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This paper proposes the hybrid CSM-CFO algorithm based on the simplex method (SM), clustering technique, and central force
optimization (CFO) for unconstrained optimization. CSM-CFO is still a deterministic swarm intelligent algorithm, such that the
complex statistical analysis of the numerical results can be omitted, and the convergence intends to produce faster and more
accurate by clustering technique and good points set. When tested against benchmark functions, in low and high dimensions, the
CSM-CFO algorithm has competitive performance in terms of accuracy and convergence speed compared to other evolutionary
algorithms: particle swarm optimization, evolutionary program, and simulated annealing.The comparison results demonstrate that
the proposed algorithm is effective and efficient.

1. Introduction

Unconstrained optimization is a mathematical programming
technique that attempts to solve nonlinear objective func-
tions. It has become an important branch of operations
research and has a wide variety of applications in network
security, cloud computation, mobile search, pattern recog-
nition, data classification, power systems, protein structures,
medical image registration, and financial market. Uncon-
strained optimization problems with 𝑁𝐷 variables may be
written in the following form:

min 𝑓 (𝑥) , 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁𝐷
)

s.t. 𝑥
min

≤ 𝑥 ≤ 𝑥
max

,

(1)

where objective function 𝑓(𝑥) may be continuous or dis-
continuous, highly multimodal, or “smooth”; 𝑁𝐷 is the
dimension of object function; and𝑥min and𝑥max are the lower
and upper boundaries of the vector 𝑥, respectively.

In the past few decades, various academics proposed
many methods in response to this problem. These methods
may be grossly classified into two categories: swarm intel-
ligent techniques and traditional direct search techniques.

Firstly, swarm intelligent methods, such as the genetic algo-
rithm developed by Leung and Wang, where a genetic algo-
rithm with quantization for global numerical optimization is
proposed [1], ant colony optimization developed by Neto and
Filho, where an improving ant colony optimization approach
to a permutational flow shop scheduling problem with
outsourcing allowed is proposed [2], an improving particle
swarm optimization developed by Green II et al., where
neural networks trained by particle swarm optimization [3],
simulated annealing developed by Kirkpatrick et al., which
comes from annealing in metallurgy and is often used when
the search space is discrete [4], gravitational search algorithm
developed by Rashedi et al., which is based on the law of
gravity and the notion ofmass interactions [5], are efficient to
well explore the whole search space and to localize the “best”
areas. However, these methods have one shortage: results
were never able to exactly repeat their results, for true random
variables are used in algorithms. Recently, a new swarm intel-
ligent algorithm, namely, central force optimization (CFO),
is developed by Formato [6–9]. This algorithm demonstrates
and leverages two characteristics that make it unique when
compared to other methodologies: a basis in Newton’s law
of gravity and a deterministic nature. As CFO is a very
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young algorithm, it has yet to be compared and contrasted
against other algorithms for many different applications [9].
Pseudorandomness of CFO is discussed in [10]. Every CFO
run with the same setup returns precisely the same values
step by step throughout the entire run. Nevertheless, effective
implementations substantially benefit from a “pseudoran-
dom” component that enters the algorithm indirectly, not
through its basic equations. Although pseudorandomness is
not required in CFO, numerical experiments show that it is
an important feature in effective implementations.

Secondly, direct search methods include hill climbing
which is an iterative algorithm that starts with an arbitrary
solution to a problem and then attempts to find a better
solution by incrementally changing a single element of the
solution and simplex method (SM) which is developed by
Nelder andMead [11] that is a well-defined numericalmethod
for problems for which derivatives may not be known. These
methods are more efficient than the previous ones for the
exploitation of the best areas already detected. However,
one has to be very careful when using these methods since
it is very sensitive to the choice of initial points and not
guaranteed to find the best possible solution (the global
optimum) out of all possible solutions.

Although standard CFO is a deterministic algorithm,
the inherent drawback with most of the population based
stochastic algorithms is premature convergence. Any swarm
intelligence algorithm is regarded as an efficient algorithm
if it is fast in convergence and able to explore the mini-
mum area of the search space. In other words, if CFO is
capable of balancing between exploration and exploitation
of the search space, then CFO is regarded as an efficient
algorithm. Also some numerical experiments proved that
stagnation is another inherent drawback with CFO; that is,
CFO sometimes stops proceeding towards the global optima
even though the population has not converged to local
optima or any other point [8, 12]. The problems of premature
convergence and stagnation worth considering for designing
an efficient improving CFO algorithm.

In this study, a hybrid algorithm is proposed. The
motivation of such a hybrid is to explore a better trade-
off between computational cost and global optimality of the
solution attained. Generally hybrid methods achieve better
solutions than “pure” methods and converge more quickly.
Similar ideas have been discussed in hybrid methods using
evolutionary algorithm and direct search technique [13–15].
However, these hybrid methods are stochastic.

The current study investigates the deterministic
hybridization of the simplex method and central force
optimization, and performance of the hybrid algorithm is
compared with other pertinent alternatives via simulations.
In order to overcome the shortage of the simplex method,
we propose a clustering algorithm to select suitable vertices
from population. To have a better clustering effect, a unique
method, namely, good points set method, is embedded in
clustering algorithm.

The structure of the rest of the paper is as follows.
Section 2 gives us a review on the related works. In Section 3,
we point out the drawback of CFO and present a new
hybrid algorithm. In Section 4, we test the new algorithm

Table 1: Unimodal test functions.
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against a variety of multidimension functions, all drawn
from recognized “benchmark suites” (complex functions
with analytically known minima). Finally, Section 5 outlines
the conclusions, followed by Appendix which shows the
benchmark functions.

2. Central Force Optimization
and Simplex Method

2.1. Central Force Optimization Algorithm (CFO). In CFO,
every individual of population is named probe. Probes are
attracted by gravitation based on the definedmass. Probes are
considered as objects and their performances are measured
by the fitness function. In other words, each mass represents
a solution, which is navigated by adjusting the position prop-
erly according to the Newton universal law of gravitation.

CFO comprises three steps: (1) initialization; (2) com-
putation of probe’s acceleration; and (3) motion. A general
working flow of CFO is shown in Table 1.

In the first step, a population of probes is created in
search space.The initial position and acceleration vectors are
set to zero. In the second step, the compound acceleration
vector of one probe from components in each direction
is calculated according to the Newton universal law. Mass
is a user-defined function from the object function to be
minimized. In the 𝑁𝐷-dimensional search space with 𝑁𝑃
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where x𝑝
𝑡
, A𝑝
𝑡
are the position and acceleration vectors for

the 𝑝th probe at the 𝑡th generation, respectively, 𝑀𝑝
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namely, the objective function value, and 𝑈(𝑧) represents a
piecewise function and 𝑡 is the number of iterations:

𝑈 (𝑧) = {
1, 𝑧 ≥ 0

0, otherwise.
(3)

In (2), 𝐺, 𝛼, and 𝛽 do not represent the concrete gravitational
fundamentals. In addition, in order to prevent the probe from
flying away from the search space, it is required to detect the
position of the probe. If the probe is out of the range, it is
pulled back to the search space.

In third step, according to the acceleration calculated
previously, the position vectors of probes are updated based
on the Newtonian formula. If acceleration A𝑝

𝑡
is exerted, the

𝑝th probe will move from x𝑝
𝑡
to x𝑝
𝑡+1

according to the motion
equation

x𝑝
𝑡+1

= x𝑝
𝑡
+ 0.5 × A𝑝

𝑡
Δ𝑡
2
, (4)

whereΔ𝑡 represents the step.The position of probe is updated
based on last “mass” information as a deterministic gradient
algorithm.

The convergence conditions of CFO have revealed that it
will converge to the optima that have searched so far, which is
not worse than the predefined one in initial distributions [9].

Standard Central Force Optimization Algorithm

Step 1 (parameters initialization). Set the objective func-
tion’s dimension 𝑁𝐷, boundaries 𝑥min, 𝑥max, total number
of probes 𝑁𝑃, gravitational constant 𝐺, and acceleration
parameters 𝛼 and 𝛽.

Step 2 (population initialization). Compute initial probe
distribution 𝑋, fitness matrix 𝑀, position vectors R, and
acceleration vectors A.

Step 3 (loop on time step). Consider the following.

Step 3.1. Compute probe position vectors R.

Step 3.2. If probe flies out of the boundary, we retrieve it.

Step 3.3. Update fitness matrices of current probes.

Step 3.4. Compute accelerations vectors A for next time step.

Step 4. Increase time step and repeat Step 3 until stopping
criterion has been met.

2.2. Nelder-Mead Simplex Method (SM). Nelder-Mead sim-
plex method (SM) is a local search method designed for
unconstrained optimization, known as direct search meth-
ods. In contrast to more local optimization methods, SM is a
derivative-free method as it does not require any information
about the gradient (or higher derivative) of the objective
function when searching for an optimal solution. Therefore,
SM is particularly appropriate for solving noncontinuous,
nondifferentiable, and multimodal optimization problems.

It uses four parameters: reflection, expansion, contrac-
tion, and size of the simplex tomove in the design space based
on the values at the vertices and center of the triangle.

It is an𝑁𝐷-dimensional, closed geometric figure in space
that has straight line edges intersecting at𝑁𝐷+1 vertices.The
values of 𝑁𝐷 + 1 vertex points functions are calculated, and
the vertex point𝑊with themaximum value, the vertex point
𝐵 with the minimum value, and the vertex point 𝑁 with the
second largest value of the objective function are obtained,
respectively. The basic move is a reflection to generate a
new vertex point 𝑅. The choice of reflection direction and
the choice of the new vertex depend on the location of the
worst point 𝑊 in the simplex. The new point 𝑅 is called
the “complement” of the worst point 𝑊. If any “new point”
is the worst point in the new simplex, the algorithm would
oscillate; in other words, it would bounce back and forth
between this point and the earlier worst point. When this
happens, the second worst point is used as the point to use to
find the next “new point.” As the simplex moves through the
design space, its centroid moves toward the extremum. If the
edges of the sides of the simplex are allowed to contract and
expand, we can see how the method could accelerate toward
the optimum. This method has the versatility of adapting
itself to the local landscape of the merit surface.

Nelder-Mead Simplex Method Algorithm

Step 1 (order). Evaluate objective function values 𝑓(𝑥) at
the 𝑁𝐷 + 1 vertices of simplex and sort it according to the
function values 𝑓(𝑥

1
) ≤ 𝑓(𝑥

2
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑥
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).
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𝑅
=
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Step 4 (outside contraction). If𝑓(𝑥
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𝑅
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compute the outside contraction point 𝑥
𝐶
+ = 𝑥 + 𝛽(𝑥

𝑅
− 𝑥).

If 𝑓(𝑥
𝐶
+) ≤ 𝑓(𝑥

𝑅
), replace 𝑥

𝑁𝐷+1
with 𝑥

𝐶
+ . Otherwise go to

Step 6.

Step 5 (inside contraction). If 𝑓(𝑥
𝑅
) ≥ 𝑓(𝑥

𝑁𝐷+1
), compute

the inside contraction point 𝑥
𝐶
− from 𝑥

𝐶
− = 𝑥 + 𝛾(𝑥 − 𝑥

𝑅
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If 𝑓(𝑥
𝐶
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𝑁𝐷+1
), replace 𝑥

𝑁𝐷+1
with 𝑥

𝐶
− . Otherwise, go

to Step 6.

Step 6 (reduction). For all but the point 𝑥
1
, replace the point

with 𝑥
𝑖
= 𝑥
1
+ 𝛿(𝑥

𝑖
− 𝑥
1
) for all 𝑖 ∈ {2, . . . , 𝑁𝐷 + 1}. If the

stopping criterion is satisfied, then STOP. Otherwise, go to
Step 1.

3. Hybrid CSM-CFO Method

This section introduces the hybrid method and, in doing so,
also demonstrates that the convergence of the SM and the
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Figure 1: Model of CSM-CFO algorithm.

accuracy of the CFO can be further improved simultane-
ously.

A good mix strategy should be able to integrate the
global exploration and the local search organically in the
design of the algorithm: global exploration algorithm can
constantly search in the decision domain of the issue, avoid-
ing premature convergence phenomenon; local search can
make a deep search in the region which may contain the
optimal solution, promoting a faster convergence for the
global optimal solution. Based on this idea, the simplex
method (SM) is introduced into the CFO in this paper,
improving the local search capability. With this approach,
simplex structures are periodically formed starting from the
current optimal solution of CFO, which helps the algorithm
be able to deeply develop the global optimum.

The model of SM-CFO algorithm is shown in Figure 1,
containing three main steps: global search with CFO, local
search with clustering SM, and probes migration.Themigra-
tion operation of the probe can effectively link the exploration
and exploitation for the convergence of CSM-CFO algorithm.
In order to improve the response speed of SM and ensure
the convergence speed, we design the following migration
strategy: after several evolutionary generations of the probe
populations, the population will be subdivided into two
classes. One class which includes the best probe will be
chosen to construct a simplex and run the Nelder-Mead
simplexmethod.Theworst probe is altered by the exploration
point generated by the SM operation. The flow chart of SM-
CFO algorithm is shown in Figure 2.

Numerical experiments show that it is not very satis-
factory to evaluate the probe by simply using the objective
function value as the fitness function. The range of function
values varies largely for different problems.This will make the
algorithm not convergent or overflowing when parameters’
setting is inappropriate. So, parameters’ adjustment is an
extremely difficult assignment. In order to solve this problem,
we give the following definition on fitness:

fitness
𝑝
(𝑡) =

𝑀 (𝑝, 𝑡) −min
𝑝∈{1,...,𝑁𝑃}

𝑀(𝑝, 𝑡)

max
𝑝∈{1,...,𝑁𝑃}

𝑀(𝑝, 𝑡) −min
𝑝∈{1,...,𝑁𝑃}

𝑀(𝑝, 𝑡)
.

(5)

Then we can select easily a set of fixed parameters of
CSM-CFO by numerical experiments for different problems.
Moreover, (5) can also make CSM-CFO more robust and
efficient.

In CSM-CFO the main structure and properties of CFO
are preserved. However, to give the ability of handling the
complex or ill functions to CFO, we apply somemodification
on CFO inspired by simplex method and cluster. It is noted
that the proposed algorithm is able to form niches. According
to the above definition, steps of the proposed CSM-CFO are
as follows.

Algorithm 1 (CSM-CFO). Consider the following.

Step 1 (initialization). Generate the initial swarm of 𝑁𝑃

individuals with “3-D Fano load matching network” [6].
For 𝑖 = 1 to𝑁𝐷, 𝑛 = 1 to𝑁𝑃/𝑁𝐷:

𝑝 = 𝑛 +
(𝑖 − 1)𝑁𝑃

𝑁𝐷
,

𝑥 (𝑝, 𝑖, 0) = 𝑥
min
𝑖

+

(𝑛 − 1) (𝑥
max
𝑖

− 𝑥
min
𝑖

)

𝑁𝑃/𝑁𝐷 − 1
,

(6)

and set 𝑡 = 0. Each individual represents a candidate solution
and is considered as a real valued vector 𝑥

𝑖
(𝑖 = 1, 2, . . . , 𝑁𝑃),

where 𝑁𝑃 is the population size, 𝑁𝐷 is the dimension
of objective function, and 𝑥

𝑖
is decision variables to be

optimized. 𝑥max and 𝑥
min are upper and lower boundaries

of variables. Set parameters of simplex method: reflection,
contraction, and expansion coefficients. Operation period of
cluster simplex method is set to Δ𝑡. Current populations are
divided into𝑁

𝑐
subpopulations.

Step 2 (fitness evaluation). Calculate fitness value of each
individual 𝑥

𝑖
(𝑡), (𝑖 = 1, 2, . . . , 𝑁𝑃) with (5).

Step 3 (computation of position, acceleration, and velocity).
At time 𝑡, the position, acceleration, and velocity of each indi-
vidual are computed according to (2) and (4), respectively.

Step 4 (cluster). If mod (𝑡, Δ𝑡) = 0, populations are divided
into𝑁

𝑐
subpopulations with Algorithm 2; then go to Step 5.

Step 5 (simplexmethod search). One subpopulation is chosen
which includes the best individual. Simplex method is run in
this subpopulation. The improving best individual is moved
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Figure 2: Schematic flow diagram of CSM-CFO algorithm.

into populations and replaces the worst individual; then go to
Step 6.

Step 6. 𝑡 := 𝑡 + 1; Steps 2–5 are repeated until the stopping
criterion is satisfied.

Algorithm 2 (clustering algorithm). Consider the following.

Step 1. Produce a reference point 𝑅 from the search space by
Algorithm 3.

Step 2. Search the nearest individual𝑋 to𝑅, whichmeans that
point𝑋 has the minimum distance from 𝑅.

Step 3. Repeat Step 2 until 𝑀 individuals of population are
selected. These individuals form a subpopulation.

Step 4. These 𝑀 individuals are removed from current
population.

Step 5. Repeat Steps 2–4 until population is divided into
𝑁
𝑝
/𝑀 subpopulations.

Algorithm 3 (good points set algorithm). Consider the fol-
lowing.

Step 1. Generate a point 𝑟 = (𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑁𝐷
), 𝑟
𝑖

=

{2 cos(2𝜋𝑖/𝑝)}, where 𝑝 is minimum prime number content
with (𝑝 − 3)/2 ≥ 𝑁𝐷.

Step 2. Let 𝑃
𝑛
(𝑘) = {{𝑟

1
∗ 𝑘}, {𝑟

2
∗ 𝑘}, . . . , {𝑟

𝑁𝑃
∗ 𝑘}}, where

{𝑟
𝑖
∗ 𝑘} is the decimal fraction of 𝑟

𝑖
∗ 𝑘, 𝑘 = 1, 2, . . . , 𝑛; then

points set {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
} is called good points set.
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Figure 3: Comparison of good points set method and uniform random point.

Step 3. Map is defined as follows: 𝑓({𝑟
𝑖
∗ 𝑘}) = 𝑥

min
𝑖

+ {𝑟
𝑖
∗

𝑘}(𝑥
max
𝑖

−𝑥
min
𝑖

), whichmeans good point is mapped to search
region 𝑆.

Note 1. Vertices of simplex are generated by Algorithm 2.
The population is divided into two subgroups. One group
which includes the best currently probes will be chosen. If
the number of this group is larger than 𝑁𝐷 + 1, the best
𝑁𝐷 + 1 probes construct the simplex. If the number of
this group is less than 𝑁𝐷 + 1, some probes from another
group which is nearest to the best probe will be chosen
and added to the group to construct simplex. Note that the
clustering algorithm is not strictly the classical clustering
algorithm, for example, K-medoids algorithm, Birch algo-
rithm, Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm, and others. In this paper, we
focus on dividing the whole population into a number of sub-
populations. However, enhancing the result of Algorithm 2,
a reference point for Algorithm 2 is generated by Algorithm 3
(good points set method) [16, 17].

The idea of good points set make the points set distributes
more evenly than random points. When we generate the
reference point of Algorithm 2 by means of good points set
method, obviously, the points are even and representative (see
Figure 3). This will help Algorithm 2 get better result than
generating reference point randomly.

Note 2. The local stopping criterion is defined as

max
𝑖,𝑗=1,...,𝑁𝐷+1

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑖
− 𝑃
𝑗

󵄩󵄩󵄩󵄩󵄩
≤ 𝜀, (8)

where 𝑃
𝑖
denotes the vertices of current simplex and ‖ ⋅ ‖

denotes the Euclidean norm. In order to achieve quicker
convergence, the simplex method will stop when either (8)
is satisfied or the given number of iterations is reached. In
the following numerical experiment, 𝜀 is 10−2 and the number
of iterations is 10. Stopping criterion of CSM-CFO is the
maximum number of function evaluations reached.

4. Numerical Experiments and Analysis

To evaluate the performance of the proposed algorithms, a
number of internationally recognized standard test functions
(i.e., 𝑓

1
–𝑓
23
) [18] and CEC benchmark functions [19] are

selected. The standard test functions are divided into three
classes: benchmark function set (1) unimodal functions,
benchmark function set (2) multimodal functions, and
benchmark functions set (3) fix dimension functions, as
shown in Tables 1, 2, and 3. These functions are widely used
in published papers and are very difficult to track the global
minimum. For example, for 𝑓

2
–𝑓
7
, the existing local optima

can misguide the population to move away from the true
global optimum; 𝑓

8
–𝑓
13

have more global minimum, many
local minima around them. CEC benchmark functions are
more complex than standard test functions.

4.1. Standard Test Functions. Tables 1–3 represent the func-
tions used in our numerical experiment. In these tables, 𝑛 is
the dimension of function and 𝑆 is the search space.Adetailed
description of the functions 1–23 is given in the appendix.

4.2. Experimental Setting. A comparative study is done to
assess the effectiveness of the CSM-CFO by experiments
on test functions. The parameter settings of CSM-CFO are
summarized as follows. The initial population of CSM-CFO
is generated by “3-D Fano load matching network” in [6].
The population size is 𝑁 = 100. The gravitation constant 𝛼
is 1 and 𝛽 is 2. The constant 𝐺 is 15. Reflection coefficient,
contraction coefficient, and expansion coefficient are 1, 1,
and 0.5, respectively. Termination parameter is dimension of
test functions 𝑓

1
∼ 𝑓
13

and dimension of CEC benchmark
functions 𝑓CEC1 ∼ 𝑓CEC5 is 30.

We compared the performance of CSM-CFO with that of
three different evolutionary algorithms:

(1) the NM-SM PSO method developed by Fan and
Zahara (NM-PSO) [14];

(2) evolutionary programming developed by Yao et al.
(EP) [18];
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Table 2: Multimodal test functions.

Test function 𝑆

𝑓
8
(𝑥) =

𝑛

∑

𝑖=1

−𝑥
𝑖
sin(√󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨) [−500, 500]𝑛

𝑓
9
(𝑥) =

𝑛

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10] [−5.12, 5.12]𝑛

𝑓
10
(𝑥) = −20 exp(−0.2√ 1

𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑛

∑

𝑖=1

cos(2𝜋𝑥
𝑖
)) + 20 + 𝑒 [−32, 32]𝑛

𝑓
11
(𝑥) =

1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1 [−600, 600]𝑛

𝑓
12
(𝑥) =

𝜋

𝑛
{10 sin(𝜋𝑦

1
) +

𝑛−1

∑

𝑖=1

(𝑦
𝑖
− 1)
2
[1 + 10sin2(𝜋𝑦

𝑖+1
)] + (𝑦

𝑛
− 1)
2
} +

𝑛

∑

𝑖=1

𝑢(𝑥
𝑖
, 10, 100, 4)

[−50, 50]𝑛

𝑦
𝑖
=

1 + (𝑥
𝑖
+ 1)

4
, 𝑢(𝑥
𝑖
, 𝑎, 𝑘, 𝑚) =

{{{

{{{

{

𝑘(𝑥
𝑖
− 𝑎)
𝑚
, 𝑥
𝑖
> 𝑎

0, −𝑎 < 𝑥
𝑖
< 𝑎

𝑘(−𝑥
𝑖
− 𝑎)
𝑚
, 𝑥
𝑖
< −𝑎

𝑓
13
(𝑥) = 0.1 {sin2(3𝜋𝑥

1
) +

𝑛

∑

𝑖=1

(𝑥
𝑖
− 1)
2
[1 + sin2 (3𝜋𝑥

𝑖
+ 1)] + (𝑥

𝑛
− 1)
2
[1 + sin2(2𝜋𝑥

𝑛
)]} +

𝑛

∑

𝑖=1

𝑢(𝑥
𝑖
, 5, 100, 4) [−50, 50]𝑛

Table 3: Multimodal test functions with fix dimension.

Test function 𝑆

𝑓
14
(𝑥) = (

1

500
+

25

∑

𝑗=1

(𝑗 +

2

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖𝑗
)
6
)

−1

)

−1

[−65.53, 65.53]
2

𝑓
15
(𝑥) =

11

∑

𝑖=1

{𝑎
𝑖
− [𝑥
1
(𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
2
)][𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
3
+ 𝑥
4
]
−1
}
2

[−5, 5]
4

𝑓
16
(𝑥) = 4𝑥

2

1
− 2.1𝑥

4

1
+
1

3
𝑥
6

1
+ 𝑥
1
𝑥
2
− 4𝑥
2

2
+ 4𝑥
4

2
[−5, 5]

2

𝑓
17
(𝑥) = (𝑥

2
−

5.1

4𝜋2
𝑥
2

1
+

5

𝜋
𝑥
1
− 6)

2

+ 10 (1 −
1

8𝜋
) cos𝑥

1
+ 10 [−5, 0] [0, 15]

𝑓
18
(𝑥) = [1 + (𝑥

1
+ 𝑥
2
+ 1)
2
(19 − 14𝑥

1
+ 3𝑥
2

1
− 14𝑥

2
+ 6𝑥
1
𝑥
2
+ 3𝑥
2

2
)]

× [30 + (2𝑥
1
− 3𝑥
2
)
2
× (18 − 32𝑥

1
+ 12𝑥

2

1
+ 48𝑥

2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2
)]

[−5, 5]
2

𝑓
19
(𝑥) = −

4

∑

𝑖=1

𝑐
𝑖
exp(−

3

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2
) [0, 1]

3

𝑓
20
(𝑥) = −

4

∑

𝑖=1

𝑐
𝑖
exp(−

6

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2
) [0, 1]

6

𝑓
21
(𝑥) = −

5

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]
−1

[0, 10]
4

𝑓
22
(𝑥) = −

7

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]
−1

[0, 10]
4

𝑓
22
(𝑥) = −

10

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]
−1

[0, 10]
4

(3) hybrid simulated annealing method developed by
Hedar and Fukushima (DSSA) [20].

All the control parameters, for example, mutation rate of the
EP, inertia weight of the NM-PSO, temperature of DSSA, and
so forth, were set to be default as recommended in original
articles. In addition, the maximum number of function

evaluations for the standard test functions was set to be
150 000. The maximum number of evaluations for the CEC
benchmark functions was set to be 300 000.

4.3. Comparison of Algorithm Performance. The results of the
performance evaluation, as achieved by the four algorithms
for the four types of functions, unimodal, multimodal high
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Table 4: Minimization result of benchmark functions in Table 1 with 𝑛 = 30.

Function CSM-CFO NM-PSO EP DSSA
Mean Std. Mean Std. Mean Std.

𝑓
1

1.53 × 10−8 1.94 × 10−8 1.16 × 10−8 3.17 1.66 3.69 × 10−37 2.45 × 10−36

𝑓
2

2.9 × 10−4 3.70 × 10−5 8.61 × 10−5 0.57 0.13 2.91 × 10−24 1.13 × 10−23

𝑓
3

5.5 × 10−10 5.78 3.68 9749.91 2594.95 1.19 × 10−3 2.11 × 10−3

𝑓
4

0 0.10 3.99 7.96 1.50 0.41 0.25
𝑓
5

35.28 49.83 30.17 338.56 361.49 37.35 32.14
𝑓
6

8.4 × 10−2 1.60 × 10−2 1.30 × 10−1 3.69 1.95 1.4 × 10−1 4.1 × 10−1

𝑓
7

7.3 × 10−4 7.37 × 10−2 9.25 × 10−2 0.10 3.62 9.90 × 10−3 3.53 × 10−2

Table 5: Minimization result of benchmark functions in Table 2 with 𝑛 = 30.

Function CSM-CFO NM-PSO EP DSSA
Mean Std. Mean Std. Mean Std.

𝑓
8

−12569.48 −12569.48 2.21 × 10−2 −12566.09 2.10 −9659.69 463.78
𝑓
9

1.21 × 10−1 1.01 0.95 0.65 0.35 20.78 5.94
𝑓
10

−2.06e − 5 2.65 × 10−5 3.08 × 10−5 0.86 0.28 1.34 × 10−3 4.23 × 10−2

𝑓
11

6.1𝑒 − 2 3.07 × 10−2 3.08 × 10−2 1.00 6.75 × 10−2 0.23 0.44
𝑓
12

−2.36 × 10−3 2.74 × 10−11 9.16 × 10−11 4.35 × 10−2 5.05 × 10−2 3.95 × 10−2 9.14 × 10−2

𝑓
13

4.18 × 10−5 4.69 × 10−5 7.00 × 10−4 0.16 7.06 × 10−2 5.05 × 10−2 0.56

dimensional, multimodal functions with fixed-dimensional,
and CEC benchmark functions, are shown.

4.3.1. Unimodal Functions. Functions 𝑓
1
to 𝑓
7
are unimodal

functions for which the focus is on the convergence rate
because current optimization algorithms are already able to
present global optima that are close to the actual optima.
However, unimodal functions have been adopted to assess
the convergence rate of evolutionary algorithms. Therefore,
the aim is to obtain the best global minimum in the least
number of required iterations. We tested the CSM-CFO on a
set of unimodal functions in comparison with the other three
algorithms. Table 4 lists the mean and standard deviations of
the function values in the last iteration. As Table 4 illustrates,
CSM-CFO generated significantly better results than EP on
all the unimodal functions. From comparisons of CSM-
CFO, NM-PSO, and DSSA, we can see that CSM-CFO had
significantly better performance on functions 3, 4, 5, and 7.
In summary, the search performance of the four algorithms
tested can be ordered as CSM-CFO >NM-PSO >DSSA > EP.

4.3.2. Multimodal Functions. This set of benchmark func-
tions have more than one local optimum but can either have
a single or more than one global optimum. For multimodal
functions, the final results are more important since they
reflect the ability of the algorithm in escaping from poor
local optima and locating a near-global optimum. We have
carried out experiments on 𝑓

8
to 𝑓
13

where the number of
local minima increases exponentially as the dimension of the
function increases. The dimension of these functions is set to
30. The results of NM-PSO, EP, and DSSA are averaged over
30 runs and mean, standard deviations of the function values
are reported for these functions in Table 5.

From Table 5, it is clear to see that for four of the
tested benchmark functions, CSM-CFO outperformed other
algorithms. For functions 8, 9, 10, and 13 especially, CSM-
CFO provides much better solution than other algorithms.
However, for functions 𝑓

11
and 𝑓

12
, CSM-CFO cannot tune

itself and has not a good performance. NM-PSO outper-
formed CSM-CFO statistically.This is also in accord with “no
free lunch” theorem. It can be concluded fromTable 5 that the
order of the search performance of these four algorithms is
CSM-CFO > NM-PSO > DSSA > EP.

4.3.3. Functions in Fixed Dimension. This set of benchmark
functions 𝑓

14
–𝑓
23

has fixed dimensions and has only a few
local minima. Compared to the multimodal functions with
many local minima (𝑓

8
–𝑓
13
), this set of functions is not

challenging: some of them can even be solved efficiently by
deterministic algorithms.

From Table 6, we can see that, in comparison to EP, NM-
PSO and DSSA achieved better results on all benchmark
functions. In comparison with NM-PSO, it can be seen that
CSM-CFO has a better performance onmost of the functions
except the function 21 where NM-PSO generated better aver-
age results than CSM-CFO. Table 6 shows the comparison
between CSM-CFO, CFO, and PSO on multimodal fixed-
dimensional test functions of Table 3. The results show that
CSM-CFO, CFO, and PSO have similar solutions and the
performances are almost the same. It indicates that there is
no big difference between CSM-CFO and other algorithms
when dimension of test functions is lower. From Table 6 we
can see that the order of the search performance of these four
algorithms is CSM-CFO ≈ NM-PSO > DSSA > EP.

4.3.4. CEC Benchmark Functions. For the sake of testing the
performance of the proposed algorithm and illustrating our
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Table 6: Minimization result of benchmark functions in Table 3.

Function CSM-CFO NM-PSO EP DSSA
Mean Std. Mean Std. Mean Std.

𝑓
14

0.99 0.99 0 0.99 0 1.02 0.14

𝑓
15

3.0 × 10−4 3.77 × 10
−4

2.59 × 10
−4

7.08 × 10
−3

7.85 × 10
−3

3.80 × 10
−4

2.50 × 10
−4

𝑓
16

−1.03 −1.03 0 −1.02 3.13 × 10
−4

−1.01 1.27 × 10
−2

𝑓
17

0.39 0.39 0 0.40 1.03 × 10
−2

0.40 6.88 × 10
−2

𝑓
18

3.00 3.0 0 7.50 10.39 3.00 1.21 × 10
−3

𝑓
19

−3.86 −3.86 3.84 × 10
−6

−3.86 6.28 × 10
−4

−3.85 6.10 × 10
−2

𝑓
20

−3.32 −3.26 5.96 × 10
−2

−3.26 6.03 × 10
−2

−3.18 6.10 × 10
−2

𝑓
21

−5.11 −6.09 3.45 −5.16 2.92 −7.54 3.03

𝑓
22

−1.07 × 10−1 −6.55 3.24 −5.16 2.92 −8.35 2.01

𝑓
23

−1.04 × 10−1 −7.40 3.21 −4.91 3.48 −8.94 1.63

Table 7: Minimization result of CEC benchmark functions.

Function CSM-CFO NM-PSO EP DSSA
Mean Std. Mean Std. Mean Std.

f CEC1 0 0 0 7.90 5.71 × 101 3.33 1.83 × 101

f CEC2 1.17 × 102 1.20 × 102 6.10 × 101 2.68 × 101 3.47 × 101 1.90 × 102 1.06 × 102

f CEC3 5.56 × 102 2.39 × 102 5.76 × 101 8.69 × 103 2.12 × 103 7.67 × 102 4.72 × 102

f CEC4 9.51 × 102 9.00 × 102 0 1.07 × 103 7.8 × 101 9.18 × 102 5.53
f CEC5 1.29 × 101 1.32 × 101 2.76 5.05 × 101 1.99 × 101 3.18 × 101 3.08 × 101

arguments about searching on high-dimensional problems,
we choose five recently developed novel composition func-
tions, CEC benchmark functions. CEC will provide a set
of test functions for competition every year. For example,
CEC2013 LSGO benchmark suite is currently the latest
proposed benchmark in the field of large-scale optimization.
The topic of CEC2005 is single objective global optimization,
and a set of benchmark functions is published. We chose
CEC1–CEC5 as test functions to test these four algorithms.
Details of constructions and properties of the composition
functions can be found in [19].

The results of CSM-CFO are compared with the perfor-
mance of the other three algorithms which are presented
in Table 7, where the mean and standard deviation from 30
independent runs are listed except for CSM-CFO. On CEC1
to CEC5, CSM-CFO achieves better results compared to
other algorithms. However, there is no significant difference
for CSM-CFO and NM-PSO. From Table 7 we can see that
the order of the search performance of these four algorithms
is NM-PSO > CSM-CFO > DSSA > EP.

5. Conclusion

In this paper, a hybrid CSM-CFO algorithm is presented
for locating the global optima of continuous unconstrained
optimization problems. New algorithm preserves the main
merits of central force optimization that the results will not
change when initial population is unchanged. Clustering
technique and good point set method are used to enhance the
robustness of simplexmethod.The substantial improvements

upon the effectiveness, efficiency, and accuracy are reported
to justify the claim that the hybrid approach presents an
excellent trade-off between exploitation in simplex method
and exploration in central force optimization.

In order to evaluate proposed algorithm, it is tested on
a set of standard benchmark problems. The results obtained
by CSM-CFO in most cases provide superior results and
in all cases are comparable with NM-PSO, EP, and DSSA.
The application of CSM-CFO in the large-scale optimization
problems and the improvement of the convergence speed
need to be studied further and will be our ongoing work in
the future.

Appendix

The 23 test functions we employed are given below. To define
the test functions, we have adopted the following general
format.

(Dimension): name of function

(a) function definition and search space;
(b) global optimum.

Test Functions

Function 1 (30-D): sphere:

(a) 𝑓
1
(𝑥) = ∑

𝑛

𝑖=1
𝑥
2

𝑖
, −100 ≤ 𝑥

𝑖
≤ 100;

(b) global optimum with 𝑓
1
= 0 at (0, 0, . . . , 0).
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Function 2 (30-D): Schwefel 2.22:

(a) 𝑓
2
(𝑥) = ∑

𝑛

𝑖=1
|𝑥
𝑖
| + ∏
𝑛

𝑖=1
|𝑥
𝑖
|, −10 ≤ 𝑥

𝑖
≤ 10;

(b) global optimum with 𝑓
2
= 0 at (0, 0, . . . , 0).

Function 3 (30-D): Schwefel 1.2:

(a) 𝑓
3
(𝑥) = ∑

𝑛

𝑖=1
(∑
𝑖

𝑗=1
𝑥
𝑗
)
2, −100 ≤ 𝑥

𝑖
≤ 100;

(b) global optimum with 𝑓
3
= 0 at (0, 0, . . . , 0).

Function 4 (30-D): Schwefel 2.21:

(a) 𝑓
4
(𝑥) = max

𝑖
{|𝑥
𝑖
|, 1 ≤ 𝑖 ≤ 𝑛}, −100 ≤ 𝑥

𝑖
≤ 100;

(b) global optimum with 𝑓
4
= 0 at (0, 0, . . . , 0).

Function 5 (30-D): Rosenbrock:

(a) 𝑓
5
(𝑥) = ∑

𝑛−1

𝑖=1
[100(𝑥

𝑖+1
−𝑥
2

𝑖
)
2
+ (𝑥
𝑖
− 1)
2
], −30 ≤

𝑥
𝑖
≤ 30;

(b) global optimum with 𝑓
5
= 0 at (1, 1, . . . , 1).

Function 6 (30-D): step function:

(a) 𝑓
6
(𝑥) = ∑

𝑛

𝑖=1
([𝑥
𝑖
− 1])
2, −100 ≤ 𝑥

𝑖
≤ 100;

(b) global optimum with 𝑓
6
= 0 at (0, 0, . . . , 0).

Function 7 (30-D): quartic function:

(a) 𝑓
7
(𝑥) = ∑

𝑛

𝑖=1
𝑖𝑥
4

𝑖
+ random[0, 1), −1.28 ≤ 𝑥

𝑖
≤

1.28;
(b) global optimum with 𝑓

7
= 0 at (0, 0, . . . , 0).

Function 8 (30-D): Schwefel 2.26:

(a) 𝑓
8
(𝑥) = ∑

𝑛

𝑖=1
−𝑥
𝑖
sin(√|𝑥

𝑖
|), −500 ≤ 𝑥

𝑖
≤ 500;

(b) global optimum with 𝑓
8

= −12569.5 at
(420.9687, 420.9687, . . . , 420.9687).

Function 9 (30-D): Rastrigin:

(a) 𝑓
9
(𝑥) = ∑

𝑛

𝑖=1
[𝑥
2

𝑖
− 10 cos(2𝜋𝑥

𝑖
) + 10], −5.12 ≤

𝑥
𝑖
≤ 5.12;

(b) global optimum with 𝑓
9
= 0 at (0, 0, . . . , 0).

Function 10 (30-D): Ackley:

(a) 𝑓
10
(𝑥) = −20 exp(−0.2√(1/𝑛)∑

𝑛

𝑖=1
𝑥
2

𝑖
) −

exp(∑𝑛
𝑖=1

cos(2𝜋𝑥
𝑖
)) + 20 + 𝑒, −32 ≤ 𝑥

𝑖
≤ 32;

(b) global optimum with 𝑓
10

= 0 at (0, 0, . . . , 0).

Function 11 (30-D): Griewank:

(a) 𝑓
11
(𝑥) = (1/4000)∑

𝑛

𝑖=1
𝑥
2

𝑖
−∏
𝑛

𝑖=1
cos(𝑥
𝑖
/√𝑖)+1,

−600 ≤ 𝑥
𝑖
≤ 600;

(b) global optimum with 𝑓
11

= 0 at (0, 0, . . . , 0).

Table 8: Coefficients of function 𝑓
19
.

𝑖 𝑎
𝑖𝑗
, 𝑗 = 1, 2, 3 𝑐

𝑖
𝑝
𝑖𝑗
, 𝑗 = 1, 2, 3

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4669 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.038150 0.5743 0.8828

Function 12 (30-D): generalized penalized function:

(a) 𝑓
12
(𝑥) = (𝜋/𝑛){10 sin(𝜋𝑦

1
) + ∑
𝑛−1

𝑖=1
(𝑦
𝑖
− 1)
2
[1 +

10sin2(𝜋𝑦
𝑖+1

)]+(𝑦
𝑛
−1)
2
}+∑
𝑛

𝑖=1
𝑢(𝑥
𝑖
, 10, 100, 4),

−50 ≤ 𝑥
𝑖
≤ 50;

(b) global optimum with 𝑓
12

= 0 at (1, 1, . . . , 1).

Function 13 (30-D): generalized penalized function:

(a) 𝑓
13
(𝑥) = 0.1{sin2(3𝜋𝑥

1
) + ∑

𝑛

𝑖=1
(𝑥
𝑖
− 1)
2
[1 +

sin2(3𝜋𝑥
𝑖
+ 1)] + (𝑥

𝑛
− 1)
2
[1 + sin2(2𝜋𝑥

𝑛
)]} +

∑
𝑛

𝑖=1
𝑢(𝑥
𝑖
, 5, 100, 4), −50 ≤ 𝑥

𝑖
≤ 50, where 𝑦

𝑖
=

1 + (𝑥
𝑖
+ 1)/4:

𝑢 (𝑥
𝑖
, 𝑎, 𝑘, 𝑚) =

{{

{{

{

𝑘(𝑥
𝑖
− 𝑎)
𝑚
, 𝑥

𝑖
> 𝑎

0, −𝑎 < 𝑥
𝑖
< 𝑎

𝑘(−𝑥
𝑖
− 𝑎)
𝑚
, 𝑥
𝑖
< −𝑎;

(A.1)

(b) global optimum with 𝑓
13

= 0 at (1, 1, . . . , 1).

Function 14 (2-D): Shekel’s foxholes:

(a) 𝑓
14
(𝑥) = ((1/500)+∑

25

𝑗=1
(𝑗+∑
2

𝑖=1
(𝑥
𝑖
−𝑎
𝑖𝑗
)
6
)
−1
)
−1,

−65.536 ≤ 𝑥
𝑖
≤ 65.536, where

(𝑎
𝑖𝑗
) = (

−32 −16 0 16 32 −32 ⋅ ⋅ ⋅ 0 16 32

−32 −32 −32 −32 −32 −16 ⋅ ⋅ ⋅ 32 32 32
) ;

(A.2)

(b) global optimum with 𝑓
14

≈ 1 at (−32, −32).

Function 15 (4-D): Kowalik:

(a) 𝑓
15
(𝑥) = ∑

11

𝑖=1
{𝑎
𝑖
− [𝑥
1
(𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
2
)][𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
3
+

𝑥
4
]
−1
}
2, −5 ≤ 𝑥

𝑖
≤ 5;

(b) global optimum with 𝑓
15

≈ 0.0003075 at
(0.1928, 0.1908, 0.1231, 0.1358).

Function 16 (30-D): six-hump camel:

(a) 𝑓
16
(𝑥) = 4𝑥

2

1
−2.1𝑥

4

1
+(1/3)𝑥

6

1
+𝑥
1
𝑥
2
−4𝑥
2

2
+4𝑥
4

2
,

−5 ≤ 𝑥
𝑖
≤ 5;

(b) global optimum with 𝑓
16

≈ −1.0316285 at
(−0.08983, 0.71261) and (0.08983, −0.71261).

Function 17 (30-D): Branin:

(a) 𝑓
17
(𝑥) = (𝑥

2
−(5.1/4𝜋

2
)𝑥
2

1
+(5/𝜋)𝑥

1
−6)
2
+10(1−

1/8𝜋) cos𝑥
1
+ 10, −5 ≤ 𝑥

1
≤ 10, 0 ≤ 𝑥

2
≤ 15;
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Table 9: Coefficients of function 𝑓
20
.

𝑖 𝑎
𝑖𝑗
, 𝑗 = 1, 2, 3, 4, 5, 6 𝑐

𝑖
𝑝
𝑖𝑗
, 𝑗 = 1, 2, 3, 4, 5, 6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table 10: Coefficients of functions 𝑓
21
, 𝑓
22
, and 𝑓

23
.

𝑖 𝑎
𝑖𝑗
, 𝑗 = 1, 2, 3, 4 𝑐

𝑖

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

(b) global optimum with 𝑓
17

≈ 0.398 at
(−3.142, 12.275) and (9.425, 2.425).

Function 18 (2-D): Goldstein-Price:

(a) 𝑓
18
(𝑥) = [1+(𝑥

1
+𝑥
2
+1)
2
(19−14𝑥

1
+3𝑥
2

1
−14𝑥
2
+

6𝑥
1
𝑥
2
+ 3𝑥
2

2
)][30 + (2𝑥

1
− 3𝑥
2
)
2
× (18 − 32𝑥

1
+

12𝑥
2

1
+ 48𝑥

2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2
)], −2 ≤ 𝑥

𝑖
≤ 2;

(b) global optimum with 𝑓
18

= 3 at (0, −1).

Function 19 (3-D) and function 20 (6-D): Hartman’s
family:

(a) 𝑓
19
(𝑥) = −∑

4

𝑖=1
𝑐
𝑖
exp(−∑

𝑚

𝑗=1
𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2
), 0 ≤

𝑥
𝑗
≤ 1, with 𝑚 = 3, 6 for 𝑓

19
(𝑥) and 𝑓

20
(𝑥);

the coefficients are defined by Tables 8 and 9,
respectively;

(b) global optimum with 𝑓
19

= −3.86 at (0.114,
0.556, 0.852); global optimum with 𝑓

20
= −3.32

at (0.201, 0.150, 0.477, 0.275, 0.311, 0.657).

Function 21 (3-D), function 22 (3-D), and function 23
(6-D): Shekel’s family:

(a) 𝑓
21
(𝑥) = −∑

𝑚

𝑖=1
[(𝑥−𝑎

𝑖
)(𝑥−𝑎

𝑖
)
𝑇
+𝑐
𝑖
]
−1, 0 ≤ 𝑥

𝑗
≤

10, with 𝑚 = 5, 7 and 10 for 𝑓
21
(𝑥), 𝑓

22
(𝑥), and

𝑓
23
(𝑥), respectively;

(b) these functions have five, seven, and ten local
minima for 𝑓

21
(𝑥), 𝑓

22
(𝑥), and 𝑓

23
(𝑥), respec-

tively; 𝑥local opt ≈ 𝑎
𝑖
, 𝑓(𝑥local opt) ≈ 1/𝑐

𝑖
for

1 ≤ 𝑖 ≤ 𝑚; the coefficients are defined in
Table 10.
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