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Now, it is known that the split common fixed point problem is a generalization of the split feasibility problem and of the convex
feasibility problem. In this paper, the split common fixed point problem associated with the pseudocontractions is studied. An
iterative algorithm has been presented for solving the split common fixed point problem. Strong convergence result is obtained.

1. Introduction

Now, we know that the convex feasibility problem can be
formulated as finding a point 𝑥† such that

𝑥
†
∈

𝑛

⋂

𝑖=1

C𝑖, 𝑛 ∈ N, (1)

whereC𝑖 ( ̸= 0) is a closed convex subset of a Hilbert spaceH.
The convex feasibility problem has extensive applications in
many applied disciplines such as signal processing, biomed-
ical engineering, and communications. For related works,
please see [1–3].

If 𝑛 = 2 in (1), then a special case of (1) is the following
split feasibility problem.

Problem 1. The split feasibility problem: letH1 andH2 be two
Hilbert spaces. Let C1 ⊂ H1 and C2 ⊂ H2 be two nonempty
closed convex sets. Let 𝐴 : H1 → H2 be a bounded linear
operator. The split feasibility problem is

find a vector 𝑥† ∈ C1 such that 𝐴𝑥† ∈ C2. (2)

Such problem arises in the intensity-modulated radiation
therapy. In the finite-dimensional space, Censor and Elfving

[4] firstly constructed the following iterative algorithm to
solve (2):

𝑥𝑚+1 = 𝐴
−1projC

2

(proj
𝐴(C
1
)
(𝐴𝑥𝑚)) , 𝑚 ∈ N, (3)

where C1 ⊂ R𝑛 and C2 ⊂ R𝑛 are closed convex sets and 𝐴 is
an 𝑛 × 𝑛matrix.

However, we note that calculating inverse 𝐴
−1 is very

time-consuming, if the dimension 𝑛 is large. For overcoming
this problem, Byrne [5] introduced the following more
popular algorithm:

𝑥𝑚+1 = projC
1

(𝑥𝑚 − 𝜛𝐴
𝑇
(𝐼 − projC

2

)𝐴𝑥𝑚) , 𝑚 ∈ N,

(4)

where 𝐴𝑇 denotes the transposition of 𝐴. Consequently, (4)
and its variant have been studied extensively. For related
results, please refer to [6–13].

In the case whereC1 andC2 in (2) are the fixed point sets
of nonlinear operators, problem (2) is called by Censor and
Segal [14] the split common fixed point problem.

Problem 2. The split common fixed point problem: this
problem is to find a fixed point𝑥† of an operator 𝑆 in the space
H1 such that its image 𝐴𝑥† under a linear transformation 𝐴

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 897370, 6 pages
http://dx.doi.org/10.1155/2014/897370

http://dx.doi.org/10.1155/2014/897370


2 Abstract and Applied Analysis

is a fixed point 𝑦† of another operator 𝑇 in the image space
H2. Namely, find a vector 𝑥† ∈ 𝐻 such that

𝑥
†
∈ Fix (𝑆) , 𝑦

†
= 𝐴𝑥
†
∈ Fix (𝑇) , (5)

where Fix(𝑆) and Fix(𝑇) denote the fixed point sets of
nonlinear operators 𝑆 : H1 → H1 and 𝑇 : H2 → H2,
respectively.

A natural idea is to apply (4) to the split common fixed
point problem (5). That is, taking C1 = Fix(𝑆) and C2 =

Fix(𝑇) in (4), we get

𝑥𝑚+1 = projFix(𝑆) (𝑥𝑚 − 𝜛𝐴
𝑇

× (𝐼 − projFix(𝑇))𝐴𝑥𝑚) , 𝑚 ∈ N.

(6)

However, projFix(𝑆) and projFix(𝑇) are generally not easy to
calculate. Thus, (6) may fail. We have to find new algorithm
to solve (5). In this respect, Censor and Segal [14] proposed
the following iterative method: for any initial guess 𝑥1 ∈ H1,
define a sequence {𝑥𝑚} by

𝑥𝑚+1 = 𝑆 (𝑥𝑚 − 𝜆𝐴
∗
(𝐼 − 𝑇)𝐴𝑥𝑚) , 𝑚 ∈ N, (7)

where 𝑆 and 𝑇 are directed operators. Moudafi [15] relaxed
(7) to the following form:

𝑦𝑚 = 𝑥𝑚 − 𝜛𝐴
∗
(𝐼 − 𝑇)𝐴𝑥𝑚,

𝑥𝑚+1 = (1 − 𝛼𝑚) 𝑦𝑚 + 𝛼𝑚𝑆 (𝑦𝑚) , 𝑚 ∈ N,
(8)

where 𝑈 and 𝑇 are demicontractive operators.
Note that (7) and (8) haveweak convergence. Some strong

convergence results have been given in the literature; see, for
instance, [16, 17]. In the present paper, we consider an inter-
esting respect: could we extend the classes of directed and
demicontractive operators to the class of pseudocontractive
mappings?

Our main purpose of this paper is to solve the above
problem. We construct an iterative algorithm in which the
involved operators are pseudocontractions and show its
strong convergence.

2. Definitions and Lemmas

In this section, we collect some definitions and lemmas. Let
H be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and norm
‖ ⋅ ‖, respectively. Let (H ⊃)E ̸= 0 be a closed convex set.

Definition 3. An operator 𝑇 : E → E is called Lipschitzian,
if

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑥
‡
− 𝑇𝑦
‡󵄩󵄩
󵄩
󵄩
󵄩
≤ 𝐿

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
‡
− 𝑦
‡󵄩󵄩
󵄩
󵄩
󵄩
, (9)

for some 𝐿 > 0 and all 𝑥‡, 𝑦‡ ∈ E.
In this case, we call 𝑇𝐿-Lipschitzian continuous. If 𝐿 = 1

in (9), we call 𝑇 nonexpansive.

Definition 4. An operator 𝑇 : E → E is called a directed
operator, if

⟨𝑇𝑥
†
− 𝑥
†
, 𝑇𝑥
†
− 𝑥⟩ ≤ 0; (10)

equivalently,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑥
†
− 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
†
− 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑥
†
− 𝑥
†󵄩󵄩
󵄩
󵄩
󵄩

2 (11)

for all 𝑥† ∈ E and 𝑥 ∈ Fix(𝑇), the fixed points set of 𝑇.

Definition 5. An operator 𝑇 : E → E is called a
demicontractive operator, if

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑥
†
− 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
†
− 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑥
†
− 𝑥
†󵄩󵄩
󵄩
󵄩
󵄩

2

,

∀𝑥
†
∈ E, 𝑥 ∈ Fix (𝑇) ,

(12)

where 𝜅 ∈ (0, 1)

From the above definitions, we note that the class of
demicontractive operators contains important operators such
as the directed operators and the nonexpansive operators
with fixed points. Such a class of operators is fundamental
because they include many types of nonlinear operators
arising in applied mathematics and optimization; see, for
example, [18] and references therein.

Definition 6. An operator 𝑇 : E → E is called pseudocon-
tractive, if

⟨𝑇𝑥
†
− 𝑇𝑦
†
, 𝑥
†
− 𝑦
†
⟩ ≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
†
− 𝑦
†󵄩󵄩
󵄩
󵄩
󵄩

2

; (13)

equivalently,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑥
†
− 𝑇𝑦
†󵄩󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
†
− 𝑦
†󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑇)𝑥

†
− (𝐼 − 𝑇)𝑦

†󵄩󵄩
󵄩
󵄩
󵄩

2

(14)

for all 𝑥†, 𝑦† ∈ E.

It is obvious that the class of pseudocontractive mappings
with fixed points includes the class of demicontractive map-
pings.

Lemma 7 (see [19]). Let H be a real Hilbert space; let C ⊂

H be a closed convex set. Let 𝑊 : C → C be a continuous
pseudocontractive mapping. Then

(i) Fix(𝑊) is a closed convex subset of C;
(ii) (𝐼 − 𝑊) is demiclosed at zero.

3. Main Results

LetH1 andH2 be two realHilbert spaces and let𝐴 : H1 → H2
be a bounded linear operator with its adjoint𝐴∗.This section
is devoted to study problem (5), where 𝑆 : H1 → H1 and
𝑇 : H2 → H2 are two 𝐿-Lipschitzian pseudocontractive
mappings. We denote the solution set of problem (5) by

Γ = {𝑥
†
∈ Fix (𝑆) ; 𝐴𝑥† ∈ Fix (𝑇)} . (15)

In the sequel, we assume Γ ̸= 0.
In order to solve problem (5), we present the following

iterative algorithm.
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Algorithm 8. Let𝜛, 𝜏, 𝜎, 󰜚, and 𝜍 be five constants. For 𝑢 ∈ H1,
arbitrarily, we define the following iterative manner:

C1 = H1, 𝑥1 = projC
1

(𝑢) ,

𝑧𝑛 = 𝑥𝑛 + 𝜛𝐴
∗
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼] 𝐴𝑥𝑛,

𝑦𝑛 = (1 − 󰜚) 𝑧𝑛 + 󰜚𝑆 [(1 − 𝜍) 𝑧𝑛 + 𝜍𝑆𝑧𝑛] ,

C𝑛+1 = {𝑧 ∈ C𝑛 :
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑧

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑧

󵄩
󵄩
󵄩
󵄩
} ,

𝑥𝑛+1 = projC
𝑛+1

(𝑢) , 𝑛 ∈ N.

(16)

Theorem 9. Assume that 𝜛, 𝜏, 𝜎, 󰜚, and 𝜍 satisfy the following
assumptions: 0 < 𝜛 < 1/‖𝐴‖

2, 0 < 𝜏 ≤ 𝜎 < 1/(√1 + 𝐿
2
+ 1),

and 0 < 󰜚 < 𝜍 < 1/(√1 + 𝐿
2
+ 1). Then, {𝑥𝑛}, {𝑦𝑛}, and {𝑧𝑛}

defined by (16) converge strongly to proj
Γ
(𝑢).

Proof. The outline of our proof details is as follows:

(i) Γ ⊂ C𝑛, for all 𝑛 ∈ N;

(ii) C𝑛 is closed and convex, for all 𝑛 ∈ N;

(iii) 𝑥𝑛 → 𝑥
∗;

(iv) 𝑥∗ = proj
Γ
(𝑢).

Proof of (i). We show this by induction. (1) Γ ⊂ C1 = H1 is
obvious.

(2) Suppose that Γ ⊂ C𝑘 for some 𝑘 ∈ N. For any 𝑝 ∈ Γ ⊂

C𝑘, we have, from (14), that

󵄩
󵄩
󵄩
󵄩
𝑆 ((1 − 𝜍) 𝑧𝑘 + 𝜍𝑆𝑧𝑘) − 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑆 ((1 − 𝜍) 𝑧𝑘 + 𝜍𝑆𝑧𝑘) − 𝑆𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
(1 − 𝜍)𝑧𝑘 + 𝜍𝑆𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
(1 − 𝜍)𝑧𝑘 + 𝜍𝑆𝑧𝑘 − 𝑆((1 − 𝜍)𝑧𝑘 + 𝜍𝑆𝑧𝑘)

󵄩
󵄩
󵄩
󵄩

2
,

󵄩
󵄩
󵄩
󵄩
𝑆𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2
.

(17)

Observing that in any Hilbert space, we have

󵄩
󵄩
󵄩
󵄩
𝑡𝑥 + (1 − 𝑡)𝑦

󵄩
󵄩
󵄩
󵄩

2
= 𝑡‖𝑥‖

2
+ (1 − 𝑡)

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2
− 𝑡 (1 − 𝑡)

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2
,

∀𝑡 ∈ [0, 1] .

(18)

Set V𝑘 = (1 − 𝜍)𝑧𝑘 + 𝜍𝑆𝑧𝑘, for all 𝑘 ∈ N. By (17) and (18), we
obtain

󵄩
󵄩
󵄩
󵄩
𝑆V𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
(1 − 𝜍) (𝑧𝑘 − 𝑝) + 𝜍 (𝑆𝑧𝑘 − 𝑝)

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
(1 − 𝜍)𝑧𝑘 + 𝜍𝑆𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝜍)(𝑧𝑘 − 𝑆V𝑘) + 𝜍(𝑆𝑧𝑘 − 𝑆V𝑘)

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
(1 − 𝜍)(𝑧𝑘 − 𝑝) + 𝜍(𝑆𝑧𝑘 − 𝑝)

󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝜍)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2
+ 𝜍

󵄩
󵄩
󵄩
󵄩
𝑆𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2

− 𝜍 (1 − 𝜍)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝜍)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜍

󵄩
󵄩
󵄩
󵄩
𝑆𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝜍 (1 − 𝜍)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝜍)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜍 (

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2
)

− 2𝜍 (1 − 𝜍)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝜍)

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2

+ 𝜍
󵄩
󵄩
󵄩
󵄩
𝑆𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2
.

(19)

Since 𝑆 is 𝐿-Lipschitzian and 𝑧𝑘 − V𝑘 = 𝜍(𝑧𝑘 − 𝑆𝑧𝑘), we have
󵄩
󵄩
󵄩
󵄩
𝑆V𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤ (1 − 𝜍)

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜍 (

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2
)

− 2𝜍 (1 − 𝜍)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝜍)

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2

+ 𝜍
3
𝐿
2󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝜍)

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2

− 𝜍 (1 − 2𝜍 − 𝜍
2
𝐿
2
)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2
.

(20)

Since 𝜍 < 1/(√1 + 𝐿
2
+ 1), we deduce

1 − 2𝜍 − 𝜍
2
𝐿
2
> 0. (21)

This together with (20) implies that
󵄩
󵄩
󵄩
󵄩
𝑆V𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝜍)

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2
. (22)

Hence,
󵄩
󵄩
󵄩
󵄩
𝑦𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
=
󵄩
󵄩
󵄩
󵄩
(1 − 󰜚)𝑧𝑘 + 󰜚𝑆V𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(1 − 󰜚)(𝑧𝑘 − 𝑝) + 󰜚(𝑆V𝑘 − 𝑝)

󵄩
󵄩
󵄩
󵄩

2

= (1 − 󰜚)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 󰜚

󵄩
󵄩
󵄩
󵄩
𝑆V𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 󰜚 (1 − 󰜚)
󵄩
󵄩
󵄩
󵄩
𝑆V𝑘 − 𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 󰜚)
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 󰜚 [
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝜍)

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑆V𝑘

󵄩
󵄩
󵄩
󵄩

2
]

− 󰜚 (1 − 󰜚)
󵄩
󵄩
󵄩
󵄩
𝑆V𝑘 − 𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 󰜚) (󰜚 − 𝜍)

󵄩
󵄩
󵄩
󵄩
𝑆V𝑘 − 𝑧𝑘

󵄩
󵄩
󵄩
󵄩

2
.

(23)

Noting that 󰜚 ≤ 𝜍, we deduce
󵄩
󵄩
󵄩
󵄩
𝑦𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
(1 − 󰜚) 𝑧𝑘 + 󰜚𝑆 ((1 − 𝜍) 𝑧𝑘 + 𝜍𝑆𝑧𝑘) − 𝑝

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩
.

(24)
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Similarly, we also have

󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇)] 𝐴𝑥𝑘 − 𝐴𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝐴𝑥𝑘 − 𝐴𝑝

󵄩
󵄩
󵄩
󵄩
.

(25)

In Hilbert spaces, there holds

2⟨𝑧
†
, 𝑧⟩ =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
†
+ 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
†󵄩󵄩
󵄩
󵄩
󵄩

2

− ‖𝑧‖
2
. (26)

With the help of (25) and (26), we get

󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥𝑘 − 𝑝 + 𝜛𝐴

∗
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼]

×𝐴𝑥𝑘

󵄩
󵄩
󵄩
󵄩

2

= 2𝜛 ⟨𝐴
∗
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼]

×𝐴𝑥𝑘, 𝑥𝑘 − 𝑝⟩

+ 𝜛
2󵄩
󵄩
󵄩
󵄩
𝐴
∗
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼]𝐴𝑥𝑘

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑥𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

= 2𝜛 ⟨[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼]𝐴𝑥𝑘,

𝐴𝑥𝑘 − 𝐴𝑝⟩

+ 𝜛
2
‖𝐴‖
2󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼]𝐴𝑥𝑘

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑥𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝜛 [
󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇)] 𝐴𝑥𝑘 − 𝐴𝑝

󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼] 𝐴𝑥𝑘

󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝐴𝑥𝑘 − 𝐴𝑝

󵄩
󵄩
󵄩
󵄩

2
]

+ 𝜛
2
‖𝐴‖
2󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼]𝐴𝑥𝑘

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜛 (𝜛‖𝐴‖
2
− 1)

󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼]

× 𝐴𝑥𝑘

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑥𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
.

(27)

By (24) and (27), we have

󵄩
󵄩
󵄩
󵄩
𝑦𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑘 − 𝑝

󵄩
󵄩
󵄩
󵄩
. (28)

This shows that 𝑝 ∈ C𝑘+1. Thus, we get Γ ⊂ C𝑛, for all 𝑛 ∈ N.

Proof of (ii). It is easy to verify that C𝑛 is closed, for all 𝑛 ∈ N.
Next, we only need to verify that C𝑛 is convex, for all 𝑛 ∈ N.
In fact, let 𝑧†, 𝑧‡ ∈ C𝑛+1; for each 𝜁 ∈ (0, 1), we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − (𝜁𝑧

†
+ (1 − 𝜁)𝑧

‡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝜁(𝑦𝑛 − 𝑧

†
) + (1 − 𝜁)(𝑦𝑛 − 𝑧

‡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝜁

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑧

†󵄩󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝜁)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑧

‡󵄩󵄩
󵄩
󵄩
󵄩

2

− 𝜁 (1 − 𝜁)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
†
− 𝑧
‡󵄩󵄩
󵄩
󵄩
󵄩

2

≤ 𝜁

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑛 − 𝑧

†󵄩󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝜁)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑛 − 𝑧

‡󵄩󵄩
󵄩
󵄩
󵄩

2

− 𝜁 (1 − 𝜁)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
†
− 𝑧
‡󵄩󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑛 − (𝜁𝑧

†
+ (1 − 𝜁) 𝑧

‡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

;

(29)

namely,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − (𝜁𝑧

†
+ (1 − 𝜁) 𝑧

‡
)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑛 − (𝜁𝑧

†
+ (1 − 𝜁) 𝑧

‡
)

󵄩
󵄩
󵄩
󵄩
󵄩
;

(30)

this shows 𝜁𝑧† + (1− 𝜁)𝑧‡ ∈ C𝑛+1 andC𝑛+1 is a convex set, for
all 𝑛 ∈ N.

Proof of (iii). Since Γ ⊂ C𝑛+1 ⊂ C𝑛 and 𝑥𝑛+1 = 𝑃C
𝑛+1

(𝑢) ⊂ C𝑛,
we obtain

󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑢

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑢

󵄩
󵄩
󵄩
󵄩

∀𝑛 ∈ N, 𝑝 ∈ Γ. (31)

It follows that {𝑥𝑛} is bounded.
It is known that the metric projection projC can be

characterized by

⟨𝑥
†
− projC (𝑥

†
) , projC (𝑥

†
) − 𝑥⟩ ≥ 0, ∀𝑥 ∈ C; (32)

equivalently,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥 − projC(𝑥

†
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
†
− projC(𝑥

†
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑥
†󵄩󵄩
󵄩
󵄩
󵄩

2

. (33)

With the help of (33), we have

󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑃C

𝑛

(𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑃C

𝑛

(𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑢

󵄩
󵄩
󵄩
󵄩

2
,

(34)

which implies that

0 ≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑢

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2
. (35)

It follows that
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑢

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑢

󵄩
󵄩
󵄩
󵄩
. (36)

Since {‖𝑥𝑛 − 𝑢‖} is bounded, we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑢

󵄩
󵄩
󵄩
󵄩
exists. (37)
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This together with (35) implies that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (38)

The fact that 𝑥𝑛+1 = 𝑃C
𝑛+1

(𝑢) ∈ C𝑛+1 gives
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑥𝑛+1

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑥𝑛+1

󵄩
󵄩
󵄩
󵄩
󳨀→ 0. (39)

By (38) and (39), we derive

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (40)

Next we show that {𝑥𝑛} is a Cauchy sequence. As a matter of
fact, for any𝑚, 𝑛 ∈ N with𝑚 > 𝑛, we have
󵄩
󵄩
󵄩
󵄩
𝑥𝑚 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑢

󵄩
󵄩
󵄩
󵄩

2
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑚 − 𝑃C

𝑛

(𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃C
𝑛

(𝑢) − 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑚 − 𝑢

󵄩
󵄩
󵄩
󵄩

2
.

(41)

It follows that
󵄩
󵄩
󵄩
󵄩
𝑥𝑚 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑚 − 𝑢

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑢

󵄩
󵄩
󵄩
󵄩

2
. (42)

Note that lim𝑛→∞(‖𝑥𝑚 − 𝑢‖
2
− ‖𝑥𝑛 − 𝑢‖

2
) = 0. Therefore,

lim𝑛→∞‖𝑥𝑚 − 𝑥𝑛‖ = 0. So, {𝑥𝑛} is a Cauchy sequence and
hence 𝑥𝑛 → 𝑥

∗.

Proof of (iv). From (24), (27), and (40), we have

− 𝜛 (𝜛‖𝐴‖
2
− 1)

󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏)𝐼 + 𝜏𝑇((1 − 𝜎)𝐼 + 𝜎𝑇) − 𝐼]𝐴𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑦𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
)

󳨀→ 0.

(43)

Hence,
lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
[(1 − 𝜏) 𝐼 + 𝜏𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) − 𝐼] 𝐴𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0.

(44)

It follows that
lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇)𝐴𝑥𝑛 − 𝐴𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (45)

Next, we firstly show that

Fix (𝑇) = Fix (𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇)) . (46)

As a matter of fact, Fix(𝑇) ⊂ Fix(𝑇((1−𝜎)𝐼+𝜎𝑇)) is obvious.
We only need to show that Fix(𝑇((1 − 𝜎)𝐼 + 𝜎𝑇)) ⊂ Fix(𝑇).

Take any 𝑦† ∈ Fix(𝑇((1−𝜎)𝐼+𝜎𝑇)). We have𝑇((1−𝜎)𝐼+
𝜎𝑇)𝑦
†
= 𝑦
†. Set 𝑅 = (1−𝜎)𝐼+𝜎𝑇. We have𝑇𝑅𝑦† = 𝑦

†. Write
𝑅𝑦
†
= 𝑦
∗. Then, 𝑇𝑦∗ = 𝑦

†. Next, we show 𝑦
†
= 𝑦
∗. In fact,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
†
− 𝑦
∗󵄩󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑦
∗
− 𝑅𝑦
†󵄩󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑦
∗
− (1 − 𝜎) 𝑦

†
− 𝜎𝑇𝑦

†󵄩󵄩
󵄩
󵄩
󵄩

= 𝜎

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇𝑦
∗
− 𝑇𝑦
†󵄩󵄩
󵄩
󵄩
󵄩

≤ 𝜎𝐿

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
∗
− 𝑦
†󵄩󵄩
󵄩
󵄩
󵄩
.

(47)

Since 𝜎 < 1/(√1 + 𝐿
2
+ 1) < 1/𝐿, we deduce 𝑦∗ = 𝑦

†
∈

Fix(𝑅) = Fix(𝑇). Thus, 𝑦† ∈ Fix(𝑇). Hence, Fix(𝑇((1 − 𝜎)𝐼 +
𝜎𝑇)) ⊂ Fix(𝑇). Therefore, Fix(𝑇((1 − 𝜎)𝐼 + 𝜎𝑇)) = Fix(𝑇).

With (46) in hand, we prove that 𝑇((1 − 𝜎)𝐼 + 𝜎𝑇) − 𝐼 is
demiclosed at 0. Let the sequence {𝑢𝑛} ⊂ H2 satisfying 𝑢𝑛 ⇀
𝑦
† and 𝑢𝑛 − 𝑇((1 − 𝜎)𝐼 + 𝜎𝑇)𝑢𝑛 → 0. Now, we show that

𝑦
†
∈ Fix(𝑇((1 − 𝜎)𝐼 + 𝜎𝑇)).
Since 𝑇 is 𝐿-Lipschitzian, we have

󵄩
󵄩
󵄩
󵄩
𝑢𝑛 − 𝑇𝑢𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑢𝑛 − 𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) 𝑢𝑛

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) 𝑢𝑛 − 𝑇𝑢𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑢𝑛 − 𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) 𝑢𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝜎𝐿

󵄩
󵄩
󵄩
󵄩
𝑢𝑛 − 𝑇𝑢𝑛

󵄩
󵄩
󵄩
󵄩
.

(48)

It follows that

󵄩
󵄩
󵄩
󵄩
𝑢𝑛 − 𝑇𝑢𝑛

󵄩
󵄩
󵄩
󵄩
≤

1

1 − 𝜎𝐿

󵄩
󵄩
󵄩
󵄩
𝑢𝑛 − 𝑇 ((1 − 𝜎) 𝐼 + 𝜎𝑇) 𝑢𝑛

󵄩
󵄩
󵄩
󵄩
. (49)

Hence,

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑢𝑛 − 𝑇𝑢𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (50)

Since 𝑇 − 𝐼 is demiclosed at 0 by Lemma 7, we immediately
deduce 𝑦† ∈ Fix(𝑇) = Fix(𝑇((1−𝜎)𝐼+𝜎𝑇)).Therefore,𝑇((1−
𝜎)𝐼 + 𝜎𝑇) − 𝐼 is demiclosed at 0. Since 𝐴 is a bounded linear
operator, we get ‖𝐴𝑥𝑛 − 𝐴𝑥

∗
‖ → 0. From (45), we deduce

𝐴𝑥
∗
∈ Fix(𝑇((1 − 𝜎)𝐼 + 𝜎𝑇)) = Fix(𝑇).

By (16), (40), and (44), we deduce

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧𝑛 − 𝑦𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (51)

So,

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑆 [(1 − 𝜍) 𝑧𝑛 + 𝜍𝑆𝑧𝑛] − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= lim
𝑛→∞

1

󰜚

󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0.

(52)

Similarly, we can show that 𝑥∗ ∈ Fix(𝑆). To this end, we have
proven that 𝑥∗ ∈ Fix(𝑆) and𝐴𝑥∗ ∈ Fix(𝑇).Therefore, 𝑥∗ ∈ Γ.
This completes the proof.
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