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The initial-boundary value problems for the local fractional differential equation are investigated in this paper. The local fractional
Fourier series solutions with the nondifferential terms are obtained. Two illustrative examples are given to show efficiency and
accuracy of the presented method to process the local fractional differential equations.

1. Introduction

In various fields of physics, mathematics, and engineering,
because of the different operators, there are classical differen-
tial equations [1], fractional differential equation [2–4], and
local fractional differential equations [5, 6]. There are more
techniques to achieve analytical approximations to the solu-
tions to differential equations in mathematical physics, such
as the decomposition method [7], the variational iteration
method [8], the homotopy perturbationmethod [9], the heat-
balance integral method [10], the Fourier transform [11], the
Laplace transform [11], and the references therein.

Recently, a new Fourier series (local fractional Fourier
series) via local fractional operator was proposed [6] and had
various applications in the applied fields such as fractal wave
problems in fractal string [12, 13] and the heat-conduction
problems arising in fractal heat transfer [14, 15]. For a detailed
description of the local fractional Fourier series method, we
refer the readers to the recent works [14–16]. This is the
main advantage of local fractional differential equations in
comparison with classical integer-order and fractional-order
models.

In the present paper we consider the local fractional
differential equation:

𝜕
𝛼

𝑢 (𝑥, 𝑦)

𝜕𝑦𝛼
−
𝜕
2𝛼

𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
= 0, (1)

subject to the initial-boundary value conditions:

𝜕
𝛼

𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0,

𝜕
𝛼

𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, 𝑢 (𝑥, 0) = 𝑔 (𝑥) ,

(2)

where the operators are described by the local fractional
differential operators [5, 6, 12–15]. The paper is organized as
follows. In Section 2, the basic theory of the local fractional
calculus and local fractional Fourier series is presented. In
Section 3, we discuss the initial-boundary problems for local
fractional differential equation. Finally, Section 4 is devoted
to the conclusions.

2. Analysis of the Method

In this section, we present the basic theory of the local
fractional calculus and analyze the local fractional Fourier
series method.

Definition 1. Let 𝐹 be a subset of the real line and be a fractal.
The mass function 𝛾𝛼[𝐹, 𝑎, 𝑏] can be written as [5]

𝛾
𝛼

[𝐹, 𝑎, 𝑏] = lim
max
0<𝑖<𝑛−1

(𝑥𝑖+1−𝑥𝑖)→0

𝑛−1

∑

𝑖=0

(𝑥
𝑖+1

− 𝑥
𝑖
)
𝛼

Γ (1 + 𝛼)
. (3)
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The following properties are present as follows [5].

(i) If 𝐹 ∩ (𝑎, 𝑏) = ⌀, then 𝛾𝛼[𝐹, 𝑎, 𝑏] = 0.
(ii) If 𝑎 < 𝑏 < 𝑐 and 𝛾

𝛼

[𝐹, 𝑎, 𝑏] < 0, then 𝛾
𝛼

[𝐹, 𝑎, 𝑏] +

𝛾
𝛼

[𝐹, 𝑏, 𝑐] = 𝛾
𝛼

[𝐹, 𝑎, 𝑐].

If 𝑓 : (𝐹, 𝑑) → (Ω
󸀠

, 𝑑
󸀠

) is a bi-Lipschitz mapping, then we
have [5, 12]

𝜌
𝑠

𝐻
𝑠

(𝐹) ≤ 𝐻
𝑠

(𝑓 (𝐹)) ≤ 𝜏
𝑠

𝐻
𝑠

(𝐹) (4)

such that

𝜌
𝛼󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨
𝛼

≤
󵄨󵄨󵄨󵄨𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝜏
𝛼󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨
𝛼

. (5)

In view of (5), we have
󵄨󵄨󵄨󵄨𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝜏
𝛼󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨
𝛼 (6)

such that
󵄨󵄨󵄨󵄨𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
󵄨󵄨󵄨󵄨 < 𝜀
𝛼

, (7)

where 𝛼 is the fractal dimension of 𝐹. This result is directly
deduced from fractal geometry and relates to the fractal
coarse-grained mass function 𝛾𝛼[𝐹, 𝑎, 𝑏], which reads [5, 13]

𝛾
𝛼

[𝐹, 𝑎, 𝑏] =
𝐻
𝛼

(𝐹 ∩ (𝑎, 𝑏))

Γ (1 + 𝛼)
(8)

with

𝐻
𝛼

(𝐹 ∩ (𝑎, 𝑏)) = (𝑏 − 𝑎)
𝛼

, (9)

where𝐻𝛼 is 𝛼 dimensional Hausdorff measure.

Definition 2. If there is [5, 6, 12–15]
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥

0
)
󵄨󵄨󵄨󵄨 < 𝜀
𝛼 (10)

with |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, then 𝑓(𝑥) is called

local fractional continuous at 𝑥 = 𝑥
0
.

If𝑓(𝑥) is local fractional continuous on the interval (𝑎, 𝑏),
then we can write it in the form [5, 6, 12]

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) . (11)

Definition 3. Local fractional derivative of 𝑓(𝑥) of order 𝛼 at
𝑥 = 𝑥

0
is defined as follows [5, 6, 12–15]:

𝑓
(𝛼)

(𝑥
0
) =

𝑑
𝛼

𝑓 (𝑥)

𝑑𝑥𝛼
|
𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (12)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

From (12) we can rewrite the local fractional derivative as

𝑓
(𝛼)

(𝑥
0
) = lim
𝑥→𝑥0

𝑓 (𝑥) − 𝑓 (𝑥
0
)

𝛾𝛼 [𝐹, 𝑥
0
, 𝑥]

, (13)

where

𝛾
𝛼

[𝐹, 𝑥
0
, 𝑥] =

𝐻
𝛼

(𝐹 ∩ (𝑎, 𝑏))

Γ (1 + 𝛼)
. (14)

Definition 4. The partition of the interval [𝑎, 𝑏] is (𝑡
𝑗
, 𝑡
𝑗+1

),
𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎 and 𝑡

𝑁
= 𝑏 with Δ𝑡

𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
and

Δ𝑡 = max{Δ𝑡
1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .}. Local fractional integral of 𝑓(𝑥)

of order 𝛼 in the interval [𝑎, 𝑏] is given by [5, 6, 12–15]

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

.

(15)

Following (14), we have

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) 𝛾
𝛼

[𝐹, 𝑡
𝑗
, 𝑡
𝑗+1

] , (16)

where

𝛾
𝛼

[𝐹, 𝑎, 𝑏] = lim
max
0<𝑖<𝑛−1

(𝑥𝑖+1−𝑥𝑖)→0

𝑛−1

∑

𝑖=0

(𝑥
𝑖+1

− 𝑥
𝑖
)
𝛼

Γ (1 + 𝛼)
. (17)

If 𝐹 are Cantor sets, we can get the derivative and integral on
Cantor sets.

Some properties of local fractional integrals are listed as
follows:

0
𝐼
(𝛼)

𝑥
𝐸
𝛼
(𝑥
𝛼

) = 𝐸
𝛼
(𝑥
𝛼

) − 1,

0
𝐼
(𝛼)

𝑥

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥
(𝑛+1)𝛼

Γ (1 + (𝑛 + 1) 𝛼)
,

0
𝐼
(𝛼)

𝑥
sin
𝛼
(𝑎
𝛼

𝑥
𝛼

) =
1

𝑎𝛼
[cos
𝛼
(𝑎
𝛼

𝑥
𝛼

) − 1] ,

0
𝐼
(𝛼)

𝑥
cos
𝛼
(𝑎
𝛼

𝑥
𝛼

) =
1

𝑎𝛼
sin
𝛼
(𝑎
𝛼

𝑥
𝛼

) ,

0
𝐼
(𝛼)

𝑥

𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
(𝑎
𝛼

𝑥
𝛼

)

= −
1

𝑎𝛼
[

𝑥
𝛼

Γ (1 + 𝛼)
cos
𝛼
(𝑎
𝛼

𝑥
𝛼

) −
1

𝑎𝛼
sin
𝛼
(𝑎
𝛼

𝑥
𝛼

)] ,

0
𝐼
(𝛼)

𝑥

𝑥
𝛼

Γ (1 + 𝛼)
cos
𝛼
(𝑎
𝛼

𝑥
𝛼

)

=
1

𝑎𝛼
{

𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
(𝑎
𝛼

𝑥
𝛼

) −
1

𝑎𝛼
[cos
𝛼
(𝑎
𝛼

𝑥
𝛼

) − 1]} ,

0
𝐼
(𝛼)

𝑥
{𝐸
𝛼
(𝑥
𝛼

) sin
𝛼
(𝑎
𝛼

𝑥
𝛼

)}

=
𝐸
𝛼
(𝑥
𝛼

) [sin
𝛼
(𝑎
𝛼

𝑥
𝛼

) − 𝑎
𝛼cos
𝛼
(𝑎
𝛼

𝑥
𝛼

)] + 𝑎
𝛼

1 + 𝑎2𝛼
,

0
𝐼
(𝛼)

𝑥
{𝐸
𝛼
(𝑥
𝛼

) cos
𝛼
(𝑎
𝛼

𝑥
𝛼

)}

=
𝐸
𝛼
(𝑥
𝛼

) [cos
𝛼
(𝑎
𝛼

𝑥
𝛼

) + 𝑎
𝛼 sin (𝑎𝛼𝑥𝛼)] − 1

1 + 𝑎2𝛼
.

(18)
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Definition 5. Local fractional trigonometric Fourier series of
𝑓(𝑡) is given by [6, 12–16]

𝑓 (𝑡) = 𝑎
0
+

∞

∑

𝑖=1

𝑎
𝑘
sin
𝛼
(𝑘
𝛼

𝜔
0

𝛼

𝑡
𝛼

) +

∞

∑

𝑖=1

𝑏
𝑘
cos
𝛼
(𝑘
𝛼

𝜔
0

𝛼

𝑡
𝛼

) (19)

for 𝑥 ∈ 𝑅 and 0 < 𝛼 ≤ 1.
The local fractional Fourier coefficients of (19) can be

computed by

𝑎
0
=

1

𝑇𝛼
Γ (1 + 𝛼)

0
𝐼
𝑇
𝑓 (𝑡) ,

𝑎
𝑘
= (

2

𝑇
)

𝛼

Γ (1 + 𝛼)
0
𝐼
𝑇
{𝑓 (𝑡) sin

𝛼
(𝑘
𝛼

𝜔
0

𝛼

𝑡
𝛼

)} ,

𝑏
𝑘
= (

2

𝑇
)

𝛼

Γ (1 + 𝛼)
0
𝐼
𝑇
{𝑓 (𝑡) cos

𝛼
(𝑘
𝛼

𝜔
0

𝛼

𝑡
𝛼

)} .

(20)

If 𝜔
0
= 1, then we get

𝑓 (𝑡) = 𝑎
0
+

∞

∑

𝑖=1

𝑎
𝑘
sin
𝛼
(𝑘
𝛼

𝑡
𝛼

) +

∞

∑

𝑖=1

𝑏
𝑘
cos
𝛼
(𝑘
𝛼

𝑡
𝛼

) , (21)

where the local fractional Fourier coefficients can be com-
puted by

𝑎
0
=

1

𝑇𝛼
Γ (1 + 𝛼)

0
𝐼
𝑇
𝑓 (𝑡) ,

𝑎
𝑘
= (

2

𝑇
)

𝛼

Γ (1 + 𝛼)
0
𝐼
𝑇
{𝑓 (𝑡) sin

𝛼
(𝑘
𝛼

𝑡
𝛼

)} ,

𝑏
𝑘
= (

2

𝑇
)

𝛼

Γ (1 + 𝛼)
0
𝐼
𝑇
{𝑓 (𝑡) cos

𝛼
(𝑘
𝛼

𝑡
𝛼

)} .

(22)

3. The Initial-Boundary Problems for the
Local Fractional Differential Equation

In this section, we consider (1) with the various initial-
boundary conditions.

Example 6. The initial-boundary condition (2) becomes

𝜕
𝛼

𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0,

𝜕
𝛼

𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, 𝑢 (𝑥, 0) = 𝐸

𝛼
(𝑥
𝛼

) .

(23)

Let 𝑢 = 𝑋𝑌 in (1). Separation of the variables yields

𝑋𝑌
(𝛼)

= 𝑌𝑋
(2𝛼)

. (24)

Setting

𝑌
(𝛼)

𝑌
=
𝑋
(2𝛼)

𝑋
= −𝜆
2𝛼

, (25)

we obtain

𝑋
(2𝛼)

+ 𝜆
2𝛼

𝑋 = 0,

𝑌
(𝛼)

+ 𝜆
2𝛼

𝑌 = 0.

(26)

Hence, we have their solutions, which read

𝑋 = 𝑎 cos
𝛼
(𝜆
𝛼

𝑥
𝛼

) + 𝑏 sin
𝛼
(𝜆
𝛼

𝑥
𝛼

) ,

𝑌 = 𝑐𝐸
𝛼
(−𝜆
2𝛼

𝑦
𝛼

) .

(27)

Therefore, a solution is written in the form

𝑢 (𝑥, 𝑦) = 𝑋𝑌

= 𝐸
𝛼
(−𝜆
2𝛼

𝑦
𝛼

) (𝐴 cos
𝛼
(𝜆
𝛼

𝑥
𝛼

) + 𝐵 sin
𝛼
(𝜆
𝛼

𝑥
𝛼

)) ,

(28)

where 𝐴 = 𝑎𝑐, 𝐵 = 𝑏𝑐.
For the given condition

𝜕
𝛼

𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0, (29)

there is 𝐵 = 0, so that

𝑢 (𝑥, 𝑦) = 𝐴𝐸
𝛼
(−𝜆
2𝛼

𝑦
𝛼

) cos
𝛼
(𝜆
𝛼

𝑥
𝛼

) . (30)

For the given condition

𝜕
𝛼

𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, (31)

we obtain

sin
𝛼
(𝜆
𝛼

𝑥
𝛼

) = 0, (32)

𝜆
𝛼

= (
𝑚𝜋

𝐿
)

𝛼

, 𝑚 ∈ 𝑍
+

∪ 0. (33)

Thus, from (33) we deduce that

𝑢 (𝑥, 𝑦) = 𝐴𝐸
𝛼
(−(

𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼

) cos
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

) ,

𝑚 ∈ 𝑍
+

∪ 0.

(34)

To satisfy the condition (23), (34) is written in the form

𝑢 (𝑥, 𝑦)

= 𝐴
0
+

∞

∑

𝑚=1

𝐴
𝑚
𝐸
𝛼
(−(

𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼

) cos
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

) .

(35)
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Then, we derive

𝐴
0
=
Γ (1 + 𝛼)

𝐿𝛼
(𝐸
𝛼
(𝐿
𝛼

) − 1) ,

𝐴
𝑚

= (
2

𝐿
)

𝛼

Γ (1 + 𝛼) 𝐸
𝛼
(𝑥
𝛼

)

×
[cos
𝛼
((𝑚𝜋/𝐿)

𝛼

𝑥
𝛼

) + (𝑚𝜋/𝐿)
𝛼 sin ((𝑚𝜋/𝐿)𝛼𝑥𝛼)] − 1

1 + (𝑚𝜋/𝐿)
2𝛼

,

𝑢 (𝑥, 𝑦)

=
Γ (1 + 𝛼)

2𝐿𝛼
(𝐸
𝛼
(𝐿
𝛼

) − 1)

+

∞

∑

𝑚=1

[cos
𝛼
((𝑚𝜋/𝐿)

𝛼

𝑥
𝛼

) + (𝑚𝜋/𝐿)
𝛼 sin ((𝑚𝜋/𝐿)𝛼𝑥𝛼)] − 1

1 + (𝑚𝜋/𝐿)
2𝛼

× 𝐸
𝛼
(−(

𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼

) cos
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

)

× 𝐸
𝛼
(𝑥
𝛼

) (
2

𝐿
)

𝛼

Γ (1 + 𝛼) .

(36)

Example 7. Let us consider (1) with the initial-boundary value
condition, which becomes

𝜕
𝛼

𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0,

𝜕
𝛼

𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, 𝑢 (𝑥, 0) =

𝑥
𝛼

Γ (1 + 𝛼)
.

(37)

Following (35), we have

𝑢 (𝑥, 𝑦)

= 𝐴
0
+

∞

∑

𝑚=1

𝐴
𝑚
𝐸
𝛼
(−(

𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼

) cos
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

) ,

(38)

where

𝐴
0
=

1

𝐿𝛼

Γ (1 + 𝛼)

Γ (1 + 2𝛼)
𝑥
2𝛼

,

𝐴
𝑚
=

1

(2𝑚𝜋)
𝛼
{

𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

)

−(
𝐿

𝑚𝜋
)

𝛼

[cos
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

) − 1]} .

(39)

Hence, we get

𝑢 (𝑥, 𝑦)

=
1

𝐿𝛼

Γ (1 + 𝛼)

Γ (1 + 2𝛼)
𝑥
2𝛼

+

∞

∑

𝑚=1

1

(2𝑚𝜋)
𝛼
{

𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

)

−(
𝐿

𝑚𝜋
)

𝛼

[cos
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

) − 1]}

× 𝐸
𝛼
(−(

𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼

) cos
𝛼
((

𝑚𝜋𝑥

𝐿
)

𝛼

) .

(40)

4. Conclusions

In this work, the initial-boundary value problems for the local
fractional differential equation are discussed by using the
local fractional Fourier series method. Analytical solutions
for the local fractional differential equation with the nondif-
ferentiable conditions are obtained.
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