapunov functional, we
use a novel technique to avoid introducing too many matrix
variables and compute a tighter upper bound. Considering
that the upper bound depends on the two time-varying
delays, we propose the so-called convex polyhedron method
to check the negative definiteness for it. The resulting delay-
dependent stability criteria turn out to be less conservative
with fewer matrix variables. Then we take the advantages
of the stability results to investigate the 𝐻

∞ state feedback
control problem,which is to design a state feedback controller
𝑢(𝑡) = 𝐾𝑥(𝑡) for the system such that the closed-loop system
is asymptotically stable with an 𝐻

∞ disturbance attenuation
level 𝛾 > 0 satisfying ‖𝑦‖

2
< 𝛾‖𝑤‖

2
for nonzero 𝑤(𝑡) ∈

𝐿
2
[0,∞] under zero initial condition. A delay-dependent

condition will be presented for the state feedback controller
such that the closed-loop system is asymptotically stable with

a prescribed𝐻
∞ disturbance attenuation level. Formulated in

LMIs the condition is readily verified, and when it is feasible
the controller can be constructed.

Notation. Throughout this paper the superscript “𝑇” stands
for matrix transposition. 𝐼 refers to an identity matrix with
appropriate dimensions. For real symmetric matrices 𝑋 and
𝑌, the notation𝑋 > 𝑌means that the matrix𝑋−𝑌 is positive
definite. The𝑋 ≥ 𝑌 follows similarly. The symmetric term in
a matrix is denoted by ∗. Matrices, if not explicitly stated, are
assumed to have compatible dimensions.

First we go about the stability analysis. To the end, a
lemma is given, which will play an important role in deriving
our criteria.

Lemma 1 (see [20]). For any symmetric positive definite
matrix 𝑀 > 0, scalar 𝛾 > 0, and vector function 𝜔 : [0, 𝛾] →

𝑅
𝑛 such that the integrations concerned are well defined, the

following inequality holds:

(∫

𝛾

0

𝜔(𝑠)𝑑𝑠)

𝑇

𝑀(∫

𝛾

0

𝜔 (𝑠) 𝑑𝑠) ≤ 𝛾(∫

𝛾

0

𝜔(𝑠)
𝑇

𝑀𝜔(𝑠) 𝑑𝑠) .

(7)

2. Stability Analysis

Consider system (1) with 𝑤(𝑡) = 𝑢(𝑡) = 0, namely,

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝑑

1
(𝑡) − 𝑑

2
(𝑡)) . (8)

Set

𝑑 (𝑡) = 𝑑
1
(𝑡) + 𝑑

2
(𝑡) , (9)

𝜇 = 𝜇
1
+ 𝜇

2
. (10)

Taking 𝑑
1
(𝑡) + 𝑑

2
(𝑡) as one delay 𝑑(𝑡) we have the following

system:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝑑 (𝑡)) , (11)

with 0 ≤ 𝑑(𝑡) ≤ ℎ, ̇
𝑑(𝑡) ≤ 𝜇.

For this system there are many delay-dependent stability
criteria available, but when used to check the stability for (8),
they are more conservative [18]. In the following we present
a new stability result for system (8) by considering the two
delays separately.

Theorem 2. The system (8) subject to (4) and (5) is asymptot-
ically stable for given ℎ

1
, ℎ

2
, 𝜇

1
, and 𝜇

2
if there exist matrices

𝑃 > 0, 𝑄
𝑖
> 0, 𝑖 = 1, 2, 3, 4, and 𝑍

𝑗
> 0, 𝑗 = 1, 2, such that the

following LMIs hold:

Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
< 0,

Φ − 𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ − 𝑒
24
ℎ
−1

𝑍
2
𝑒
𝑇

24
< 0,

(12)
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where 𝑒
13

= [𝐼 0 −𝐼 0 0]

𝑇, 𝑒
23
, 𝑒
24
, and 𝑒

35
follow similarly,

ℎ is defined in (6), and

Φ =

[

[

[

[

[

[

[

[

𝜑
1

𝑃𝐴
1

ℎ
−1

1
(𝑍

1
+ 𝑍

2
) 0 0

∗ 𝜑
2

ℎ
−1

2
𝑍
2

ℎ
−1

𝑍
2

0

∗ ∗ 𝜑
3

0 ℎ
−1

1
𝑍
1

∗ ∗ ∗ −𝑄
2
− ℎ

−1

𝑍
2

0

∗ ∗ ∗ ∗ −𝑄
4
− ℎ

−1

1
𝑍
1

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

0

]

]

]

]

]

]

[ℎ
1
𝑍
1
+ ℎ𝑍

2
]

[

[

[

[

[

[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

0

]

]

]

]

]

]

]

𝑇

,

(13)

with 𝜇 given in (10) and

𝜑
1
= 𝑃𝐴 + 𝐴

𝑇

𝑃 +

4

∑

𝑖=1

𝑄
𝑖
− ℎ

−1

1
(𝑍

1
+ 𝑍

2
) ,

𝜑
2
= − (1 − 𝜇)𝑄

3
− (ℎ

−1

2
+ ℎ

−1

)𝑍
2
,

𝜑
3
= − (1 − 𝜇

1
) 𝑄

1
− (ℎ

−1

2
+ ℎ

−1

1
)𝑍

2
− 2ℎ

−1

1
𝑍
1
.

(14)

Proof. Define a Lyapunov functional as follows:

𝑉 (𝑡) = 𝑥(𝑡)
𝑇

𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝑑
1
(𝑡)

𝑥(𝛼)
𝑇

𝑄
1
𝑥 (𝛼) 𝑑𝛼

+ ∫

𝑡

𝑡−ℎ

𝑥(𝛼)
𝑇

𝑄
2
𝑥 (𝛼) 𝑑𝛼

+ ∫

𝑡

𝑡−𝑑(𝑡)

𝑥(𝛼)
𝑇

𝑄
3
𝑥 (𝛼) 𝑑𝛼

+ ∫

𝑡

𝑡−ℎ
1

𝑥(𝛼)
𝑇

𝑄
4
𝑥 (𝛼) 𝑑𝛼

+ ∫

𝑡

𝑡−ℎ
1

∫

𝑡

𝑠

�̇�(𝛼)
𝑇

𝑍
1
�̇� (𝛼) 𝑑𝛼 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

∫

𝑡

𝑠

�̇�(𝛼)
𝑇

𝑍
2
�̇� (𝛼) 𝑑𝛼 𝑑𝑠,

(15)

where 𝑑(𝑡) is defined in (9). Then calculating the time
derivative of the Lyapunov functional along the trajectory of
(8) yields

�̇� (𝑥
𝑡
) ≤ 2𝑥(𝑡)

𝑇

𝑃 (𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝑑 (𝑡)))

+

4

∑

𝑖=1

𝑥(𝑡)
𝑇

𝑄
𝑖
𝑥 (𝑡) − 𝑥(𝑡 − ℎ

1
)
𝑇

× 𝑄
4
𝑥 (𝑡 − ℎ

1
) − 𝑥(𝑡 − ℎ)

𝑇

𝑄
2
𝑥 (𝑡 − ℎ)

− (1 − 𝜇) 𝑥(𝑡 − 𝑑 (𝑡))
𝑇

𝑄
3
𝑥 (𝑡 − 𝑑 (𝑡))

− (1 − 𝜇
1
) 𝑥(𝑡 − 𝑑

1
(𝑡))

𝑇

𝑄
1
𝑥 (𝑡 − 𝑑

1
(𝑡))

+ (𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝑑 (𝑡)))

𝑇

(ℎ
1
𝑍
1
+ ℎ𝑍

2
)

× [𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝑑 (𝑡))]

− ∫

𝑡

𝑡−ℎ
1

�̇�(𝛼)
𝑇

𝑍
1
�̇� (𝛼) 𝑑𝛼 − ∫

𝑡

𝑡−ℎ

�̇�(𝛼)
𝑇

𝑍
2
�̇� (𝛼) 𝑑𝛼.

(16)

Note that

− ∫

𝑡

𝑡−ℎ
1

�̇�(𝛼)
𝑇

𝑍
1
�̇� (𝛼) 𝑑𝛼 − ∫

𝑡

𝑡−ℎ

�̇�(𝛼)
𝑇

𝑍
2
�̇� (𝛼) 𝑑𝛼

= −∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝑠)
𝑇

𝑍
1
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡−𝑑
1
(𝑡)

𝑡−ℎ
1

�̇�(𝑠)
𝑇

𝑍
1
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡−𝑑
1
(𝑡)

𝑡−𝑑(𝑡)

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠.

(17)

Write 𝛼 = 𝑑
1
(𝑡)/ℎ

1
and 𝛽 = 𝑑

2
(𝑡)/ℎ

2
. Then

− ∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝛼

= −ℎ
−1

1
∫

𝑡

𝑡−𝑑
1
(𝑡)

ℎ
1
�̇�(𝑠)

𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

= −ℎ
−1

1
∫

𝑡

𝑡−𝑑
1
(𝑡)

𝑑
1
(𝑡) �̇�(𝑠)

𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

− ℎ
−1

1
∫

𝑡

𝑡−𝑑
1(𝑡)

[ℎ
1
− 𝑑

1
(𝑡)] �̇�(𝑠)

𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠.

(18)

It follows from (18) that

− ∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

≤ −ℎ
−1

1
∫

𝑡

𝑡−𝑑
1(𝑡)

𝑑
1
(𝑡) �̇�(𝑠)

𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠.

(19)
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Using (19) we have

− ℎ
−1

1
∫

𝑡

𝑡−𝑑
1
(𝑡)

[ℎ
1
− 𝑑

1
(𝑡)] �̇�(𝑠)

𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

= − (1 − 𝛼)∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

≤ − (1 − 𝛼) ℎ
−1

1
∫

𝑡

𝑡−𝑑
1
(𝑡)

𝑑
1
(𝑡) �̇�(𝑠)

𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠.

(20)

By Lemma 1, (18) and (20) imply

− ∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

≤ −[𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

𝑇

ℎ
−1

1
𝑍
2

× [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

− (1 − 𝛼) [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

𝑇

ℎ
−1

1
𝑍
2

× [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑
1
(𝑡))] .

(21)

Similarly it can be derived that

− ∫

𝑡−𝑑
1
(𝑡)

𝑡−𝑑(𝑡)

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

≤ −[𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

𝑇

ℎ
−1

2
𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

− (1 − 𝛽) [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

𝑇

ℎ
−1

2
𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
1
(𝑡))] ,

− ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

�̇�(𝑠)
𝑇

𝑍
2
�̇� (𝑠) 𝑑𝑠

≤ −[𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]
𝑇

ℎ
−1

𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]

− 𝛼[𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]
𝑇

ℎ
1
ℎ
−2

𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]

− 𝛽[𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]
𝑇

ℎ
2
ℎ
−2

𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)] .

(22)

Similar to [12] we have

− ∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝑠)
𝑇

𝑍
1
�̇� (𝑠) 𝑑𝑠

≤ −[𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

𝑇

ℎ
−1

1
𝑍
1
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑

1
(𝑡))] ,

− ∫

𝑡−𝑑
1
(𝑡)

𝑡−ℎ
1

�̇�(𝑠)
𝑇

𝑍
1
�̇� (𝑠) 𝑑𝑠

≤ −[𝑥 (𝑡 − 𝑑
1
(𝑡)) − 𝑥 (𝑡 − ℎ

1
)]
𝑇

ℎ
−1

1
𝑍
1

× [𝑥 (𝑡 − 𝑑
1
(𝑡)) − 𝑥 (𝑡 − ℎ

1
)] .

(23)
Define

𝜁 (𝑡) = [𝑥(𝑡)
𝑇

𝑥(𝑡 − 𝑑 (𝑡))
𝑇

𝑥(𝑡 − 𝑑
1
(𝑡))

𝑇

𝑥 (𝑡 − ℎ)
𝑇

𝑥(𝑡 − ℎ
1
)
𝑇

]

𝑇

.

(24)
Combining (16), (17), and (21)–(23) and using (13) yield

�̇� (𝑡) ≤ 𝜁(𝑡)
𝑇

Φ𝜁 (𝑡) − (1 − 𝛼)

× [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

𝑇

ℎ
−1

1
𝑍
2
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑

1
(𝑡))]

− 𝛼[𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]
𝑇

ℎ
1
ℎ
−2

𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]

− 𝛽[𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]
𝑇

ℎ
2
ℎ
−1

𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − ℎ)]

− (1 − 𝛽) [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

𝑇

ℎ
−1

2
𝑍
2

× [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
1
(𝑡))]

= 𝜁(𝑡)
𝑇

𝑀(𝛼, 𝛽) 𝜁 (𝑡) ,

(25)
where
𝑀(𝛼, 𝛽) = Φ − 𝛼𝑒

24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24

− (1 − 𝛼) 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝛽𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24

− (1 − 𝛽) 𝑒
23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23

= 𝛼 [Φ − 𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
]

+ (1 − 𝛼) [Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
] − 𝛽𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24

− (1 − 𝛽) 𝑒
23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23

= 𝛼 [Φ − 𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝛽𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24

− (1 − 𝛽) 𝑒
23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
]

+ (1 − 𝛼) [Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝛽𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24

− (1 − 𝛽) 𝑒
23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
]

= 𝛼 [𝛽 (Φ − 𝑒
24
ℎ
−1

𝑍
2
𝑒
𝑇

24
)

+ (1 − 𝛽) (Φ − 𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
)]

+ (1 − 𝛼) [𝛽 (Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
)

+ (1 − 𝛽) × (Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13

−𝑒
23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
)] .

(26)
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By (12) it is derived that𝑀(𝛼, 𝛽) < 0. Therefore system (8) is
asymptotically stable. This ends the proof.

Remark 3. Theorem 2 provides a new delay-dependent sta-
bility criterion for system (8) with two additive time-varying
delay components. In a form of LMIs the criterion can be
checked easily.

Remark 4. Note that the corresponding matrix 𝑀(𝛼, 𝛽) to
the upper bound of �̇�(𝑥

𝑡
) is dependent on the two time-

varying delays while those in [18, 19] are dependent on the
upper bounds of the two time-varying delays. To check the
negative definiteness of the function matrix𝑀(𝛼, 𝛽), one has
to adopt a new method, which is motivated by [13]. The
basic idea is that a function matrix is negative definite over
a convex polyhedron only if the matrix is negative definite at
the vertices. Note that

𝑀(1, 1) = Φ − 𝑒
24
ℎ
−1

𝑍
2
𝑒
𝑇

24
,

𝑀 (1, 0) = Φ + 𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
,

𝑀 (0, 1) = Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
,

𝑀 (0, 0) = Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
.

(27)

From this it can be seen the negative definiteness of 𝑀(𝛼, 𝛽)

over the rectangle: 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1, is
determined by that of 𝑀(𝛼, 𝛽) at the vertices. One calls
this approach to the negative definiteness of a function
matrix a convex polyhedron method. Apparently the convex
polyhedron method can be extended to more than two time-
varying delays.

Remark 5. Gao et al. [19] took advantages of 𝑥(𝑡−ℎ) to derive
a stability criterion, which improved over that in [18], but
another marginally delayed state 𝑥(𝑡 − ℎ

1
) was not employed.

In this paper one makes use of it to construct the Lyapunov
functional𝑉(𝑡) in (15), thusmaking−∫

𝑡−𝑑
1
(𝑡)

𝑡−ℎ
1

�̇�(𝛼)
𝑇

𝑍
1
�̇�(𝛼)𝑑𝛼

retained in the estimate of �̇�(𝑡). On the other hand, when
estimating integrals in �̇�(𝑥

𝑡
) one does not introduce any free

weighting matrix as [18, 19], but one uses new techniques
reported recently in [12, 13]. Take −∫

𝑡

𝑡−ℎ
1

�̇�(𝛼)
𝑇

𝑍
1
�̇�(𝛼)𝑑𝛼 as

an example. One first divides it into two parts as (17) and
then calculates them as (23). As for −∫

𝑡

𝑡−𝑑
1
(𝑡)

�̇�(𝛼)
𝑇

𝑍
2
�̇�(𝛼)𝑑𝛼

and so forth, one deals with it in such a new way as (18)–
(22). Thanks to the new techniques to calculate integrals
in �̇�(𝑥

𝑡
) and the convex polyhedron method to check the

negative definite for the upper bound of �̇�(𝑥
𝑡
), the resulting

Theorem 2 is expected to be less conservative with fewer
matrix variables, as shown in the following example.

When 𝜇
1
and 𝜇

2
are unknown, eliminating𝑄

1
and𝑄

3
one

can obtain a delay-rate-independent stability criterion from
Theorem 2 as follows.

Corollary 6. The system (8) subject to (4) is asymptotically
stable for given ℎ

1
and ℎ

2
if there exist matrices 𝑃 > 0, 𝑄

2
> 0,

𝑄
4
> 0, and 𝑍

𝑗
> 0, 𝑗 = 1, 2, such that the following LMIs

hold:

Φ
1
− 𝑒

13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ
1
− 𝑒

13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
< 0,

Φ
1
− 𝑒

24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ
1
− 𝑒

24
ℎ
−1

𝑍
2
𝑒
𝑇

24
< 0,

(28)

where

Φ
1

=

[

[

[

[

[

[

[

𝜑
1

𝑃𝐴
1

ℎ
−1

1
(𝑍

1
+ 𝑍

2
) 0 0

∗ 𝜑
2

ℎ
−1

2
𝑍
2

ℎ
−1

𝑍
2

0

∗ ∗ 𝜑
3

0 ℎ
−1

1
𝑍
1

∗ ∗ ∗ −𝑄
2
− ℎ

−1

𝑍
2

0

∗ ∗ ∗ ∗ −𝑄
4
− ℎ

−1

1
𝑍
1

]

]

]

]

]

]

]

+

[

[

[

[

[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

0

]

]

]

]

]

]

[ℎ
1
𝑍
1
+ ℎ𝑍

2
]

[

[

[

[

[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

0

]

]

]

]

]

]

𝑇

,

(29)

with 𝜑
1
= 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑄
2
+ 𝑄

4
− ℎ

−1

1
(𝑍

1
+ 𝑍

2
), 𝜑

2
= −(ℎ

−1

2
+

ℎ
−1

)𝑍
2
, and 𝜑

3
= −(ℎ

−1

2
+ ℎ

−1

1
)𝑍

2
− 2ℎ

−1

1
𝑍
1
.

When 𝑑
1
(𝑡) ≡ ℎ

1
, that is, 𝑑

1
(𝑡) is a constant delay,

Theorem 2 reduces to the following corollary, which was
reported recently in [13].

Corollary 7. The system (8) with 𝑑
1
(𝑡) ≡ ℎ

1
and 𝑑

2
(𝑡)

satisfying 0 ≤ 𝑑
2
(𝑡) ≤ ℎ

2
and ̇

𝑑(𝑡) ≤ 𝜇
2
is asymptotically stable

for given ℎ
2
> 0, ℎ

1
> 0, and 𝜇

2
if there exist 𝑃 > 0, 𝑄

𝑖
> 0,

𝑖 = 1, 2, 3, and 𝑍
𝑗
> 0, 𝑗 = 1, 2, such that the following LMIs

hold:

Φ
2
− [0 𝐼 −𝐼 0]

𝑇

𝑍
2
[0 𝐼 −𝐼 0] < 0,

Φ
2
− [0 𝐼 0 −𝐼]

𝑇

𝑍
2
[0 𝐼 0 −𝐼] < 0,

(30)

where

Φ
2
=

[

[

[

[

[

𝜑
1

𝑃𝐴
1

0 ℎ
−1

1
𝑍
1

∗ 𝜑
2

ℎ
−1

2
𝑍
2

ℎ
−1

2
𝑍
2

∗ ∗ −𝑄
2
− ℎ

−1

2
𝑍
2

0

∗ ∗ ∗ −𝑄
4
− ℎ

−1

2
𝑍
2
− ℎ

−1

1
𝑍
1

]

]

]

]

]

+

[

[

[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

]

]

]

]

(ℎ
1
𝑍
1
+ ℎ

2
𝑍
2
)

[

[

[

[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

]

]

]

]

]

𝑇

,

(31)

with 𝜑
1
= 𝑃𝐴+𝐴

𝑇

𝑃+∑
3

𝑖=1
𝑄
𝑖
−ℎ

−1

1
𝑍
1
and 𝜑

2
= −(1−𝜇

2
)𝑄

3
−

2ℎ
−1

2
𝑍
2
.
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Table 1: Admissible upper bound ℎ
2
for various ℎ

1
.

Method ℎ
1

1 1.2 1.5
[18] ℎ

2
0.415 0.376 0.248

[19] ℎ
2

0.512 0.406 0.283
Theorem 2 ℎ

2
0.5955 0.4632 0.3129

Proof. Define the Lyapunov functional. Consider the follow-
ing:

𝑉 (𝑥
𝑡
) = 𝑥(𝑡)

𝑇

𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝑑(𝑡)

𝑥(𝛼)
𝑇

𝑄
3
𝑥 (𝛼) 𝑑𝛼

+ ∫

𝑡

𝑡−ℎ
1

𝑥(𝛼)
𝑇

𝑄
1
𝑥 (𝛼) 𝑑𝛼 + ∫

𝑡

𝑡−ℎ

𝑥(𝛼)
𝑇

𝑄
2
𝑥 (𝛼) 𝑑𝛼

+ ∫

𝑡

𝑡−ℎ
1

∫

𝑡

𝑠

�̇�(𝛼)
𝑇

𝑍
1
�̇� (𝛼) 𝑑𝛼 𝑑𝑠

+ ∫

𝑡−ℎ
1

𝑡−ℎ

∫

𝑡

𝑠

�̇�(𝛼)
𝑇

𝑍
2
�̇� (𝛼) 𝑑𝛼 𝑑𝑠.

(32)

Along a similar line as in the derivation of Theorem 2 the
asymptotic stability can be established, and details are thus
omitted.

Remark 8. Note that when 𝑑
1
(𝑡) is a constant delay ℎ

1
, system

(8) can be regarded as a system in the form of (11) with
interval time-varying delay: ℎ

1
≤ 𝑑(𝑡) ≤ ℎ, 0 ≤

̇
𝑑(𝑡) ≤

𝜇
2
. The system can serve as a model for networked control

systems with both network-induced delay and data dropout
phenomenon [15, 16]. In the form of LMIs Corollary 7 can
provide a delay-dependent stability criterion for the model.
Derived by the convex polyhedronmethod Corollary 7 is less
conservative than those recently reported in [11]; see [13].

In the following, we take the example in [19] to show
that our stability criteria, though having much fewer matrix
variables, are less conservative.

Example 9. Consider the system (8) with

𝐴 = [

−2 0

0 −0.9
] , 𝐴

1
= [

−1 0

−1 −1
] ,

̇
𝑑
1
(𝑡) ≤ 0.1,

̇
𝑑
2
(𝑡) ≤ 0.8.

(33)

For given upper bound ℎ
1
of 𝑑

1
(𝑡), we intend to find the

admissible upper bound ℎ
2
of 𝑑

2
(𝑡), which guarantees the

asymptotic stability of (8).
When ℎ

2
is given, the admissible ℎ

1
can be seen from

Table 2.
As seen in Tables 1 and 2, Theorem 2 is less conservative

than those in [15, 16]. It is worth noting that with fewer
matrix variables involved, Theorem 2 needs less computa-
tional requirements.

When 𝑑
1
(𝑡) is a constant delay ℎ

1
, the system can be

looked upon as those with interval time-varying delay. As

Table 2: Admissible upper bound ℎ
1
for various ℎ

2
.

Method ℎ
2

0.1 0.2 0.3
[18] ℎ

1
2.263 1.696 1.324

[19] ℎ
1

2.300 1.779 1.453
Theorem 2 ℎ

1
2.3400 1.8337 1.5318

Table 3: Admissible upper bound ℎ for various ℎ
1
.

Method ℎ
1

1 2 3 4
[11] ℎ 1.7423 2.4328 3.2234 4.0644
Corollary 7 ℎ 1.8737 2.5049 3.2592 4.0745

indicated in Remark 8, the stability result in Corollary 7
as well as that in [11] can be turned to for computing the
admissible upper bound ℎ of𝑑(𝑡), which are shown inTable 3.

Even as a delay-dependent criterion for systems with
interval time-varying delay, Corollary 7 has advantages over
[11] in the sense that the computed admissible upper bound
of the time-varying delay is larger.

3. State Feedback Control

Without a free weighting matrix introduced,Theorem 2 only
involves the matrices in the Lyapunov functional employed.
It can be expected as a useful tool for the 𝐻

∞ state feedback
control problem formulated above. We first present an 𝐻

∞

performance analysis result in the following.

Theorem 10. System (1) and (2) with 𝑢(𝑡) = 0 and delays
subject to (4) and (5) is asymptotically stable with an 𝐻

∞

disturbance attenuation level 𝛾 for given ℎ
1
, ℎ

2
, 𝜇

1
, and 𝜇

2
, if

there exist matrices 𝑃 > 0, 𝑄
𝑖
> 0, 𝑖 = 1, 2, 3, 4, and 𝑍

𝑗
> 0,

𝑗 = 1, 2 such that the following LMIs hold:

Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ − 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
< 0,

Φ − 𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ − 𝑒
24
ℎ
−1

𝑍
2
𝑒
𝑇

24
< 0,

(34)

where 𝑒
13

= [𝑒
𝑇

13
0]

𝑇

, 𝑒
23
, 𝑒

24
, and 𝑒

35
follow similarly and

Φ =

[
[
[
[
[
[
[
[

[

𝜑
1
𝑃𝐴

1
ℎ
−1

1
(𝑍

1
+ 𝑍

2
) 0 0 𝑃𝐸

∗ 𝜑
2

ℎ
−1

2
𝑍
2

ℎ
−1

𝑍
2

0 0

∗ ∗ 𝜑
3

0 ℎ
−1

1
𝑍
1

0

∗ ∗ ∗ −𝑄
2
− ℎ

−1

𝑍
2

0 0

∗ ∗ ∗ ∗ −𝑄
4
− ℎ

−1

1
𝑍
1

0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

0

𝐸
𝑇

]
]
]
]
]
]
]

]

[ℎ
1
𝑍
1
+ ℎ𝑍

2
]

[
[
[
[
[

[

𝐴
𝑇

𝐴
𝑇

1

0

0

0

𝐸
𝑇

]
]
]
]
]

]

𝑇

+

[
[
[
[
[

[

𝐶
𝑇

𝐶
𝑇

1

0

0

0

𝐹
𝑇

]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝐶
𝑇

𝐶
𝑇

1

0

0

0

𝐹
𝑇

]
]
]
]
]
]
]

]

𝑇

,

(35)
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with 𝜑
1
, 𝜑

2
, 𝜑

3
, and ℎ given in Theorem 2.

Proof. Comparing Φ with Φ in (13), we can conclude that
(34) implies (12). Therefore system (1) and (2) with 𝑢(𝑡) =

0 is asymptotically stable. Now using the same Lyapunov
functional as 𝑉(𝑡) in (15) and calculating �̇�(𝑡) similar to the
derivation of Theorem 2 along the solution of system (1) and
(2) with 𝑢(𝑡) = 0, we have

𝑦(𝑡)
𝑇

𝑦 (𝑡) − 𝛾
2

𝑤(𝑡)
𝑇

𝑤 (𝑡) + �̇� (𝑡) ≤ 𝜁(𝑡)
𝑇

𝑀(𝛼, 𝛽) 𝜁 (𝑡) ,

(36)

where

𝑀(𝛼, 𝛽) = Φ − 𝛼𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− (1 − 𝛼) 𝑒

13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13

− 𝛽𝑒
24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
− (1 − 𝛽) 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
,

(37)

with 𝛼 and 𝛽 defined in the proof of Theorem 2 and 𝜁(𝑡) =

[𝜁(𝑡)
𝑇

𝑤(𝑡)
𝑇

]

𝑇

with 𝜁(𝑡) in (24). On the one hand, using the
convex polyhedron method we can prove that 𝑀(𝛼, 𝛽) < 0

by (34). On the other hand, under the zero condition we have
𝑉(0) = 0 and 𝑉(∞) ≥ 0. Integrating both sides of (36) leads
to ‖𝑦‖

2
< 𝛾‖𝑤‖

2
for all nonzero 𝑤(𝑡) ∈ 𝐿

2
[0,∞]. This ends

the proof.

Nowwe are in a position to resolve the𝐻∞ state feedback
control problem aforementioned.

Theorem 11. Consider system (1) and (2) with delays subject
to (4) and (5). Given ℎ

1
, ℎ

2
, 𝜇

1
, and 𝜇

2
, there exists a state

feedback controller 𝑢(𝑡) = 𝐾𝑥(𝑡) ensuring that the closed-
loop system is asymptotically stable with an 𝐻

∞ disturbance
attenuation level 𝛾, if there exist matrices 𝑃 > 0, 𝑄

𝑖
> 0,

𝑖 = 1, 2, 3, 4, and 𝑍
𝑗
> 0, 𝑗 = 1, 2, 𝐾 such that the following

LMIs hold:

[

Ω
𝑖

Γ

Γ
𝑇

Λ

] < 0, 𝑖 = 1, 2, 3, 4, (38)

where

Ω
1
= Ψ − 𝑒

13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
,

Ω
2
= Ψ − 𝑒

13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
,

Ω
3
= Ψ − 𝑒

24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
,

Ω
4
= Ψ − 𝑒

24
ℎ
−1

𝑍
2
𝑒
𝑇

24
,

Λ = diag {ℎ−1
1

(𝑍
1
− 2𝑃) , ℎ

−1

(𝑍
2
− 2𝑃) , −𝐼} ,

Γ =

[

[

[

[

[

[

[

[

𝑃𝐴
𝑇

+ 𝐾

𝑇

𝐵
𝑇

𝑃𝐴
𝑇

+ 𝐾

𝑇

𝐵
𝑇

𝑃𝐶
𝑇

+ 𝐾

𝑇

𝐷
𝑇

𝑃𝐴
𝑇

1
𝑃𝐴

𝑇

1
𝑃𝐶

𝑇

1

0 0 0

0 0 0

0 0 0

𝐸
𝑇

𝐸
𝑇

𝐹
𝑇

]

]

]

]

]

]

]

]

,

(39)

with

Ψ =

[

[

[

[

[

[

[

[

[

[

[

[

𝜑
1
𝐴
1
𝑃 ℎ

−1

1
(𝑍

1
+ 𝑍

2
) 0 0 𝐸

∗ 𝜑
2

ℎ
−1

2
𝑍
2

ℎ
−1

𝑍
2

0 0

∗ ∗ 𝜑
3

0 ℎ
−1

1
𝑍
1

0

∗ ∗ ∗ −𝑄
2
− ℎ

−1

𝑍
2

0 0

∗ ∗ ∗ ∗ −𝑄
4
− ℎ

−1

1
𝑍
1

0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

,

𝜑
1
= 𝐴𝑃 + 𝐵𝐾 + (𝐴𝑃 + 𝐵𝐾)

𝑇

+

4

∑

𝑖=1

𝑄
𝑖
− ℎ

−1

1
(𝑍

1
+ 𝑍

2
) ,

𝜑
2
= − (1 − 𝜇)𝑄

3
− (ℎ

−1

2
+ ℎ

−1

)𝑍
2
,

𝜑
3
= − (1 − 𝜇

1
) 𝑄

1
− (ℎ

−1

2
+ ℎ

−1

1
)𝑍

2
− 2ℎ

−1

1
𝑍
1
,

(40)

and 𝑒
13
, 𝑒

23
, 𝑒

24
, 𝑒

35
, ℎ, and 𝜇 are given in Theorem 10.

Moreover, if the foregoing condition holds, a desired controller
gain matrix is given by

𝐾 = 𝐾𝑃

−1

. (41)

Proof. Apply the controller 𝑢(𝑡) = 𝐾𝑥(𝑡) to system (1) and (2)
and then the closed-loop system is formulated as follows:

�̇� (𝑡) = (𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝑑

1
(𝑡) − 𝑑

2
(𝑡)) + 𝐸𝑤 (𝑡) ,

𝑦 (𝑡) = (𝐶 + 𝐷𝐾) 𝑥 (𝑡) + 𝐶
1
𝑥 (𝑡 − 𝑑

1
(𝑡) − 𝑑

2
(𝑡)) + 𝐹𝑤 (𝑡) .

(42)

By Theorem 10 this system is asymptotically stable with an
𝐻
∞ disturbance attenuation level 𝛾, if there exist matrices

𝑃 > 0, 𝑄
𝑖
> 0, 𝑖 = 1, 2, 3, 4, and 𝑍

𝑗
> 0, 𝑗 = 1, 2, such

that

Φ
𝑐
− 𝑒

13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ
𝑐
− 𝑒

13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
< 0,

Φ
𝑐
− 𝑒

24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Φ
𝑐
− 𝑒

24
ℎ
−1

𝑍
2
𝑒
𝑇

24
< 0,

(43)



8 Abstract and Applied Analysis

where 𝑒
13
, 𝑒
23
, 𝑒
24
, 𝑒
35
, and ℎ are the same as those in

Theorem 10 and

Φ
𝑐
=

[

[

[

[

[

[

[

[

[

[

𝜑
𝑐1

𝑃𝐴
1

ℎ
−1

1
(𝑍

1
+ 𝑍

2
) 0 0 𝑃𝐸

∗ 𝜑
2

ℎ
−1

2
𝑍
2

ℎ
−1

𝑍
2

0 0

∗ ∗ 𝜑
3

0 ℎ
−1

1
𝑍
1

0

∗ ∗ ∗ −𝑄
2
− ℎ

−1

𝑍
2

0 0

∗ ∗ ∗ ∗ −𝑄
4
− ℎ

−1

1
𝑍
1

0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

(𝐴 + 𝐵𝐾)
𝑇

𝐴
𝑇

1

0

0

0

𝐸
𝑇

]

]

]

]

]

]

]

]

[ℎ
1
𝑍
1
+ ℎ𝑍

2
]

[

[

[

[

[

[

[

[

(𝐴 + 𝐵𝐾)
𝑇

𝐴
𝑇

1

0

0

0

𝐸
𝑇

]

]

]

]

]

]

]

]

𝑇

+

[

[

[

[

[

[

[

[

(𝐶 + 𝐷𝐾)
𝑇

𝐶
𝑇

1

0

0

0

𝐹
𝑇

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

(𝐶 + 𝐷𝐾)
𝑇

𝐶
𝑇

1

0

0

0

𝐹
𝑇

]

]

]

]

]

]

]

]

]

]

𝑇

,

(44)

with 𝜑
2
and 𝜑

3
defined inTheorem 10 and 𝜑

𝑐1
= 𝑃(𝐴+𝐵𝐾)+

(𝐴 + 𝐵𝐾)
𝑇

𝑃 + ∑
4

𝑖=1
𝑄
𝑖
− ℎ

−1

1
(𝑍

1
+ 𝑍

2
).

Write 𝐽 = diag{𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝐼}, 𝑃 = 𝑃
−1, 𝑍

𝑖
=

𝑃
−1

𝑍
𝑖
𝑃
−1, 𝑖 = 1, 2, 𝑄

𝑗
= 𝑃

−1

𝑄
𝑗
𝑃
−1, and 𝑗 = 1, 2, 3, 4.

Performing a congruence transformation to (43) by 𝐽 yields

Ψ + ΓΛ̂
−1

Γ
𝑇

− 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Ψ + ΓΛ̂
−1

Γ
𝑇

− 𝑒
13
ℎ
−1

1
𝑍
2
𝑒
𝑇

13
− 𝑒

24
ℎ
2
ℎ
−2

𝑍
2
𝑒
𝑇

24
< 0,

Ψ + ΓΛ̂
−1

Γ
𝑇

− 𝑒
24
ℎ
1
ℎ
−2

𝑍
2
𝑒
𝑇

24
− 𝑒

23
ℎ
−1

2
𝑍
2
𝑒
𝑇

23
< 0,

Ψ + ΓΛ̂
−1

Γ
𝑇

− 𝑒
24
ℎ
−1

𝑍
2
𝑒
𝑇

24
< 0,

(45)

where

Λ̂ = diag {ℎ−1
1
𝑍
−1

1
, ℎ
−1

𝑍
−1

2
, 𝐼} . (46)

By Schur complements we have

[

Ω
𝑖

Γ

Γ
𝑇

−Λ̂

] < 0, 𝑖 = 1, 2, 3, 4. (47)

Note that (47) is not linear in 𝑃, 𝐾, 𝑄
𝑖
, and 𝑍

𝑗
due to 𝑍

−1

𝑖
=

𝑃𝑍

−1

𝑖
𝑃. However, noting that (𝑃 − 𝑍

𝑖
)𝑍

−1

𝑖
(𝑃 − 𝑍

𝑖
) ≥ 0, we

have𝑃𝑍

−1

𝑖
𝑃 ≥ −𝑍

𝑖
+2𝑃.Therefore,𝑍−1

𝑖
≥ −𝑍

𝑖
+2𝑃. It follows

immediately that−Λ̂ ≤ Λ, whichmeans that (38) implies (47).
This completes the proof.

Due to the fact that 𝑍−1
𝑖

≥ −𝑍
𝑖
+ 2𝑃, condition (38) is

more conservative than (47). However, based on (38) one can
obtain an LMI approach to the 𝐻

∞ state feedback control
problem for systems with two additive time-varying delays.
The existence of the state feedback controller is guaranteed
by the feasibility of LMIs (38). When LMIs (38) are solvable,
the controller can be constructed according to (41). Based on

(47), one can obtain a less conservative controller at the cost
of more complexity by employing CCL method [21].

To illustrate the effectiveness of this method we provide
an example.

Example 12. Consider system (1) and (2) with parameters
given as follows:

𝐴 = [

0.11 0

0 −0.9
] , 𝐴

1
= [

−2 0

−1 1.1
] ,

𝐸 = [

0.56

0.61
] , 𝐵 = [

0.2

−2.5
] ,

𝐶 = [0.1 1.8] , 𝐶
1
= [0.7 −1] ,

𝐹 = 0.1, 𝐷 = 0.4.

(48)

Given ℎ
1
= 0.1, ℎ

2
= 0.2, 𝜇

1
= 0.1, 𝜇

2
= 0.2, and 𝛾 = 0.6 we

can find that LMIs in (38) are feasible with

𝑃 = [

2.6423 −0.2090

−0.2090 0.7465
] , 𝐾 = [−0.5241 0.8779] .

(49)

ByTheorem 11, there exists a state feedback controller

𝑢 (𝑡) = 𝐾𝑃

−1

𝑥 (𝑡) = [−0.1078 1.1458] 𝑥 (𝑡) (50)

such that the closed-loop system is asymptotically stable for
0 ≤ 𝑑

1
(𝑡) ≤ 0.1, 0 ≤ 𝑑

2
(𝑡) ≤ 0.2 with an 𝐻

∞ disturbance
attenuation level 𝛾 = 0.6.

4. Conclusion

This paper is concerned with 𝐻
∞ control for a networked

control model of systems with two additive time-varying
delays. For one thing a new delay-dependent stability cri-
terion was derived, which improves over existing ones in
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that it has less conservatism with fewer matrix variables.
A delay-rate-independent criterion was also obtained as a
byproduct.When one of the delays is constant, a new stability
criterion was given for systems with interval time-varying
delay. Then examples were provided to illustrate the reduced
conservatism of the criteria. Finally the 𝐻

∞ state feedback
control problem was solved via an LMI approach, which was
demonstrated to be effective using another example.
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