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A system of first order ordinary differential equations describing a population divided into juvenile and adult age groups is studied.
The system is not cooperative but its linear part is, and this makes it possible to establish the existence and nonexistence results of
positive solutions for the system in terms of the principal eigenvalue of the corresponding linearized system.

1. Introduction

In this paper, we will study the following problem:

𝑢

= 𝑎 (𝑡) V − 𝑐 (𝑡) 𝑢 − 𝑒𝑢 [𝑢 + V] ,

V = 𝑏 (𝑡) 𝑢 − 𝑑 (𝑡) V − 𝑓V [𝑢 + V] ,
(1)

where 𝑎, 𝑏, 𝑐, and 𝑑 ∈ 𝐶(R, (0,∞)) are 𝜔-periodic functions
and 𝑒 and 𝑓 are positive constants.

We are interested in dividing the individuals within a
population into two age groups. The first group contains all
newborns in addition to all young individuals who are unable
to produce newborns; such group will be referred to as the
juvenile group.The second group, which we will call the adult
group, contains all individuals who can produce newborns in
addition to old individuals who may not be able to produce
newborns. The functions 𝑢 and V represent, respectively, the
total number of individuals who belong to the juvenile and
adult groups. As adults give birth to juveniles, the function
𝑎 corresponds to the birth rate of the population. Juveniles
are lost both through death and through becoming adults;
the function 𝑐 corresponds to this overall loss. The function
𝑏 gives the rate at which juveniles become adults and the
function 𝑑 corresponds to the death rate of adult population.
The terms −𝑒𝑢[𝑢 + V] and −𝑓V[𝑢 + V] correspond to decrease
in population size due to competition for limited resources.

In natural environments the number of individuals of a
population changes in time in different ways. Many observa-
tions show that the number of individuals of a population

can have large oscillations in nature. In the earlier models
the population is characterized by its size which is the total
number of individuals within the population or the total
biomass. One of such models is the Malthus model for the
human population growth. P. F. Verhulst in 1838 introduced
another model which is known as the realistic model; see
[1, 2]. Models presenting qualitatively this type of behavior
are density dependent unstructured population models; the
most well-known model for interspecific competition has
been proposed by Lotka and Volterra and has been studied
extensively by Bonhoeffer, Borrelli, and Murray; see also [1–
3]. In fact, up to the mid of the 20th century most models
characterize the population by its size or total biomass. In
such models the population is considered as homogeneous;
that is, themodels do not distinguish between the individuals
within the population. Models that involve structured popu-
lation are called structured population models. A structured
model describes how individuals move in time among dif-
ferent groups and thus describes the dynamics of population
groups and as a result it describes the dynamics of the whole
population. For other related results, we refer the readers to
[4–7] and the references therein.

Recently, a model for the growth of a population of two
age groups (adult and juvenile) in which there is competition
for limited resources has been considered in [8], where
the authors assumed that the population is homogenous
with common birth rate, common death rate, and common
inhibiting constants.They established a time-invariant struc-
ture under general conditions and discussed the stability of
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the equilibrium points. More concretely, at time 𝑡 the net rate
of change in the populations of the two groups is modeled by
the system

𝑢

= 𝑎V − 𝑐𝑢 − 𝑒𝑢 [𝑢 + V] ,

V = 𝑏𝑢 − 𝑑V − 𝑓V [𝑢 + V] ;
(2)

the authors showed in [8] that if 𝑐𝑑 < 𝑎𝑏, then (2) has a
unique positive equilibrium point value in addition to the
trivial equilibrium point 𝑢 = V = 0.

Obviously, in [8], since 𝑎, 𝑏, 𝑐, and𝑑 are positive constants,
the solutions of (2) can be explicitly given and some estimates
can be carried out easily. However, when 𝑎, 𝑏, 𝑐, and 𝑑 are
positive functions, the method of [8] cannot be applied to
deal with the system (1) any more. If 𝑎, 𝑏, 𝑐, and 𝑑 are not
constants, whether the system (1) has a positive solution or
not is a natural question. Inspired by above considerations, in
the present paper, we will first establish the lower and upper
solutions method for more general system

𝑢

+ 𝑝 (𝑡) 𝑢 = 𝑓 (𝑢, V) ,

V + 𝑞 (𝑡) V = 𝑔 (𝑢, V) ,
(3)

where𝑓 and 𝑔 : R×R → R are continuous functions and 𝑝,
𝑞 are𝜔-periodic continuous functions, and thenwewill prove
the existence of positive solutions for system (1) by applying
above method.

Our main results can be stated as below.

Theorem 1. Suppose that the functions 𝑢, V, 𝑢, V ∈ 𝑋 ∩ 𝐶
1

(R,R). (𝑢, V) and (𝑢, V) are ordered coupling lower and upper
solutions of systems (3); the following condition is hold (H).
There exists 𝑀

1
, 𝑁
1
> 0 such that, for any V ≤ V ≤ V and

𝑢 ≤ 𝑢 ≤ 𝑢,

𝑓 (𝑢, V) − 𝑓 (𝑢, V) ≥ −𝑀
1
(𝑢 − 𝑢) ,

𝑓 (𝑢, V) − 𝑓 (𝑢, V) ≥ −𝑀
1
(𝑢 − 𝑢) ,

𝑔 (𝑢, V) − 𝑔 (𝑢, V) ≥ −𝑁
1
(V − V) ,

𝑔 (𝑢, V) − 𝑔 (𝑢, V) ≥ −𝑁
1
(V − V) .

(4)

Then, the problem (3) has at least one solution (𝑢∗, V∗) with
𝑢 ≤ 𝑢
∗
≤ 𝑢, V ≤ V∗ ≤ V.

Theorem 2. There exists a positive periodic solution of systems
(1) if and only if 𝜆

1
(𝑀) < 0.

Remark 3. To overcome the difficulties caused by the spatially
heterogeneous, we discuss the system (3) by lower and
upper solutions method established inTheorem 1 and obtain
the necessary and sufficient conditions for the existence of
positive periodic solutions of (1) in terms of the principal
eigenvalue of the associated linear system. For other related
results on the study of differential systems via lower andupper
solutions method, we refer the readers here to [9–11] and the
references listed therein.

The rest of the paper is organized as follows. In Section 2,
we establish the lower and upper solutions methods for
the system (3). In Section 3, we obtain the necessary and
sufficient conditions for the existence of a positive periodic
solution of (1).

2. Lower and Upper Solutions Method

In this section, we will develop lower and upper solutions
method for system (3).

Let𝑋 be a Banach space defined as

𝑋 := {𝑢 ∈ 𝐶 (R,R) | 𝑢 (𝑡) = 𝑢 (𝑡 + 𝜔) , 𝑡 ∈ R} . (5)

Definition 4. Assume that the functions 𝑢, V, 𝑢, V ∈ 𝑋 ∩

𝐶
1
(R,R). Then, (𝑢, V) and (𝑢, V) are called ordered coupling

lower and upper solutions of systems (3), respectively, if 𝑢 ≤ 𝑢
and V ≤ V satisfying

𝑢

+ 𝑝 (𝑡) 𝑢 ≤ 𝑓 (𝑢, V) , V ≤ V ≤ V,

V + 𝑞 (𝑡) V ≤ 𝑔 (𝑢, V) , 𝑢 ≤ 𝑢 ≤ 𝑢,

𝑢

+ 𝑝 (𝑡) 𝑢 ≥ 𝑓 (𝑢, V) , V ≤ V ≤ V,

V + 𝑞 (𝑡) V ≥ 𝑔 (𝑢, V) , 𝑢 ≤ 𝑢 ≤ 𝑢.

(6)

Proof of Theorem 1. By the condition (H), there exist𝑀 ≥ 𝑀
1

and 𝑁 ≥ 𝑁
1
such that ∫𝜔

0
[𝑝(𝑡) + 𝑀]𝑑𝑡 > 0 and ∫𝜔

0
[𝑞(𝑡) +

𝑁]𝑑𝑡 > 0.
For any 𝜑, 𝜓 ∈ 𝑋, we consider the following linear prob-

lem:

𝑢

+ 𝑝 (𝑡) 𝑢 +𝑀𝑢 = 𝑓 (𝜑, 𝜓) +𝑀𝜑,

V + 𝑞 (𝑡) V + 𝑁V = 𝑔 (𝜑, 𝜓) + 𝑁𝜓.
(7)

It is well known that the system (7) is equivalent to the
equation

(𝑢 (𝑡) , V (𝑡))

= (∫

𝑡+𝑤

𝑡

𝐺
1
(𝑡, 𝑠) [𝑓 (𝜑 (𝑠) , 𝜓 (𝑠)) + 𝑀𝜑 (𝑠)] 𝑑𝑠,

∫

𝑡+𝑤

𝑡

𝐺
2
(𝑡, 𝑠) [𝑔 (𝜑 (𝑠) , 𝜓 (𝑠)) + 𝑁𝜓 (𝑠)] 𝑑𝑠) ,

(8)

where

𝐺
1
(𝑡, 𝑠) =

𝑒
∫
𝑠

𝑡

[𝑝(𝜃)+𝑀]𝑑𝜃

𝑒
∫
𝜔

0

[𝑝(𝜃)+𝑀]𝑑𝜃
− 1

,

𝐺
2
(𝑡, 𝑠) =

𝑒
∫
𝑠

𝑡

[𝑞(𝜃)+𝑁]𝑑𝜃

𝑒
∫
𝜔

0

[𝑞(𝜃)+𝑁]𝑑𝜃
− 1

,

(9)

and, consequently,

(𝑢, V) = 𝑇 (𝜑, 𝜓) (10)
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with
𝑇 (𝜑, 𝜓)

= (∫

𝑡+𝑤

𝑡

𝐺
1
(𝑡, 𝑠) [𝑓 (𝜑 (𝑠) , 𝜓 (𝑠)) + 𝑀𝜑 (𝑠)] 𝑑𝑠,

∫

𝑡+𝑤

𝑡

𝐺
2
(𝑡, 𝑠) [𝑔 (𝜑 (𝑠) , 𝜓 (𝑠)) + 𝑁𝜓 (𝑠)] 𝑑𝑠) .

(11)

It is easy to see that 𝑇 : 𝑋2 → 𝑋
2 is completely continuous.

Let 𝑃 = {(𝑢, V) ∈ 𝑋2 | 𝑢 ≤ 𝑢 ≤ 𝑢, V ≤ V ≤ V}; then 𝑃 is
bounded closed convex subset of𝑋2. So, 𝑇 : 𝑃 → 𝑋

2 is also
completely continuous. We will show that 𝑇 : 𝑃 → 𝑃.

Let (𝜑, 𝜓) ∈ 𝑃, (𝑢, V) = 𝑇(𝜑, 𝜓), and𝑤 = 𝑢−𝑢, 𝑧 = V− V.
Since 𝑢 ≤ 𝜑 ≤ 𝑢 and V ≤ 𝜓 ≤ V, we have

𝑢

+ 𝑝 (𝑡) 𝑢 +𝑀𝑢 ≥ 𝑓 (𝑢, 𝜓) +𝑀𝑢,

V + 𝑞 (𝑡) V + 𝑁V ≥ 𝑔 (𝜑, V) + 𝑁V.
(12)

Hence, 𝑤, 𝑧 satisfy

𝑤

+ 𝑝 (𝑡) 𝑤 +𝑀𝑤 ≥ 𝑓 (𝑢, 𝜓) − 𝑓 (𝜑, 𝜓) +𝑀(𝑢 − 𝜑) ≥ 0,

𝑧

+ 𝑞 (𝑡) 𝑧 + 𝑁𝑧 ≥ 𝑔 (𝜑, V) − 𝑔 (𝜑, 𝜓) + 𝑁 (V − 𝜓) ≥ 0.

(13)

𝑇 is strongly positive and implies 𝑤 ≥ 0, 𝑧 ≥ 0; that is,
𝑢 ≤ 𝑢, V ≤ V. By a similar method, we have 𝑢 ≥ 𝑢 and
V ≥ V. Consequently, 𝑇 : 𝑃 → 𝑃. By the Schauder fixed
point theorem,𝑇 has a fixed point (𝑢∗, V∗) in𝑃.Therefore, the
problem (3) has at least one solution (𝑢∗, V∗)with 𝑢 ≤ 𝑢∗ ≤ 𝑢
and V ≤ V∗ ≤ V.

3. Existence and Nonexistence of Positive
Periodic Solutions

We consider the system

𝑢

= 𝐴 (𝑡) 𝑢 + 𝐵 (𝑡) V,

V = 𝐶 (𝑡) 𝑢 + 𝐷 (𝑡) V,
(14)

where 𝐴, 𝐵, 𝐶, and 𝐷 are 𝜔 periodic functions, 𝐵, 𝐶 ∈

𝐶(R[0,∞)).

Lemma 5. Suppose that there exist functions 𝑢
0
, V
0
∈ 𝑋 ∩

𝐶
1
(R,R) such that 𝑢

0
> 0, V

0
> 0, and

𝑢


0
≥ 𝐴 (𝑡) 𝑢

0
+ 𝐵 (𝑡) V

0
,

V
0
≥ 𝐶 (𝑡) 𝑢

0
+ 𝐷 (𝑡) V

0
,

(15)

where equality does not hold in all of the equations in (15).
Then, (14) satisfies the strong maximum principle; that is, if 𝑢,
V ∈ 𝑋 ∩ 𝐶1(R,R) such that

𝑢

≥ 𝐴 (𝑡) 𝑢 + 𝐵 (𝑡) V,

V ≥ 𝐶 (𝑡) 𝑢 + 𝐷 (𝑡) V,
(16)

then either (i) 𝑢, V ≡ 0 or (ii) 𝑢 > 0 and V > 0.

Proof. Suppose that the result is false. Then, there exist 𝑢
1
, V
1

not both identically zero satisfying inequalities (16) but not
satisfying (ii) in the conclusion of the theorem. For 0 ≤ 𝜏 ≤ 1
define 𝑢

𝜏
= (1 − 𝜏)𝑢

0
+ 𝜏𝑢
1
and V
𝜏
= (1 − 𝜏)V

0
+ 𝜏V
1
. Then,

there exists 𝜏
0
, 0 < 𝜏

0
≤ 1, such that 𝑢

𝜏
, V
𝜏
> 0 for 0 ≤ 𝜏 < 𝜏

0

and either 𝑢
𝜏
0

or V
𝜏
0

has a zero. We may assume without loss
of generality that there exists 𝑡

1
such that 𝑢

𝜏
0

(𝑡
1
) = 0. Then,

𝑢


𝜏
0

≥ 𝐴 (𝑡) 𝑢
𝜏
0

+ 𝐵 (𝑡) V
𝜏
0

, (17)

and so

𝑢


𝜏
0

− 𝐴 (𝑡) 𝑢
𝜏
0

≥ 0. (18)

Moreover,𝐾 is chosen sufficiently large to ensure that ∫𝜔
0
[𝐾−

𝐴(𝑡)]𝑑𝑡 > 0, so it follows from the strongly positive that 𝑢
𝜏
0

≡

0 or 𝑢
𝜏
0

> 0. Since 𝑢
𝜏
0

(𝑡
1
) = 0, it follows that 𝑢

𝜏
0

≡ 0. Hence,
by (17), it also follows that V

𝜏
0

≡ 0. Since both 𝑢
1
, V
1
are not

identically zero and 𝜏
0
< 1, from 𝑢

𝜏
0

= (1 − 𝜏
0
)𝑢
0
+ 𝜏
0
𝑢
1
≡ 0

and V
𝜏
0

= (1 − 𝜏
0
)V
0
+ 𝜏
0
V
1
≡ 0, we have 𝑢

0
= −(𝜏
0
/(1 − 𝜏

0
))𝑢
1

and V
0
= −(𝜏

0
/(1 − 𝜏

0
))V
1
. This is impossible as 𝑢

0
, V
0
satisfy

(15) and 𝑢
1
, V
1
satisfy (16) and so the proof is complete.

Corollary 6. Suppose 𝐴(𝑡) + 𝐵(𝑡) < 0 and 𝐶(𝑡) + 𝐷(𝑡) < 0.
Then, the system (14) satisfies the maximum principle.

Proof. The result follows from Lemma 5 by choosing 𝑢
0
=

V
0
= 𝐾 where𝐾 is any positive number.

Lemma 7. The system (14) has a principal eigenvalue; that is,
there existsΛ ∈ R and functions 𝑢, V ∈ 𝑋∩𝐶1(R,R) such that
𝑢, V > 0 and

𝑢

− 𝐴 (𝑡) 𝑢 − 𝐵 (𝑡) V = Λ𝑢,

V − 𝐶 (𝑡) 𝑢 − 𝐷 (𝑡) V = ΛV.
(19)

Proof. Define 𝐿 : [𝑋 ∩ 𝐶1(R,R)]2 → 𝑋
2 by

𝐿(

𝑢

V) = (
𝑢


V) , (20)

and define the matrix𝑀(𝑡) by

𝑀(𝑡) = (

𝐴 (𝑡) 𝐵 (𝑡)

𝐶 (𝑡) 𝐷 (𝑡)
) . (21)

By essentially the same argument as in [12, Lemma 12], if
𝐾 > 0 is sufficiently large, then 𝐿 − 𝑀 + 𝐾 is an invertible
operator such that (𝐿 −𝑀+𝐾)

−1 is compact. If, moreover,𝐾
is chosen sufficiently large to ensure that 𝐴(𝑡) + 𝐵(𝑡) − 𝐾 < 0

and 𝐶(𝑡) + 𝐷(𝑡) − 𝐾 < 0, it follows from Corollary 6 that
(𝐿 −𝑀 + 𝐾)

−1 is strongly positive.
Since (𝐿 − 𝑀 + 𝐾)

−1 is compact and strongly positive,
(𝐿 − 𝑀 + 𝐾)

−1 has a positive principal eigenvalue (𝜇). Thus,
there exists 𝑈

0
= (
𝑢
0

V
0

) with 𝑢
0
, V
0
> 0 such that (𝐿 − 𝑀 +

𝐾)
−1
𝑈
0
= 𝜇𝑈

0
. Hence, (𝐿 − 𝑀)𝑈

0
= (1/𝜇 − 𝐾)𝑈

0
and so

𝐿 −𝑀 has a principal eigenvalue.

We will denote the principal eigenvalue of 𝐿 − 𝑀 by
𝜆
1
(𝑀).
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Corollary 8. Suppose𝑀
1
(𝑡) and𝑀

2
(𝑡) are cooperative matri-

ces (i.e., matrices with positive entries in the off-diagonal
elements) such that 𝑀

1
(𝑡) ≥ 𝑀

2
(𝑡) (i.e., the (𝑖, 𝑗)th element

of 𝑀
1
≥ the (𝑖, 𝑗)th element of 𝑀

2
but 𝑀

1
̸≡ 𝑀
2
). Then,

𝜆
1
(𝑀
1
) < 𝜆
1
(𝑀
2
).

Proof. There exists 𝑈
0
= (
𝑢
0

V
0

) such that 𝑢
0
, V
0
> 0 and [𝐿 −

𝑀
1
− 𝜆
1
(𝑀
1
)]𝑈
0
= 0. Then,

[𝐿 −𝑀
2
− 𝜆
1
(𝑀
1
)] 𝑈
0

= [𝐿 −𝑀
1
− 𝜆
1
(𝑀
1
)] 𝑈
0
+ (𝑀
1
−𝑀
2
) 𝑈
0

= (𝑀
1
−𝑀
2
) 𝑈
0
≥ 0.

(22)

But (𝑀
1
− 𝑀
2
)𝑈
0

̸≡ 0 and so by Lemma 5 the system [𝐿 −

𝑀
2
− 𝜆
1
(𝑀
1
)]𝑈 = 0 satisfies the strong maximum principle.

Hence, if 𝛾 denotes the principal eigenvalue for the system
𝐿 − 𝑀

2
− 𝜆
1
(𝑀
1
)𝐼, it follows easily that 𝛾 > 0. Clearly, 𝐿 −

𝑀
2
has principal eigenvalue 𝜆

1
(𝑀
1
) + 𝛾 > 𝜆

1
(𝑀
1
) and so

𝜆
1
(𝑀
1
) < 𝜆
1
(𝑀
2
), and the proof is complete.

System (1) can be rewritten as

𝐿(

𝑢

V) = 𝑀(𝑡) (

𝑢

V) − 𝑁(
𝑢

V) , (23)

where𝑀(𝑡) = ( −𝑐(𝑡) 𝑎(𝑡)
𝑏(𝑡) −𝑑(𝑡)

) and𝑁 : 𝑋
2
→ 𝑋
2 such that

𝑁(

𝑢

V) = (
𝑒𝑢 [𝑢 + V]
𝑓V [𝑢 + V]) . (24)

Although𝑀(𝑡) is a cooperative matrix, system (1) is not
a cooperative system. We can give necessary and sufficient
conditions for the existence of a positive solution.

Proof of Theorem 2. Suppose 𝜆
1
(𝑀) < 0. Then, there exists

𝜙
1
, 𝜙
2
> 0 such that

(𝐿 −𝑀)(

𝜙
1

𝜙
2

) = 𝜆
1
(𝑀)(

𝜙
1

𝜙
2

) ; (25)

that is,

𝜙


1
= 𝑎 (𝑡) 𝜙

2
− 𝑐 (𝑡) 𝜙

1
+ 𝜆
1
(𝑀) 𝜙

1
,

𝜙


2
= 𝑏 (𝑡) 𝜙

1
− 𝑑 (𝑡) 𝜙

2
+ 𝜆
1
(𝑀) 𝜙

2
.

(26)

Let ( 𝑢V ) = 𝜀 ( 𝜙1𝜙
2

) and ( 𝑢V ) = ( 𝐾𝐾 ). We will show that ( 𝑢V )
and ( 𝑢V ) satisfy the hypotheses of Theorem 1 provided that
𝜀 > 0 is chosen sufficiently small and 𝐾 is chosen sufficiently
large. Let 𝐾 = max{max 𝑎(𝑡)/𝑒,max 𝑏(𝑡)/𝑓}. Then, 𝑎(𝑡) −
𝑒𝐾 ≤ 0 and so

𝑎 (𝑡) V − 𝑐 (𝑡) 𝑢 − 𝑒𝑢 [𝑢 + V]

= [𝑎 (𝑡) − 𝑒𝐾] V − 𝑐 (𝑡)𝐾 − 𝑒𝐾2

≤ 0 = 𝑢


(27)

whenever V ≥ 0. Similarly,

V ≥ 𝑏 (𝑡) 𝑢 − 𝑑 (𝑡) V − 𝑓V [𝑢 + V] , (28)

whenever 𝑢 ≥ 0.
Let 𝜀
0
= min{min 𝑎(𝑡)/𝑒max𝜙

1
, min 𝑏(𝑡)/𝑓max𝜙

2
}.

Then, when 𝜀 < 𝜀
0
, 𝑎(𝑡) − 𝜀𝑒𝜙

1
≥ 0 and 𝑏(𝑡) − 𝜀𝑓𝜙

2
≥ 0.

Hence, when 𝜀 < 𝜀
0
, 𝑢 = 𝜀𝜙

1
, and V ≥ 𝜀𝜙

2
, we have

𝑢

− 𝑎 (𝑡) V + 𝑐 (𝑡) 𝑢 + 𝑒𝑢 [𝑢 + V]

= 𝜀 [𝜙


1
+ 𝑐 (𝑡) 𝜙

1
− 𝑎 (𝑡) 𝜙

2
] + 𝑎 (𝑡) [𝜀𝜙

2
− V]

+ 𝑒𝜀𝜙
1
[𝜀𝜙
1
+ V]

= 𝜀𝜆
1
(𝑀) 𝜙

1
+ 𝜀𝑎 (𝑡) 𝜙

2
− [𝑎 (𝑡) − 𝜀𝑒𝜙

1
] V + 𝜀2𝑒[𝜙

1
]
2

≤ 𝜀𝜆
1
(𝑀) 𝜙

1
+ 𝜀𝑎 (𝑡) 𝜙

2
− [𝑎 (𝑡) − 𝜀𝑒𝜙

1
] 𝜀𝜙
2
+ 𝜀
2
𝑒[𝜙
1
]
2

= 𝜀𝜆
1
(𝑀) 𝜙

1
+ 𝜀
2
𝑒𝜙
1
[𝜙
1
+ 𝜙
2
] < 0,

(29)

when 𝜀 is sufficiently small.
Similarly, when V = 𝜀𝜙

2
, 𝑢 ≥ 𝜀𝜙

1
, and 𝜀 is sufficiently

small, we have

V − 𝑏 (𝑡) 𝑢 + 𝑑 (𝑡) V + 𝑓V [𝑢 + V] < 0. (30)

Hence, byTheorem 1, there exists a positive solution of system
(1).

Suppose now that system (1) has a solution ( 𝑢0V
0

) with 𝑢
0
,

V
0
> 0. Then, ( 𝑢0V

0

) is a solution of the system

𝑢

+ [𝑐 (𝑡) + 𝑒𝑞 (𝑡)] 𝑢 − 𝑎 (𝑡) V = 0,

V − 𝑏 (𝑡) 𝑢 + [𝑑 (𝑡) + 𝑓𝑞 (𝑡)] V = 0,
(31)

where 𝑞(𝑡) = 𝑢
0
(𝑡) + V

0
(𝑡). Hence, ( 𝑢0V

0

) may be regarded as
the principal eigenfunction corresponding to the principal
eigenvalue 𝜆 = 0 of the system (𝐿 −𝑀

𝑞
(𝑡))𝑈 = 0, where

𝑀
𝑞
(𝑡) = (

−𝑐 (𝑡) − 𝑒𝑞 (𝑡) 𝑎 (𝑡)

𝑏 (𝑡) −𝑑 (𝑡) − 𝑓𝑞 (𝑡)
) , 𝑈 = (

𝑢

V) .

(32)

Hence, 𝜆
1
(𝑀
𝑞
) = 0. As𝑀

𝑞
≤ 𝑀 but𝑀

𝑞
̸≡ 𝑀, it follows

from Corollary 8 that 𝜆
1
(𝑀) < 𝜆

1
(𝑀
𝑞
) = 0 and the proof is

complete.

Remark 9. Let𝑀
1
= (
−1 1

1 −1
). Then 𝜆

1
(𝑀
1
) = 0. If𝑀 > 𝑀

1
,

then by Corollary 8 and Theorem 2 we know that system (1)
has a positive solution. In fact, we can deduce from𝑀 > 𝑀

1

that 𝑎𝑏 > 𝑐𝑑. Hence, our main results extend and com-
plement the corresponding ones of [8] to some extent.

Example 10. Let 𝑎(𝑡) = 2 + sin(𝜋𝑡/2); 𝑏(𝑡) = 𝑒𝑡/2 and 𝑡 ∈ [0,
2] with 𝑏(𝑡 + 4) = 𝑏(𝑡) and 𝑏(𝑡) = 𝑏(−𝑡); 𝑐(𝑡) = (1/2)

| cos(𝜋𝑡/4)| + 1/2; 𝑑(𝑡) = (1/4)𝑡 + 1/2 and 𝑡 ∈ [0, 2] with
𝑑(𝑡 + 4) = 𝑑(𝑡) and 𝑑(−𝑡) = 𝑑(𝑡). We consider the following
problem:

𝑢

= 𝑎 (𝑡) V − 𝑐 (𝑡) 𝑢 − 𝑢 [𝑢 + V] ,

V = 𝑏 (𝑡) 𝑢 − 𝑑 (𝑡) V − V [𝑢 + V] .
(33)
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It is easy to verify that 𝑀 > 𝑀
1
; then 𝜆

1
(𝑀) < 0 by

Corollary 8. Therefore, we know that system (33) has a
positive solution byTheorem 2.
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