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The paper deals with convex combinations, convex functions, and Jensen’s functionals. The main idea of this work is to present
the given convex combination by using two other convex combinations with minimal number of points. For example, as regards
the presentation of the planar combination, we use two trinomial combinations. Generalizations to higher dimensions are also
considered.

1. Introduction

LetX be a real vector space. A setA ⊆ X is affine if it contains
the lines passing through all pairs of its points (all binomial
affine combinations inA, i.e., the combinations 𝑝

1
𝑃
1

+ 𝑝
2
𝑃
2

of points 𝑃
1
, 𝑃
2

∈ A and coefficients 𝑝
1
, 𝑝
2

∈ R of the sum
𝑝
1

+ 𝑝
2

= 1). A function 𝑓 : A → R is affine if it satisfies the
equality 𝑓(𝑝

1
𝑃
1

+ 𝑝
2
𝑃
2
) = 𝑝
1
𝑓(𝑃
1
) + 𝑝
2
𝑓(𝑃
2
) for all binomial

affine combinations inA.
A set C ⊆ X is convex if it contains the line segments

connecting all pairs of its points (all binomial convex com-
binations in C, i.e., the combinations 𝑝

1
𝑃
1

+ 𝑝
2
𝑃
2
of points

𝑃
1
, 𝑃
2

∈ C and nonnegative coefficients 𝑝
1
, 𝑝
2

∈ R of the
sum 𝑝

1
+ 𝑝
2

= 1). A function 𝑓 : C → R is convex if it
satisfies the inequality 𝑓(𝑝

1
𝑃
1

+ 𝑝
2
𝑃
2
) ≤ 𝑝
1
𝑓(𝑃
1
) + 𝑝
2
𝑓(𝑃
2
)

for all binomial convex combinations inC.
Using the mathematical induction, it can be proved that

every affine function 𝑓 : A → R satisfies the equality

𝑓 (

𝑛

∑

𝑖=1

𝑝
𝑖
𝑃
𝑖
) =

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑃
𝑖
) (1)

for all affine combinations in A and that every convex
function 𝑓 : C → R satisfies the Jensen inequality

𝑓 (

𝑛

∑

𝑖=1

𝑝
𝑖
𝑃
𝑖
) ≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑃
𝑖
) (2)

for all convex combinations inC.

For an affine or a convex combination 𝑃 = ∑
𝑛

𝑖=1
𝑝
𝑖
𝑃
𝑖

the point 𝑃 itself is called the combination center, and it
is important to mathematical inequalities. Recognizing the
importance of the combination center, the authors (see [1])
have recently considered inequalities on simplexes and their
cones.

A general overview of convex sets, convex functions, and
its applications can be found in [2]. In working with means
and their inequalities, we can rely on the book in [3]. Many
details of the branch of mathematical inequalities are written
in [4].

2. Convex Combinations of the Line

The section shows the importance of convex combination
centers in deriving inequalities.Themain result isTheorem 2.

If 𝑎, 𝑏 ∈ R are different numbers, say 𝑎 < 𝑏, then
every number 𝑥 ∈ R can be uniquely presented as the affine
combination

𝑥 =
𝑏 − 𝑥

𝑏 − 𝑎
𝑎 +

𝑥 − 𝑎

𝑏 − 𝑎
𝑏. (3)

The above binomial combination is convex if and only if the
number 𝑥 belongs to the interval [𝑎, 𝑏]. Given the function
𝑓 : R → R, let 𝑓

line
{𝑎,𝑏}

: R → R be the function of the line
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passing through the points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) of the graph
of 𝑓. Using the affinity of 𝑓

line
{𝑎,𝑏}

, we get the equation

𝑓
line
{𝑎,𝑏}

(𝑥) =
𝑏 − 𝑥

𝑏 − 𝑎
𝑓 (𝑎) +

𝑥 − 𝑎

𝑏 − 𝑎
𝑓 (𝑏) . (4)

If the function 𝑓 is convex, then, using the definition of
convexity, we obtain the inequality

𝑓 (𝑥) ≤ 𝑓
line
{𝑎,𝑏}

(𝑥) , if 𝑥 ∈ [𝑎, 𝑏] , (5)

and the reverse inequality

𝑓 (𝑥) ≥ 𝑓
line
{𝑎,𝑏}

(𝑥) , if 𝑥 ∉ (𝑎, 𝑏) . (6)

By the end of this section we will use an interval I ⊆ R

with the nonempty interiorI0.
The following lemma represents a systematised version of

[5, Proposition 2] and deals with two convex combinations
having the same center. Assigning the convex function to
such convex combinations, we obtain the following Jensen
type inequality.

Lemma 1. Let 𝑎, 𝑏 ∈ I ⊆ R be points such that 𝑎 ≤ 𝑏. Let
∑
𝑛

𝑖=1
𝑝
𝑖
𝑥
𝑖
be a convex combination with points 𝑥

𝑖
∈ [𝑎, 𝑏], and

let ∑
𝑚

𝑗=1
𝑞
𝑗
𝑦
𝑗
be a convex combination with points 𝑦

𝑗
∈ I \

(𝑎, 𝑏).
If the above convex combinations have the same center

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
=

𝑚

∑

𝑗=1

𝑞
𝑗
𝑦
𝑗
, (7)

then every convex function 𝑓 : I → R satisfies the inequality
𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑥
𝑖
) ≤

𝑚

∑

𝑗=1

𝑞
𝑗
𝑓 (𝑦
𝑗
) . (8)

If 𝑓 is concave, then the reverse inequality is valid in (8).

Proof. Assume 𝑓 is convex. If 𝑎 < 𝑏, the right-hand side fol-
lows from the series of inequalities

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑥
𝑖
) ≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓
line
{𝑎,𝑏}

(𝑥
𝑖
) = 𝑓

line
{𝑎,𝑏}

(

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
)

= 𝑓
line
{𝑎,𝑏}

(

𝑚

∑

𝑗=1

𝑞
𝑗
𝑦
𝑗
) =

𝑚

∑

𝑗=1

𝑞
𝑗
𝑓
line
{𝑎,𝑏}

(𝑦
𝑗
)

≤

𝑚

∑

𝑗=1

𝑞
𝑗
𝑓 (𝑦
𝑗
)

(9)

derived applying the inequality in (5) to 𝑥
𝑖
and the inequality

in (6) to 𝑦
𝑗
. If 𝑎 = 𝑏, we use any support line 𝑓

line
{𝑎}

instead of
the chord line 𝑓

line
{𝑎,𝑏}

.

Lemma 1 is the generalization of Jensen’s inequality:
applying this lemma to the convex combination center equal-
ity

1𝑐 =

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
, (10)

with the assumption 𝑎 = 𝑏 = 𝑐, we come to the Jensen ine-
quality

𝑓 (

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
) = 1𝑓 (𝑐) ≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑥
𝑖
) . (11)

So, the discrete form of the famous Jensen inequality
(discrete form in [6] and integral form in [7]) can be derived
applying the convexity definition and the affinity of the chord
or support line. The different forms of Jensen’s inequality can
be seen in [8].

Theorem 2. Let 𝑎, 𝑏, 𝑎
1
, 𝑏
1

∈ I ⊆ R be points such that 𝑎
1

<

𝑎 < 𝑏 < 𝑏
1
. Let 𝑐 = ∑

𝑛

𝑖=1
𝑝
𝑖
𝑥
𝑖
be a convex combination of the

points 𝑥
𝑖
∈ [𝑎
1
, 𝑏
1
] \ (𝑎, 𝑏) with the center 𝑐 ∈ (𝑎, 𝑏).

Then there exist two binomial convex combinations 𝛼𝑎+𝛽𝑏

and 𝛼
1
𝑎
1

+ 𝛽
1
𝑏
1
so that

𝛼𝑎 + 𝛽𝑏 =

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
= 𝛼
1
𝑎
1

+ 𝛽
1
𝑏
1
, (12)

and consequently, every convex function 𝑓 : I → R satisfies
the inequality

𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) ≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑥
𝑖
) ≤ 𝛼
1
𝑓 (𝑎
1
) + 𝛽
1
𝑓 (𝑏
1
) . (13)

If 𝑓 is concave, then the reverse inequality is valid in (13).

Proof. We use the formula in (3) to calculate the coefficients
𝛼 = (𝑏−𝑐)/(𝑏−𝑎) and𝛽 = (𝑐−𝑎)(𝑏−𝑎) that satisfy 𝑐 = 𝛼𝑎+𝛽𝑏

and also for𝛼
1
and𝛽
1
. Nowweneed to apply Lemma 1 to both

sides of the obtained equality in (12).

The graphical representation of the equality in (12) and
the inequality in (13) is shown in Figure 1.

Binomial convex combinations are included into the
definition of convexity.The following corollary demonstrates
how the binomial combinations may be assigned to each
convex combination.

Corollary 3. Let∑
𝑛

𝑖=1
𝑝
𝑖
𝑥
𝑖
be a convex combination inI ⊆ R.

Then there exist two binomial convex combinations𝑝
0
𝑥
0
+𝑞
0
𝑦
0

and 𝑝𝑥+𝑞𝑦 with points 𝑥
0
, 𝑦
0
, 𝑥, 𝑦 from the set {𝑥

1
, . . . , 𝑥

𝑛
} so

that

𝑝
0
𝑥
0

+ 𝑞
0
𝑦
0

=

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
= 𝑝𝑥 + 𝑞𝑦, (14)

and consequently, every convex function 𝑓 : I → R satisfies
the inequality

𝑝
0
𝑓 (𝑥
0
) + 𝑞
0
𝑓 (𝑦
0
) ≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑥
𝑖
) ≤ 𝑝𝑓 (𝑥) + 𝑞𝑓 (𝑦) . (15)

Proof. Put 𝑐 = ∑
𝑛

𝑖=1
𝑝
𝑖
𝑥
𝑖
and suppose 𝑥

1
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
. Take

𝑥 = 𝑥
1
and 𝑦 = 𝑥

𝑛
. If 𝑥 = 𝑦, we take 𝑝 = 𝑞 = 1/2. If 𝑥 < 𝑦,

we calculate the coefficients 𝑝 and 𝑞 by the formula in (3) to
get 𝑐 = 𝑝𝑥 + 𝑞𝑦.
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y = f(x)y

a1 xi xia c b xb1

𝛼1f(a1)+ 𝛽1f(b1)

𝛼f(a) + 𝛽f(b)

n

∑
i=1

pif(xi)

c = 𝛼a + 𝛽b =
n

∑
i=1

pi(xi) = 𝛼1a1 + 𝛽1b1

Figure 1: Line convex combinations with the same center 𝑐.

If 𝑐 is equal to some 𝑥
𝑖0
, then we take 𝑥

0
= 𝑦
0

= 𝑥
𝑖0
and

𝑝
0

= 𝑞
0

= 1/2. Otherwise, it must be 𝑐 ∈ (𝑥
𝑖
, 𝑥
𝑖+1

) for some
pair, in which case we take 𝑥

0
= 𝑥
𝑖
and 𝑦
0

= 𝑥
𝑖+1

. Calculating
𝑝
0
and 𝑞
0
by (3), we also get 𝑐 = 𝑝

0
𝑥
0

+ 𝑞
0
𝑦
0
.

It remains to apply Lemma 1 to both sides of the obtained
equality in (14).

Respecting the Jensen inequality, the formula in (15) can
be expressed in the extended form:

𝑓 (

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
) ≤ 𝑝

0
𝑓 (𝑥
0
) + 𝑞
0
𝑓 (𝑦
0
)

≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑥
𝑖
) ≤ 𝑝𝑓 (𝑥) + 𝑞𝑓 (𝑦) .

(16)

Let us show how the intermediate member in (13) can be
transformed into integral. LetL ⊆ I be a bounded set with
the length |L| > 0, and let 𝑓 be an integrable (in the sense
of Riemann or Lebesgue) function on L. Given the positive
integer 𝑛, we employ a partition

L =

𝑛

⋃

𝑖=1

L
𝑛𝑖

, (17)

where each of pairwise disjoint subsets L
𝑛𝑖
contracts to the

point as 𝑛 approaches infinity. Take one point 𝑥
𝑛𝑖

∈ L
𝑛𝑖
for

every 𝑖 = 1, . . . , 𝑛 and then compose the convex combination
𝑐
𝑛
of the points 𝑓(𝑥

𝑛𝑖
) with the coefficients 𝑝

𝑛𝑖
= |L
𝑛𝑖

|/|L|;
that is,

𝑐
𝑛

=
1

|L|

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨
L
𝑛𝑖

󵄨󵄨󵄨󵄨
𝑓 (𝑥
𝑛𝑖

) . (18)

Letting 𝑛 to infinity, the sequence (𝑐
𝑛
)
𝑛
approaches the point

𝑐 =
1

|L|
∫

L

𝑓 (𝑥) 𝑑𝑥. (19)

Using the integral method with convex combinations,
we obtain the mixed discrete-integral form of Theorem 2 as
follows.

Corollary 4. Let 𝑎, 𝑏, 𝑎
1
, 𝑏
1

∈ I ⊆ R be points such that 𝑎
1

<

𝑎 < 𝑏 < 𝑏
1
. Let the barycenter 𝑐 of the set [𝑎

1
, 𝑏
1
]\(𝑎, 𝑏) belongs

to (𝑎, 𝑏); that is,

𝑐 =

∫
[𝑎1 ,𝑏1]\(𝑎,𝑏)

𝑥 𝑑𝑥

𝑏
1

− 𝑎
1

− 𝑏 + 𝑎
∈ (𝑎, 𝑏) . (20)

Then there exist two binomial convex combinations 𝛼𝑎+𝛽𝑏

and 𝛼
1
𝑎
1

+ 𝛽
1
𝑏
1
so that

𝛼𝑎 + 𝛽𝑏 = 𝑐 = 𝛼
1
𝑎
1

+ 𝛽
1
𝑏
1
, (21)

and consequently, every convex function 𝑓 : I → R satisfies
the inequality

𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) ≤

∫
[𝑎1 ,𝑏1]\(𝑎,𝑏)

𝑓 (𝑥) 𝑑𝑥

𝑏
1

− 𝑎
1

− 𝑏 + 𝑎

≤ 𝛼
1
𝑓 (𝑎
1
) + 𝛽
1
𝑓 (𝑏
1
) .

(22)

If 𝑓 is concave, then the reverse inequality is valid in (22).

The summarizing Jensen’s functional of a function 𝑓 :

I → R for the given convex combination ∑
𝑛

𝑖=1
𝑝
𝑖
𝑥
𝑖
in I

is defined with

𝐽
𝑝1𝑥1+⋅⋅⋅+𝑝𝑛𝑥𝑛

(𝑓) =

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑥
𝑖
) − 𝑓 (

𝑛

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
) . (23)

If the conditions of Theorem 2 hold, we get the functional
inequality

𝐽
𝛼𝑎+𝛽𝑏

(𝑓) ≤ 𝐽
𝑝1𝑥1+⋅⋅⋅+𝑝𝑛𝑥𝑛

(𝑓) ≤ 𝐽
𝛼1𝑎1+𝛽1𝑏1

(𝑓) . (24)

The integrating Jensen’s functional of an integrable func-
tion 𝑓 : I → R for the given subsetL ⊆ I with the length
|L| > 0 is defined with

𝐽L (𝑓) =
1

|L|
∫

L

𝑓 (𝑥) 𝑑𝑥 − 𝑓 (
1

|L|
∫

L

𝑥 𝑑𝑥) . (25)

If the conditions of Corollary 4 are satisfied, we get

𝐽
𝛼𝑎+𝛽𝑏

(𝑓) ≤ 𝐽
[𝑎1 ,𝑏1]\(𝑎,𝑏)

(𝑓) ≤ 𝐽
𝛼1𝑎1+𝛽1𝑏1

(𝑓) . (26)

The inequalities in (24) and (26) offer the local bounds of
Jensen’s functionals.The global bounds of Jensen’s summariz-
ing functional were investigated in [9]. Some new Jensen type
inequalities were obtained in [10].

3. Convex Combinations of the Plane

This section contains the main results, Theorem 6, and its
consequences.

We assume that R2 is the real vector space treating its
points as the vectors with the standard coordinate addition
(𝑥
1
, 𝑦
1
) + (𝑥

2
, 𝑦
2
) = (𝑥

1
+ 𝑥
2
, 𝑦
1

+ 𝑦
2
) and the scalar

multiplication 𝛼(𝑥, 𝑦) = (𝛼𝑥, 𝛼𝑦).
If 𝐴(𝑥

𝐴
, 𝑦
𝐴

), 𝐵(𝑥
𝐵
, 𝑦
𝐵
), and 𝐶(𝑥

𝐶
, 𝑦
𝐶
) are the planar

points that do not belong to one line, respectively, the convex
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hull conv{𝐴, 𝐵, 𝐶} is a real triangle, and then every point
𝑃(𝑥, 𝑦) ∈ R2 can be presented by the unique affine combina-
tion

𝑃 = 𝛼𝐴 + 𝛽𝐵 + 𝛾𝐶, (27)

where

𝛼 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥 𝑦 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝛽 = −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥 𝑦 1

𝑥𝐴 𝑦𝐴 1

𝑥𝐶 𝑦𝐶 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝛾 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥 𝑦 1

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(28)

The above trinomial combination is convex if and only if the
point 𝑃 belongs to the triangle conv{𝐴, 𝐵, 𝐶}.

Given the triangle with vertices 𝐴, 𝐵, and 𝐶, the convex
coneC

𝐴
with the vertex at𝐴 is the set spanned by the vectors

𝐴 − 𝐵 and 𝐴 − 𝐶 (similarlyC
𝐵
andC

𝐶
; all three cones can be

viewed in Figure 2); that is,

C
𝐴

= {𝐴 + 𝑝 (𝐴 − 𝐵) + 𝑞 (𝐴 − 𝐶) : 𝑝, 𝑞 ∈ R, 𝑝, 𝑞 ≥ 0} .

(29)

Given the function 𝑓 : R2 → R, let 𝑓
plane
{𝐴,𝐵,𝐶}

: R2 →

R be the function of the plane passing through the points
(𝐴, 𝑓(𝐴)), (𝐵, 𝑓(𝐵)), and (𝐶, 𝑓(𝐶)) of the graph of 𝑓. Due to
the affinity of 𝑓

plane
{𝐴,𝐵,𝐶}

, it follows

𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) = 𝛼𝑓 (𝐴) + 𝛽𝑓 (𝐵) + 𝛾𝑓 (𝐶) . (30)

For a convex function 𝑓, using the convexity definition, we
get the inequality

𝑓 (𝑃) ≤ 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) , if 𝑃 ∈ conv {𝐴, 𝐵, 𝐶} , (31)

and using the affinity of 𝑓
plane
{𝐴,𝐵,𝐶}

, the reverse inequality

𝑓 (𝑃) ≥ 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) , if 𝑃 ∈ C
𝐴

∪ C
𝐵

∪ C
𝐶
. (32)

By the end of the section we will use a planar convex set
C ⊆ R2 with the nonempty interior C0. The area of a planar
setA will be denoted with ar(A).

Lemma 5. Let 𝐴, 𝐵, 𝐶 ∈ C ⊆ R2 be points, Δ =

conv {𝐴, 𝐵, 𝐶}, andC
Δ

= C
𝐴

∪C
𝐵
∪C
𝐶
be the cone union. Let

∑
𝑛

𝑖=1
𝛼
𝑖
𝐴
𝑖
be a convex combination of the points𝐴

𝑖
∈ Δ, and let

∑
𝑚

𝑗=1
𝛽
𝑗
𝐵
𝑗
be a convex combination of the points 𝐵

𝑗
∈ C
Δ

∩C.
If the above convex combinations have the same center

𝑛

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
=

𝑚

∑

𝑗=1

𝛽
𝑗
𝐵
𝑗
, (33)

C1

Pi

Pi

Pi

C

P

A

B

A1

𝒞C

𝒞A

𝒞B

B1

P = 𝛼A +𝛽B+ 𝛾C =
n

∑
i=1

piPi = 𝛼1A1 + 𝛽1B1 + 𝛾1C1

Figure 2: Plane convex combinations with the same center 𝑃.

then every convex function 𝑓 : C → R satisfies the inequality
𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓 (𝐵
𝑗
) . (34)

Proof. If the set conv{𝐴, 𝐵, 𝐶} is a real triangle, we can apply
the proof of Lemma 1 using 𝑓

plane
{𝐴,𝐵,𝐶}

instead of 𝑓
line
{𝑎,𝑏}

respect-
ing the plane inequalities in (31)-(32). If conv{𝐴, 𝐵, 𝐶} =

conv{𝐴, 𝐵}, then we rely on the proof of Lemma 1 with the
chord line 𝑓

line
{𝐴,𝐵}

. If conv{𝐴, 𝐵, 𝐶} = {𝐴}, we use any support
line 𝑓

line
{𝐴}

at the point 𝐴.

Theorem 6. Let 𝐴, 𝐵, 𝐶; 𝐴
1
, 𝐵
1
, 𝐶
1

∈ C ⊆ R2 be points such
that

Δ = conv {𝐴, 𝐵, 𝐶} ⊂ conv {𝐴
1
, 𝐵
1
, 𝐶
1
} = Δ

1 (35)

with Δ
0

̸= 0, and let C
Δ

= C
𝐴

∪ C
𝐵

∪ C
𝐶
be the cone union.

Let 𝑃 = ∑
𝑛

𝑖=1
𝑝
𝑖
𝑃
𝑖
be a convex combination of the points 𝑃

𝑖
∈

C
Δ

∩ Δ
1
with the center 𝑃 ∈ Δ

0.
Then there exist two trinomial convex combinations 𝛼𝐴 +

𝛽𝐵 + 𝛾𝐶 and 𝛼
1
𝐴
1

+ 𝛽
1
𝐵
1

+ 𝛾
1
𝐶
1
so that

𝛼𝐴 + 𝛽𝐵 + 𝛾𝐶 =

𝑛

∑

𝑖=1

𝑝
𝑖
𝑃
𝑖
= 𝛼
1
𝐴
1

+ 𝛽
1
𝐵
1

+ 𝛾
1
𝐶
1
, (36)

and consequently, every convex function 𝑓 : C → R satisfies
the inequality

𝛼𝑓 (𝐴) + 𝛽𝑓 (𝐵) + 𝛾𝑓 (𝐶) ≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑃
𝑖
)

≤ 𝛼
1
𝑓 (𝐴
1
) + 𝛽
1
𝑓 (𝐵
1
) + 𝛾
1
𝑓 (𝐶
1
) .

(37)

Proof. First we calculate the coefficients by the formula in
(28) to get the equality in (36) and then apply Lemma 5 to
its both sides.

The graphical representation of the equality in (36) can be
seen in Figure 2.

Applying the integral method with convex combinations,
we obtain the form as follows.
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Corollary 7. Let 𝐴, 𝐵, 𝐶; 𝐴
1
, 𝐵
1
, 𝐶
1

∈ C ⊆ R2 be points such
that

Δ = conv {𝐴, 𝐵, 𝐶} ⊂ conv {𝐴
1
, 𝐵
1
, 𝐶
1
} = Δ

1 (38)

with Δ
0

̸= 0, and let C
Δ

= C
𝐴

∪ C
𝐵

∪ C
𝐶
be the cone union.

Let the barycenter 𝑃 of the setC
Δ

∩ Δ
1
belong to Δ

0; that is,

𝑃 (

∫
CΔ∩Δ 1

𝑥 𝑑𝑥 𝑑𝑦

ar (C
Δ

∩ Δ
1
)

,

∫
CΔ∩Δ 1

𝑦 𝑑𝑥 𝑑𝑦

ar (C
Δ

∩ Δ
1
)

) ∈ Δ
0
. (39)

Then there exist two trinomial convex combinations 𝛼𝐴 +

𝛽𝐵 + 𝛾𝐶 and 𝛼
1
𝐴
1

+ 𝛽
1
𝐵
1

+ 𝛾
1
𝐶
1
so that

𝛼𝐴 + 𝛽𝐵 + 𝛾𝐶 = 𝑃 = 𝛼
1
𝐴
1

+ 𝛽
1
𝐵
1

+ 𝛾
1
𝐶
1
, (40)

and consequently, every convex function 𝑓 : C → R satisfies
the inequality

𝛼𝑓 (𝐴) + 𝛽𝑓 (𝐵) + 𝛾𝑓 (𝐶)

≤

∫
CΔ∩Δ 1

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

ar (C
Δ

∩ Δ
1
)

≤ 𝛼
1
𝑓 (𝐴
1
) + 𝛽
1
𝑓 (𝐵
1
) + 𝛾
1
𝑓 (𝐶
1
) .

(41)

If 𝑓 is concave, then the reverse inequality is valid in (41).

If the conditions of Theorem 6 are valid, then using the
summarizing Jensen functional of 𝑓 for the given convex
combination ∑

𝑛

𝑖=1
𝑝
𝑖
𝑃
𝑖
,

𝐽
𝑝1𝑃1+⋅⋅⋅+𝑝𝑛𝑃𝑛

(𝑓) =

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑃
𝑖
) − 𝑓 (

𝑛

∑

𝑖=1

𝑝
𝑖
𝑃
𝑖
) , (42)

we get the functional inequality

𝐽
𝛼𝐴+𝛽𝐵+𝛾𝐶

(𝑓) ≤ 𝐽
𝑝1𝑃1+⋅⋅⋅+𝑝𝑛𝑃𝑛

(𝑓)

≤ 𝐽
𝛼1𝐴1+𝛽1𝐵1+𝛾1𝐶1

(𝑓) .

(43)

If the conditions of Corollary 7 are satisfied, then applying
another integrating Jensen functional of 𝑓 for the given
subsetA ⊆ C with the area ar(A) > 0,

𝐽A (𝑓) =

∫
A

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

ar (A)

− 𝑓 (

∫
A

𝑥 𝑑𝑥 𝑑𝑦

ar (A)
,

∫
A

𝑦 𝑑𝑥 𝑑𝑦

ar (A)
) ,

(44)

we have the inequality

𝐽
𝛼𝐴+𝛽𝐵+𝛾𝐶

(𝑓) ≤ 𝐽CΔ∩Δ 1
(𝑓) ≤ 𝐽

𝛼1𝐴1+𝛽1𝐵1+𝛾1𝐶1
(𝑓) . (45)

4. Generalization

The aim of the section is to generalize Theorem 6 and
Corollary 7 to more dimensions.

If𝐴
1
, . . . , 𝐴

𝑚+1
∈ R𝑚 are points such that the vectors𝐴

1
−

𝐴
2
, . . . , 𝐴

1
− 𝐴
𝑚+1

are linearly independent, then the convex
hull

Δ = conv {𝐴
1
, . . . , 𝐴

𝑚+1
} (46)

is called the 𝑚-simplex with the vertices 𝐴
1
, . . . , 𝐴

𝑚+1
. All

the simplex vertices can not belong to the same hyperplane
in R𝑚. Any point 𝑃 ∈ R𝑚 can be presented by the unique
affine combination

𝑃 =

𝑚+1

∑

𝑗=1

𝛼
𝑗
𝐴
𝑗
. (47)

If we use the point coordinates, then the coefficients 𝛼
𝑗
can

be determined by the generalized coefficient formula in (28).
The combination in (47) is convex if and only if the point 𝑃

belongs to the 𝑚-simplex Δ.
Given the 𝑚-simplex with vertices 𝐴

1
, . . . , 𝐴

𝑚+1
, letC

𝐴1

be the convex cone with the vertex at 𝐴
1
spanned by the

vectors 𝐴
1

− 𝐴
2
, . . . , 𝐴

1
− 𝐴
𝑚+1

(similarly C
𝐴2

, . . . ,C
𝐴𝑚+1

);
that is,

C
𝐴1

= {𝐴
1

+

𝑚+1

∑

𝑘=2

𝑝
𝑘

(𝐴
1

− 𝐴
𝑘
) : 𝑝
𝑘

∈ R, 𝑝
𝑘

≥ 0} . (48)

Given the function 𝑓 : R𝑚 → R, let 𝑓
hp
Δ

: R𝑚 → R be
the function of the hyperplane (inR𝑚+1) passing through the
points (𝐴

𝑗
, 𝑓(𝐴
𝑗
)) of the graph of 𝑓. Applying the affinity of

𝑓
hp
Δ

to the combination in (47), it follows

𝑓
hp
Δ

(𝑃) =

𝑚+1

∑

𝑗=1

𝛼
𝑗
𝑓 (𝐴
𝑗
) . (49)

If we use the convex function 𝑓, then we get the inequality

𝑓 (𝑃) ≤ 𝑓
hp
Δ

(𝑃) , if 𝑃 ∈ Δ, (50)

and the reverse inequality

𝑓 (𝑃) ≥ 𝑓
hp
Δ

(𝑃) , if 𝑃 ∈

𝑚+1

⋃

𝑗=1

C
𝐴𝑗

(51)

which can be proved in the sameway as the inequality in (32).

By the end of the section we will use a convex setC ⊆ R𝑚

with the nonempty interiorC0. The volume of a setV ⊂ R𝑚

will be denoted with vol(V).
The generalization of Theorem 6 applied to 𝑚-simplexes

is as follows.

Theorem 8. Let 𝐴
1
, . . . , 𝐴

𝑚+1
; 𝐵
1
, . . . , 𝐵

𝑚+1
∈ C ⊆ R𝑚 be

points such that

Δ = conv {𝐴
1
, . . . , 𝐴

𝑚+1
} ⊂ conv {𝐵

1
, . . . , 𝐵

𝑚+1
} = Δ

1

(52)
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withΔ
0

̸= 0, and letC
Δ

= ∪
𝑚+1

𝑗=1
C
𝐴𝑗

be the cone union. Let𝑃 =

∑
𝑛

𝑖=1
𝑝
𝑖
𝑃
𝑖
be a convex combination of the points 𝑃

𝑖
∈ C
Δ

∩ Δ
1

with the center 𝑃 ∈ Δ
0.

Then there exist two (𝑚 + 1)-membered convex combina-
tions ∑

𝑚+1

𝑗=1
𝛼
𝑗
𝐴
𝑗
and ∑

𝑚+1

𝑗=1
𝛽
𝑗
𝐵
𝑗
so that

𝑚+1

∑

𝑗=1

𝛼
𝑗
𝐴
𝑗

=

𝑛

∑

𝑖=1

𝑝
𝑖
𝑃
𝑖
=

𝑚+1

∑

𝑗=1

𝛽
𝑗
𝐵
𝑗
, (53)

and consequently every convex function 𝑓 : C → R satisfies
the inequality

𝑚+1

∑

𝑗=1

𝛼
𝑗
𝑓 (𝐴
𝑗
) ≤

𝑛

∑

𝑖=1

𝑝
𝑖
𝑓 (𝑃
𝑖
) ≤

𝑚+1

∑

𝑗=1

𝛽
𝑗
𝑓 (𝐵
𝑗
) . (54)

Using the integrals, we get the form as follows.

Corollary 9. Let 𝐴
1
, . . . , 𝐴

𝑚+1
; 𝐵
1
, . . . , 𝐵

𝑚+1
∈ C ⊆ R𝑚 be

points such that

Δ = conv {𝐴
1
, . . . , 𝐴

𝑚+1
} ⊂ conv {𝐵

1
, . . . , 𝐵

𝑚+1
} = Δ

1

(55)

with Δ
0

̸= 0, and letC
Δ

= ∪
𝑚+1

𝑗=1
C
𝐴𝑗

be the cone union. Let the
barycenter 𝑃 of the setC

Δ
∩ Δ
1
belong to Δ

0; that is,

𝑃 (

∫
CΔ∩Δ 1

𝑥
1

𝑑𝑥
1
, . . . , 𝑑𝑥

𝑚

vol (C
Δ

∩ Δ
1
)

, . . . ,

∫
CΔ∩Δ 1

𝑥
𝑚

𝑑𝑥
1
, . . . , 𝑑𝑥

𝑚

vol (C
Δ

∩ Δ
1
)

)

∈ Δ
0
.

(56)

Then there exist two (𝑚 + 1)-membered convex combina-
tions ∑

𝑚+1

𝑗=1
𝛼
𝑗
𝑓(𝐴
𝑗
) and ∑

𝑚+1

𝑗=1
𝛽
𝑗
𝑓(𝐵
𝑗
) so that

𝑚+1

∑

𝑗=1

𝛼
𝑗
𝐴
𝑗

= 𝑃 =

𝑚+1

∑

𝑗=1

𝛽
𝑗
𝐵
𝑗
, (57)

and consequently every convex function 𝑓 : C → R satisfies
the inequality

𝑚+1

∑

𝑗=1

𝛼
𝑗
𝑓 (𝐴
𝑗
) ≤

∫
CΔ∩Δ 1

𝑓 (𝑥
1
, . . . , 𝑥

𝑚
) 𝑑𝑥
1
, . . . , 𝑑𝑥

𝑚

vol (C
Δ

∩ Δ
1
)

≤

𝑚+1

∑

𝑗=1

𝛽
𝑗
𝑓 (𝐵
𝑗
) .

(58)

If 𝑓 is concave, then the reverse inequality is valid in (58).

If the conditions of Theorem 8 are valid, then using the
summarizing Jensen functional of 𝑓 for the given convex
combination ∑

𝑛

𝑖=1
𝑝
𝑖
𝑃
𝑖
, we get the functional inequality

𝐽
𝛼1𝐴1+⋅⋅⋅+𝛼𝑚+1𝐴𝑚+1

(𝑓) ≤ 𝐽
𝑝1𝑃1+⋅⋅⋅+𝑝𝑛𝑃𝑛

(𝑓)

≤ 𝐽
𝛽1𝐵1+⋅⋅⋅+𝛽𝑚+1𝐵𝑚+1

(𝑓) .

(59)

If the conditions of Corollary 9 are satisfied, then applying
another integrating Jensen functional of 𝑓 for the given
subsetV ⊆ C with the volume vol(V) > 0,

𝐽V (𝑓)

=

∫
V

𝑓 𝑑𝑥
1
, . . . , 𝑑𝑥

𝑚

vol (V)

− 𝑓 (

∫
V

𝑥
1

𝑑𝑥
1
, . . . , 𝑑𝑥

𝑚

vol (V)
, . . . ,

∫
V

𝑥
𝑚

𝑑𝑥
1
, . . . , 𝑑𝑥

𝑚

vol (V)
) ,

(60)

we have the inequality

𝐽
𝛼1𝐴1+⋅⋅⋅+𝛼𝑚+1𝐴𝑚+1

(𝑓) ≤ 𝐽CΔ∩Δ 1
(𝑓)

≤ 𝐽
𝛽1𝐵1+⋅⋅⋅+𝛽𝑚+1𝐵𝑚+1

(𝑓) .

(61)
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