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We present an approximate nonsmooth algorithm to solve a minimization problem, in which the objective function is the sum
of a maximum eigenvalue function of matrices and a convex function. The essential idea to solve the optimization problem in
this paper is similar to the thought of proximal bundle method, but the difference is that we choose approximate subgradient and
function value to construct approximate cutting-plane model to solve the above mentioned problem. An important advantage of
the approximate cutting-plane model for objective function is that it is more stable than cutting-plane model. In addition, the
approximate proximal bundle method algorithm can be given. Furthermore, the sequences generated by the algorithm converge to
the optimal solution of the original problem.

1. Introduction

Bundle method is one of the efficient and promisingmethods
for solving nonsmooth optimization problems. For example,
a class ofmaximum eigenvalue function can beminimized by
bundle method [1], bundle-filter method can be used to deal
with nonsmooth convex constrained optimization problem
[2], and penalized bundlemethodwas proposed to solve non-
smooth optimization problem by Bonnans et al. [3]. Recently,
a minimization problem for a class of constrained maximum
eigenvalue function has been solved in [4] with the help of
penalized bundle method. However, when constructing the
cutting-plane model for the objective function, the formula
𝜕𝐹(𝑦) = 𝛽

∗

𝜕𝜆max(𝐴(𝑦))+𝜕𝑔(𝑦) shows that the subdifferential
of 𝜆max(𝐴(𝑦)) is involved in [4]. Note that 𝜕𝜆max(𝐴(𝑦)) is the
face of 𝐶

𝑛
exposed by 𝐴(𝑦), where 𝐶

𝑛
:= {𝑉 ∈ 𝑆

𝑛
:𝑉 ⪰

0, tr𝑉 = 1}. So 𝜕𝜆max(𝐴(𝑦)) changes drastically when the
multiplicity of the 𝜆max(𝐴(𝑦)) is changed [5]. Thus 𝜕𝐹(𝑦)

is unstable and it leads to the instability of cutting-plane
model in [4]. In this paper, to avoid this drawback, we try to
give a more stable approximate cutting-plane model for the
objective function.

In view of a class of nonsmooth optimization problem of
the form

min
𝑦∈𝑅
𝑛

𝑓 (𝑦) + 𝑔 (𝑦) , (P)

where𝑓(𝑦) := (𝜆max ∘𝐴)(𝑦) is the composite function of 𝜆max
and an affine mapping 𝐴, specifically

𝑅
𝑛

∋ 𝑦 󳨃󳨀→ 𝐴 (𝑦) := 𝐴
0
+ 𝛽𝑦 (1)

is affine,𝐴
0
∈ 𝑆
𝑛 and𝛽 is a linear operator from𝑅

𝑛 to 𝑆
𝑛; 𝑔(𝑦)

is a nonsmooth convex function. We modify the elements
in bundle and give an approximate proximal bundle method
algorithm for (P). Our algorithm is established on the basic
assumption that at least one approximate function value and
one approximate subgradient at each point are available. And
suppose ri dom𝑓(𝑦) ∩ ri dom𝑔(𝑦) ̸= 0.

The initial motivation for our present work lies in the
following facts. The whole idea of so-called bundle methods
can be concentrated on constructing a good approximation
for the objective function. Reference [4] has solved this class
of optimization problemwith the help of cutting-planemodel
and penalized bundle method. However, the cutting-plane
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model in [4] is unstable. Our motivation is to construct a
more stable approximate model for the objective function.
We try to use the approximate subdifferential of the objective
function 𝐹(𝑦) := 𝑓(𝑦) + 𝑔(𝑦) = (𝜆max ∘ 𝐴)(𝑦) + 𝑔(𝑦). Note
that in the equation 𝜕

𝜀
𝐹(𝑦) = 𝛽

∗

𝜕
𝜀
𝜆max(𝐴(𝑦)) + 𝜕

𝜀
𝑔(𝑦),

obviously, 𝜕
𝜀
𝜆max(𝐴(𝑦)) is involved. And 𝜕

𝜀
𝜆max(𝐴(𝑦)) is no

longer a face of 𝐶
𝑛
; it is the intersection of 𝐶

𝑛
with the half-

space {𝑉 ∈ 𝑆
𝑛
:𝑉 ⋅ 𝐴(𝑦) ≥ 𝜆max(𝐴(𝑦)) − 𝜀}. In particular,

almost all matrices in 𝜕
𝜀
𝜆max(𝐴(𝑦)) have rank 𝑛 (for 𝜀 > 0),

whereas the rank of matrices in 𝜕𝜆max(𝐴(𝑦)) is at most the
multiplicity 𝑟, which is 1 for almost all𝐴(𝑦) (so 𝜕

𝜀
𝜆max(𝐴(𝑦))

is relative stable); this also gives an idea of the big gap existing
between these two convex sets. Therefore we decide to
introduce an enlarged subdifferential [6] of𝜆max(𝐴(𝑦))which
can be regarded as an outer approximation of 𝜕𝜆max(𝐴(𝑦))

and an inner approximation of 𝜕
𝜀
𝜆max(𝐴(𝑦)). Through the

enlarged subdifferential of 𝜆max(𝐴(𝑦)), we can easily get an
enlarged subdifferential of the objective function 𝐹(𝑦). Using
the approximate subgradient in the enlarged subdifferential
to construct the approximate cutting-plane model for the
objective function, there are two advantages: on one hand it
can avoid the instability of the cutting-plane model which is
constructed in [4], on the other hand it can avoid too much
elements in 𝜕

𝜀
𝜆max(𝐴(𝑦)). After constructing a more stable

approximate cutting-plane model, we propose our algorithm
and prove the convergence of the algorithm.

The rest of this paper is organized as follows. Section 2
mainly contains the approximate cutting-plane model of the
objective function. Here we firstly introduce an enlarged
subdifferential which is an outer approximation of 𝜕𝐹(𝑦),
simultaneously, it is an inner approximation of 𝜕

𝜀
𝐹(𝑦). And

then, using the approximate subgradient in the enlarged sub-
differential to complete the constructing of an approximate
cutting-plane model for the objective function. Section 3
gives the algorithmwith respect to the approximate proximal
bundle method and also provides a corresponding compres-
sionmechanism. Section 4 is devoted to convergence analysis
of the algorithm mentioned in Section 3. Section 5 gives the
conclusions.

In the paper, the standard norm and inner product are all
in Hilbert space and are denoted by ‖ ⋅ ‖ and ⟨⋅, ⋅⟩.

2. The Approximate Model of
the Objective Function

In this section, we will mainly give the approximatemodel for
the objective function. It is known that [4] has given a kind
of approximate model for the objective function 𝐹(𝑦):

𝐹
𝑘
(𝑦)

= max
𝑖=1,2,...,𝑘

{𝐹 (𝑥
𝑖

) + ⟨𝛽
∗

𝑄(𝐴 (𝑥
𝑖

))𝑍𝑄(𝐴 (𝑥
𝑖

))
𝑇

+ 𝑠
𝑖

,

𝑦 − 𝑥
𝑖

⟩} ,

(2)

where 𝑄(𝐴(𝑥
𝑖

))𝑍𝑄(𝐴(𝑥
𝑖

))
𝑇

∈ 𝜕𝜆max(𝐴(𝑥
𝑖

)) and 𝑠
𝑖

∈ 𝜕𝑔(𝑥
𝑖

).

It is known that 𝜕𝜆max(𝐴(𝑦)) is the face of 𝐶
𝑛
exposed

by 𝐴(𝑦), where 𝐶
𝑛

:= {𝑉 ∈ 𝑆
𝑛
:𝑉 ⪰ 0, tr𝑉 = 1}. If the

multiplicity of 𝜆max(𝐴(𝑦)) is changed, the subdifferential of
𝜆max(𝐴(𝑦)) changes drastically. So it leads that the subdif-
ferential of function 𝐹(𝑦) is unstable. Thus this causes the
instability of𝐹

𝑘
(𝑦). In order to construct a stable approximate

model, we take the approximate subdifferential of function
𝐹(𝑦) into account. Firstly, we consider the approximate
subdifferential of 𝜆max(𝐴(𝑦)).

Definition 1. For all 𝑦 ∈ 𝑅
𝑛, 𝜀 ≥ 0 and 𝐴: 𝑅𝑛 → 𝑆

𝑛 is an
affine mapping. One defines the following:

(1) the set of indices of 𝜀-largest eigenvalues:

𝐼
𝜀
(𝐴 (𝑦))

:= {𝑖 ∈ 1, 2, . . . , 𝑛 : 𝜆
𝑖
(𝐴 (𝑦)) > 𝜆max (𝐴 (𝑦)) − 𝜀} ;

(3)

(2) the 𝜀-multiplicity of 𝜆max(𝐴(𝑦)):

𝑟
𝜀
:= max {𝑖 : 𝑖 ∈ 𝐼

𝜀
(𝐴 (𝑦))} ; (4)

(3) the 𝜀-first eigenspace:

𝐸
𝜀
(𝐴 (𝑦)) := ⨁

𝑖∈𝐼
𝜀
(𝐴(𝑦))

𝐸
𝑖
(𝐴 (𝑦)) , (5)

where 𝐸
𝑖
(𝐴(𝑦)) is the eigenspace of 𝐴(𝑦) associated with the

its eigenspace 𝜆
𝑖
(𝐴(𝑦)).

For the composite maximum eigenvalue function, its
approximate subdifferential is

𝜕
𝜀
𝜆max (𝐴 (𝑦)) = {𝑉 ∈ 𝐶

𝑛
:𝑉 ⋅ 𝐴 (𝑦) ≥ 𝜆max (𝐴 (𝑦)) − 𝜀} ,

(6)

where 𝐶
𝑛

= {𝑉 ∈ 𝑆
𝑛:𝑉 ⪰ 0, tr𝑉 = 1}. From this one

sees that 𝜕
𝜀
𝜆max(𝐴(𝑦)) is the intersection of 𝐶

𝑛
with the

half-space {𝑉 ∈ 𝑆
𝑛:𝑉 ⋅ 𝐴(𝑦) ≥ 𝜆max(𝐴(𝑦)) − 𝜀}, instead

of being a face of 𝐶
𝑛
. In particular, almost all matrices in

𝜕
𝜀
𝜆max(𝐴(𝑦)) have rank 𝑛 (for 𝜀 > 0), whereas the rank of

matrices in 𝜕𝜆max(𝐴(𝑦)) are at most the multiplicity 𝑟, which
is 1 for almost all 𝐴(𝑦); this gives ideas that 𝜕

𝜀
𝜆max(𝐴(𝑦)) is

more stable than 𝜕𝜆max(𝐴(𝑦)) and there is a big gap existing
between these two convex sets.

Introduce a compact convex set

𝜎
𝜀
𝜆max (𝐴 (𝑦)) = {𝑄

𝜀
(𝐴 (𝑦)) 𝑍𝑄

𝜀
(𝐴 (𝑦))

𝑇:𝑍 ∈ 𝐶
𝑟
𝜀

} , (7)

where 𝑄
𝜀
(𝐴(𝑦)) is a 𝑛 × 𝑟

𝜀
matrice whose columns form

orthonormal basis of 𝐸
𝜀
(𝐴(𝑦)).

Proposition 2. Let 𝐴:𝑅𝑛 → 𝑆
𝑛 be an affine mapping, then

for all 𝑦 ∈ 𝑅
𝑛 and 𝜀 ≥ 0 one has

𝜕𝜆max (𝐴 (𝑦)) ⊂ 𝜎
𝜀
𝜆max (𝐴 (𝑦)) ⊂ 𝜕

𝜀
𝜆max (𝐴 (𝑦)) . (8)

Proof. The left inclusion can be derived from simple chain
rules and (7). To see another inclusion, take 𝑃 ∈

𝜎
𝜀
𝜆max(𝐴(𝑦)). Then

𝑃 = 𝑄
𝜀
(𝐴 (𝑦)) 𝑍𝑄

𝜀
(𝐴 (𝑦))

𝑇 with 𝑍 ∈ 𝐶
𝑟
𝜀

. (9)
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Since

𝑄
𝜀
(𝐴 (𝑦))

𝑇

𝑇𝑄
𝜀
(𝐴 (𝑦))

= diag (𝜆max (𝐴 (𝑦)) , . . . , 𝜆
𝑟
𝜀

(𝐴 (𝑦))) ⪰ 𝜆
𝑟
𝜀

𝐼
𝑟
𝜀

(10)

and tr𝑍 = 1. Thus it follows that

⟨𝑃, 𝐴 (𝑦)⟩ = ⟨𝑍,𝑄
𝜀
(𝐴 (𝑦))

𝑇

𝑇𝑄
𝜀
(𝐴 (𝑦))⟩ ≥ 𝜆

𝑟
𝜀

. (11)

Together with (3), we have ⟨𝑃, 𝐴(𝑦)⟩ ≥ 𝜆max(𝐴(𝑦)) − 𝜀; for
𝑃 ∈ 𝐶

𝑛
this means that, according to (6), 𝑃 ∈ 𝜕

𝜀
𝜆max(𝐴(𝑦)).

Accordingly, the proof of right inclusion is completed.

Note that the compact convex set 𝜎
𝜀
𝜆max(𝐴(𝑦)) can be

regarded as an outer approximation of 𝜕𝜆max(𝐴(𝑦)) and an
inner approximation of 𝜕

𝜀
𝜆max(𝐴(𝑦)).This set will avoid both

the weakness of 𝜕𝜆max(𝐴(𝑦)) (unstable) and the drawback
of 𝜕
𝜀
𝜆max(𝐴(𝑦)) (too much elements). Applying the linear

mapping 𝛽
∗ in (8). Then

𝛽
∗

𝜕𝜆max (𝐴 (𝑦)) ⊂ 𝛽
∗

𝜎
𝜀
𝜆max (𝐴 (𝑦)) ⊂ 𝛽

∗

𝜕
𝜀
𝜆max (𝐴 (𝑦)) .

(12)

Set 𝜎
𝜀
𝑓(𝑦) := 𝛽

∗

𝜎
𝜀
𝜆max(𝐴(𝑦)). Then we obtain

𝜕𝜆max ∘ 𝐴 (𝑦) ⊂ 𝜎
𝜀
𝜆max ∘ 𝐴 (𝑦) ⊂ 𝜕

𝜀
𝜆max ∘ 𝐴 (𝑦) . (13)

This formula is equivalent to

𝜕𝑓 (𝑦) ⊂ 𝜎
𝜀
𝑓 (𝑦) ⊂ 𝜕

𝜀
𝑓 (𝑦) . (14)

Add 𝜕𝑔(𝑦) simultaneously, since ri dom𝑓(𝑦) ∩ ri dom𝑔(𝑦) ̸=

0, we have

𝜕𝐹 (𝑦) = 𝜕𝑓 (𝑦) + 𝜕𝑔 (𝑦) ⊂ 𝜎
𝜀
𝑓 (𝑦)

+ 𝜕𝑔 (𝑦) ⊂ 𝜕
𝜀
𝑓 (𝑦) + 𝜕

𝜀
𝑔 (𝑦) = 𝜕

𝜀
𝐹 (𝑦) .

(15)

Set 𝜎
𝜀
𝐹(𝑦) := 𝜎

𝜀
𝑓(𝑦) + 𝜕𝑔(𝑦). Thus 𝜕𝐹(𝑦) ⊂ 𝜎

𝜀
𝐹(𝑦) ⊂

𝜕
𝜀
𝐹(𝑦). Finally, 𝜎

𝜀
𝐹(𝑦) is the enlarged subdifferential of

the objective function 𝐹(𝑦) and it can be regarded as an
outer approximation of 𝜕𝐹(𝑦) and an inner approximation
of 𝜕
𝜀
𝐹(𝑦). The following work will base on the enlarged

subdifferential 𝜎
𝜀
𝐹(𝑦).

Choose 𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇

∈ 𝜎
𝜀
𝑓(𝑥
𝑖

) and 𝑠
𝑖

∈

𝜕𝑔(𝑥
𝑖

), then

𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

∈ 𝜎
𝜀
𝐹 (𝑥
𝑖

) ⊂ 𝜕
𝜀
𝐹 (𝑥
𝑖

) .

(16)

Next at each point 𝑥𝑖 compute an approximate function value
𝐹
𝜀
(𝑥
𝑖

) satisfying

𝐹 (𝑥
𝑖

) − 𝜀 ≤ 𝐹
𝜀
(𝑥
𝑖

) ≤ 𝐹 (𝑥
𝑖

) . (17)

Thus, using these approximate information of 𝐹(𝑦), the
approximate model 𝐹

𝑘
(𝑦) becomes

𝐹
𝑘
(𝑦)

= max
𝑖=1,...,𝑘

{𝐹
𝜀
(𝑥
𝑖

) + ⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+𝑠
𝑖

, 𝑦 − 𝑥
𝑖

⟩} .

(18)

Let the aggregate linearzation error at 𝑥𝑘 be denoted by 𝑒
𝑖:

𝑒
𝑖

:= 𝐹 (𝑥
𝑘

) − 𝐹
𝜀
(𝑥
𝑖

)

− ⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

, 𝑥
𝑘

− 𝑥
𝑖

⟩ .

(19)

With the notation, we obtain the form of approximate model

𝐹
𝑘
(𝑦) = 𝐹 (𝑥

𝑘

)

+ max
𝑖=1,...,𝑘

{− 𝑒
𝑖

+⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

,

𝑦−𝑥
𝑘

⟩} ,

(20)

where 𝑍 ∈ 𝐶
𝑟
𝜀

.
Observe that 𝐹

𝑘
(𝑦) is a more stable approximate model

than 𝐹
𝑘
(𝑦). In the following part, based on the approximate

model 𝐹
𝑘
(𝑦), we will give the approximate proximal bundle

method algorithm.

3. The Approximate Proximal Bundle
Method Algorithm

Algorithm 3 (the approximate proximal bundle method).
Step 0. Let 𝜃 ≥ 0, 𝑚 ∈ (0, 1) be given parameters. Choose
𝑥
1, we can obtain an approximate function value 𝐹

𝜀
(𝑥
1

) and
approximate subgradient 𝛽

∗

𝑄
𝜀
(𝐴(𝑥
1

))𝑍𝑄
𝜀
(𝐴(𝑥
1

))
𝑇

+ 𝑠
1

∈

𝜎
𝜀
𝐹(𝑥
1

) ⊂ 𝜕
𝜀
𝐹(𝑥
1

). Then construct the approximate model
and set 𝑘 = 1, 𝛿

1
= ∞.

Step 1. If 𝛿
𝑘
≤ 𝜃, stop.

Step 2. Solve the quadratic program:

min
𝑦∈𝑅
𝑛

𝐹
𝑘
(𝑦) +

1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

. (P
1
)

Define 𝛿
𝑘+1

as the nominal decrease:

𝛿
𝑘+1

:= 𝐹 (𝑥
𝑘

) − 𝐹
𝑘
(𝑦
𝑘+1

) −
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

. (21)

Step 3. Call the black box again with 𝑦 = 𝑦
𝑘+1, if

𝐹 (𝑥
𝑘

) − 𝐹 (𝑦
𝑘+1

) ≥ 𝑚𝛿
𝑘+1

. (22)

Then set 𝑥𝑘+1 = 𝑦
𝑘+1, otherwise set 𝑥𝑘+1 = 𝑥

𝑘. Correspond-
ing, the former one is said to be descent step and the latter
one is called null step.

Step 4. Append 𝑦
𝑘+1 to the bundle model and construct 𝐹

𝑘+1
.

Change 𝑘 to 𝑘 + 1 and go to Step 1.

Remark 4. For a parameter 𝜂
𝑘
> 0, then the candidate point

𝑦
𝑘+1 can be obtained through solving the dual problem of

(P
1
).
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Theorem 5. If 𝑦𝑘+1 is the unique solution to (P
1
) and suppose

that 𝜂
𝑘

> 0, then 𝑦
𝑘+1 =𝑥

𝑘

− (1/𝜂
𝑘
) ∑
𝑛𝑝
𝑘

𝑖=1
𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))

×𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇 + 𝑠
𝑖

) and 𝛼 = (𝛼
1
, . . . , 𝛼

𝑛𝑝
𝑘

) is a solution to

min 1

2𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+𝑠
𝑖

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
𝑒
𝑖

s.t. 𝛼 ∈ Δ
𝑘
= {𝛼
𝑖
∈ [0, 1] ,

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
= 1, 𝑖 = 1, . . . , 𝑛𝑝

𝑘
} .

(𝐷
1
)

In addition, one can also have the following relations:

(i) ∑
𝑛𝑝
𝑘

𝑖=1
𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇

+ 𝑠
𝑖

) ∈ 𝜕
𝜀
𝐹
𝑘
(𝑦
𝑘+1

);

(ii) 𝛿
𝑘+1

= 𝜖
𝑘
+(1/2𝜂

𝑘
)‖∑
𝑛𝑝
𝑘

𝑖=1
𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇

+𝑠
𝑖

‖
2, where 𝜖

𝑘
= ∑
𝑛𝑝
𝑘

𝑖=1
𝛼
𝑖
𝑒
𝑖;

(iii) ∑
𝑛𝑝
𝑘

𝑖=1
𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇

+ 𝑠
𝑖

) ∈ 𝜕
𝜖
𝑘

𝐹(𝑥
𝑘

).

Proof. Turn (P
1
) into a quadratic programming problemwith

an extra scalar variable 𝑟:

min
(𝑦,𝑟)∈𝑅

𝑛
×𝑅
𝑟

𝑟 +
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

s.t. 𝐹 (𝑥
𝑘

) − 𝑒
𝑖

+ ⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

, 𝑦 − 𝑥
𝑘

⟩

≤ 𝑟, 𝑖 = 1, 2, . . . , 𝑛𝑝
𝑘
.

(P
2
)

The corresponding lagrangian is, for 𝛼 ∈ 𝑅
𝑛𝑝
𝑘

+
,

𝐿 (𝑦, 𝛼, 𝑟)

= 𝑟 +
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

+

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝐹 (𝑥

𝑘

) − 𝑒
𝑖

+ ⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

,

𝑦 − 𝑥
𝑘

⟩ −𝑟) .

(23)

By strong convexity, the dual problem of (P
1
) is equivalent to

problem (𝐷
1
).

And 𝑦
𝑘+1

= 𝑥
𝑘

−(1/𝜂
𝑘
) ∑
𝑛𝑝
𝑘

𝑖=1
𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇

+𝑠
𝑖

) is the solution to the quadratic programming problem
(P
1
), then (i) holds.
To see (ii) and (iii), note that since there is no duality gap,

the primal optimal value in (P
1
) equals the dual optimal value

in (𝐷
1
).Thus the term (ii) holds.The relation𝐹(𝑦) ≥ 𝐹

𝑘
(𝑦) ≥

𝐹
𝑘
(𝑦
𝑘+1

) implies that the term (iii) holds.

FromTheorem 5 we can ensure the candidate point 𝑦𝑘+1
which appears in Step 2 can be obtained.

Remark 6. As iterations conduct, the elements in the bundle
becomemore andmore.When the size of the bundle becomes
too big, it is necessary to compress bundle. So, at Step 4, one
should append the compression subalgorithm.

When the current size of the bundle is bigger than the
maximal size, that is, 𝑛𝑝

𝑘
≥ 𝑛𝑝max, Step 4 turns out to be as

follows:
Step 4󸀠. Let 𝑛act := {𝑖 ≤ 𝑛𝑝

𝑘
:𝛼
𝑖
≥ 0} be the active indices.

If 𝑛act ≤ 𝑛𝑝max − 1, then keep active couples and delete all
inactive couples from the bundle. Set 𝑛left = 𝑛act and define
𝑛𝑝
𝑘+1

= 𝑛left + 1. Then append new element

(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1)) 𝑍𝑄

𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1))
𝑇

+ 𝑠
𝑛𝑝
𝑘+1 , 𝑒
𝑛𝑝
𝑘+1) (24)

to the bundle and construct model 𝐹
𝑘+1

. Let 𝑘 = 𝑘 + 1, and
go to Step 1. Note that 𝑒𝑛𝑝𝑘+1 is in new element:

(i) when it is a descent step, 𝑒𝑛𝑝𝑘+1 = 0,

(ii) when it is a null step,

𝑒
𝑛𝑝
𝑘+1 = 𝐹 (𝑥

𝑘

) − 𝐹
𝜀
(𝑦
𝑘+1

)

− ⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1))

× 𝑍𝑄
𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1))
𝑇

+ 𝑠
𝑛𝑝
𝑘+1 , 𝑥
𝑘

− 𝑦
𝑘+1

⟩ .

(25)

If 𝑛act > 𝑛𝑝max − 1, then delete two or more couples of
elements. In addition, 𝑛left ≤ 𝑛𝑝max−2. Define 𝑛𝑝

𝑘+1
= 𝑛𝑝left+

2 and then append new element

(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1)) 𝑍𝑄

𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1))
𝑇

+ 𝑠
𝑛𝑝
𝑘+1 , 𝑒
𝑛𝑝
𝑘+1) (26)

to the bundle and construct model 𝐹
𝑘+1

. Let 𝑘 = 𝑘 + 1, and
go to Step 1. Note that 𝑒𝑛𝑝𝑘+1 is in new element:

(i) when it is a descent step, 𝑒𝑛𝑝𝑘+1 = 0,

(ii) when it is a null step,

𝑒
𝑛𝑝
𝑘+1 = 𝐹 (𝑥

𝑘

) − 𝐹
𝜀
(𝑦
𝑘+1

)

− ⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1)) 𝑍𝑄

𝜀
(𝐴 (𝑥
𝑛𝑝
𝑘+1))
𝑇

+𝑠
𝑛𝑝
𝑘+1 , 𝑥
𝑘

− 𝑦
𝑘+1

⟩ .

(27)

Remark 7. Under certain circumstance with 𝑛𝑝
𝑘

> 𝑛𝑝max,
if the remaining couples are still too many after discard-
ing all inactive couples from the bundle, one synthesizes
indispensable information of active elements in bundle.
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Simultaneously the corresponding affine function is called
aggregate linearization and is denoted by 𝐹

𝛼
(𝑦)

𝐹
𝛼
(𝑦) := 𝐹 (𝑥

𝑘

) − 𝜖
𝑘

+ ⟨

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

) ,

𝑦 − 𝑥
𝑘

⟩.

(28)

For the aggregate linearization 𝐹
𝛼
(𝑦), it holds that

𝐹
𝛼
(𝑦) = 𝐹

𝑘
(𝑦
𝑘+1

)

+ ⟨

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

) ,

𝑦 − 𝑦
𝑘+1

⟩;

𝐹
𝑘
(𝑦) ≥ 𝐹

𝛼
(𝑦) − 𝜀, ∀𝑦 ∈ 𝑅

𝑛

.

(29)

When the maximum capacity is reached, for instance, if 𝑘 =

𝑛𝑝max, then assume that one discards the elements 𝑥
1

, 𝑥
2

,

. . . , 𝑥
𝑡

(𝑡 < 𝑘) from the bundle and appends the aggregate
couple. The resulting model will be

𝐹
𝑘+1

(𝑦) = max{ max
𝑡+1≤𝑖≤𝑘+1

{𝐹
𝜀
(𝑥
𝑖

) + ⟨𝑚
𝑖

, 𝑦 − 𝑥
𝑖

⟩} , 𝐹
𝛼
(𝑦)} ,

(30)

where𝑚
𝑖

= 𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇

+ 𝑠
𝑖. Note that for all 𝑘

and 𝑦 ∈ 𝑅
𝑛, in any case, one can have

𝐹
𝛼
(𝑦) ≤ 𝐹

𝑘+1
(𝑦) ≤ 𝐹 (𝑦) ;

𝐹
𝑘+1

(𝑦) ≥ 𝐹 (𝑥
𝑘+1

)

+ ⟨𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑘+1

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑘+1

))
𝑇

+ 𝑠
𝑘+1

,

𝑦 − 𝑦
𝑘+1

⟩ .

(31)

4. Convergence Analysis

To show convergence of the algorithm, we have to refer the
stoping tolerance 𝜃. So we consider two situations, that is, 𝜃 >

0 and 𝜃 = 0.
Firstly, when the parameter 𝜃 > 0, use the notation 𝐾

𝑠

to denote the set of indices 𝑘 in which a new descent step is
done.

Theorem 8. Consider Algorithm 3 and use the notation 𝐹
∗ to

denote lim
𝑘∈𝐾
𝑠

𝐹(𝑥
𝑘

). Assume that the algorithm never stops
(𝑘 → ∞) as well as 𝐹∗ > −∞. Then

0 ≤ ∑

𝑘∈𝐾
𝑠

𝛿
𝑘
≤

𝐹 (𝑥
1

) − 𝐹
∗

𝑚
. (32)

Proof. Since 𝜃 > 0 and the algorithmnever stops, the nominal
decrease must satisfy 𝛿

𝑘
> 0 for all 𝑘 ∈ 𝐾

𝑠
. Note that 𝐾

𝑠
is a

descent index set, we have 𝑥𝑘+1 = 𝑦
𝑘+1 and 𝐹(𝑥

𝑘

) −𝐹(𝑥
𝑘+1

) =

𝐹(𝑥
𝑘

)−𝐹(𝑦
𝑘+1

). Let 𝑘󸀠 be the index following 𝑘 in𝐾
𝑠
. Between

𝑘 and 𝑘
󸀠 the algorithmmakes null steps only without moving

the stability center 𝑥
𝑘+1

= 𝑦
𝑘+𝑗 for all 𝑗 = 2, . . . , 𝑘

󸀠

− 𝑘. The
descent test at 𝑘󸀠 gives

𝐹 (𝑥
𝑘+1

) − 𝐹 (𝑥
𝑘
󸀠

+1

) ≥ 𝑚𝛿
𝑘
󸀠
+1
. (33)

Thus for all 𝑘󸀠󸀠 ∈ 𝐾
𝑠
, it holds that when we let 𝑘󸀠󸀠 → ∞,

𝑚

𝑘
󸀠󸀠

∑

𝑘∈𝐾
𝑠

≤

𝑘
󸀠󸀠

∑

𝑘∈𝐾
𝑠

𝐹 (𝑥
𝑘

) − 𝐹 (𝑥
𝑘+1

)

= 𝐹 (𝑥
1

) − 𝐹 (𝑥
𝑘
󸀠󸀠

+1

) = 𝐹 (𝑥
1

) − 𝐹
∗

.

(34)

Removing𝑚 to the right side of the inequation, we obtain the
desired result.

When 𝜃 is taken strictly positive, by Theorem 8, there
is an index 𝑘̃ for which 𝛿̃

𝑘
≤ 𝜃 if (P) has minimizers. By

Theorem 5(ii), both 𝜖
𝑘
and

1

𝜂
𝑘last

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

̃
𝑘

))𝑍𝑄
𝜀
(𝐴 (𝑥

̃
𝑘

))
𝑇

+ 𝑠
̃
𝑘

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

(35)

are all small. Therefore, 𝑥̃𝑘 is the minimizer.
Secondly, when the stopping tolerance 𝜃 = 0, the algo-

rithm either stops by having found a solution to (P) or it never
stops. In this case, there are two possibilities for the sequence
of descent steps {𝑥

𝑘

}
𝑘∈𝐾
𝑠

. One is that it has infinitely many
elements. Another is that there is an iteration 𝑘̃ where a last
descent step is done, that is, 𝑥𝑘 = 𝑥

̃
𝑘 for all 𝑘 ≥ 𝑘̃. We proof

these two cases separately.
Case 1. There are infinitely many elements in 𝐾

𝑠
.

Theorem 9. Suppose that the algorithm generates infinitely
many descent steps 𝑥𝑘 for all 𝑘 ∈ 𝐾

𝑠
. One has

(i) if (P) has an empty solution, then {𝑓(𝑥
𝑘

)} ↘ 0;
(ii) if (P) has minimizers and∑

𝑘∈𝐾
𝑠

(1/𝜂
𝑘
) = +∞ with 𝑘 ∈

𝐾
𝑠
and 𝑘 → ∞, the sequence {𝑥

𝑘

} is minimizing for
(P) and converges to a minimizer of (P).

Proof. (i) Note that the algorithm loops forever and 𝜃 = 0

for all 𝑘 ∈ 𝐾
𝑠
, thus 𝛿

𝑘+1
holds. Then the infinite sequence of

objective values {𝑓(𝑥
𝑘

)} is strictly decreasing. If (P) has no
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solution, the sequence {𝑓(𝑥
𝑘

)} is close to −∞. Therefore the
proof of (i) is completed.

(ii) To show that {𝑥𝑘} is a minimizing sequence. Suppose
for contradiction purposes that there exists 𝑥 ∈ 𝑅

𝑛 and 𝑡 > 0

such that 𝐹(𝑥) ≤ 𝐹(𝑥
𝑘

) − 𝑡 for all 𝑘 ∈ 𝐾
𝑠
. By Theorem 5(iii),

we have

⟨𝑥 − 𝑥
𝑘

,

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

)⟩

≤ 𝐹 (𝑥) − 𝐹 (𝑥
𝑘

) + 𝜖
𝑘
.

(36)

By 𝑥
𝑘+1

= 𝑥
𝑘

− (1/𝜂
𝑘
) ∑
𝑛𝑝
𝑘

𝑖=1
𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴(𝑥
𝑖

))𝑍𝑄
𝜀
(𝐴(𝑥
𝑖

))
𝑇

+ 𝑠
𝑖

)

andTheorem 5(ii), hence
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑘

−
1

𝜂
𝑘

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

)−𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

+
2

𝜂
𝑘

(𝐹 (𝑥) − 𝐹 (𝑥
𝑘

) + 𝜖
𝑘
) +

2

𝜂
𝑘

(𝛿
𝑘+1

− 𝜖
𝑘
)

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

+
2

𝜂
𝑘

(𝐹 (𝑥) − 𝐹 (𝑥
𝑘

) + 𝛿
𝑘+1

) .

(37)
Write the relation (37) for 𝑥 = 𝑥, we obtain

0 ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

+
2

𝜂
𝑘

(𝐹 (𝑥) − 𝐹 (𝑥
𝑘

) + 𝛿
𝑘+1

)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

+
2

𝜂
𝑘

(−𝑡 + 𝛿
𝑘+1

) .

(38)

Since {𝛿
𝑘
} → 0with 𝑘 → ∞, there exists 𝑘

𝑡
such that 𝛿

𝑘+1
<

𝑡/2 for all 𝑘 ≥ 𝑘
𝑡
. Thus the relation (38) becomes

0 ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

−
𝑡

𝜂
𝑘

∀ 𝑘 ∈ 𝐾
𝑠
, 𝑘 ≥ 𝑘

𝑡
.

(39)

Summing the inequations over 𝑘
𝑡
≤ 𝑘 ∈ 𝐾

𝑠
yields

0 ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
𝑡 − 𝑥

󵄩󵄩󵄩󵄩󵄩

2

− 𝑡 ∑

𝑘≥𝑘
𝑡
,𝑘∈𝐾
𝑠

1

𝜂
𝑘

. (40)

Letting 𝑘 → ∞, we obtain a contradiction for the divergence
assumption∑(1/𝜂

𝑘
) = +∞. Therefore, the sequence {𝑥

𝑘

} is a
minimizing sequence.

To see that {𝑥𝑘} converges to a minimizer of (P), take in
(37) 𝑥 = 𝑥, a solution to (P), and sum over 𝑘 ∈ 𝐾

𝑠
. It holds

that 𝐹(𝑥) ≤ 𝐹(𝑥
𝑘

) for all 𝑘. We see that
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
1

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

+
2

𝜂min
∑

𝑘∈𝐾
𝑠

𝛿
𝑘

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
1

− 𝑥
󵄩󵄩󵄩󵄩󵄩

2

+
2 (𝐹 (𝑥

1

) − 𝐹
∗

)

𝜂min𝑚
.

(41)

Then the sequence {𝑥
𝑘

} is bounded. Take a subsequence
{𝑥
𝑘
𝑖

}
𝑘
𝑖
∈𝐾
𝑠

converging to 𝑥 as 𝑖 → ∞. Given 𝑢 > 0, take 𝑖 big
enough such that

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
𝑖

− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
𝑢

2
, ∑

𝑘∈𝐾
𝑠
,𝑘≥𝑘
𝑖

𝛿
𝑘+1

≤
1

2
𝑢𝜂
𝑘
. (42)

Writing (37) with 𝑥 = 𝑥 and summing it over 𝑘 ∈ 𝐾
𝑠
from 𝑘

𝑖

to an arbitrary 𝑘̃ > 𝑘
𝑖 yield

0 ≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
̃
𝑘+1

− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
𝑖

− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩

2

+
1

𝜂
𝑘

∑

𝑘∈𝐾
𝑠
,𝑘≥𝑘
𝑖

𝛿
𝑘+1

≤ 𝑢,

(43)

which implies that {𝑥𝑘} converges to a minimizer of (P).

Case 2. There are finitely many descent steps. It means that
the last descent step 𝑥

̃
𝑘 is followed by an infinite number of

null step, that is, 𝑥𝑘 = 𝑥
̃
𝑘 for all 𝑘 ≥ 𝑘̃.

Theorem 10. Assume that Algorithm 3 generates a last descent
step 𝑥

̃
𝑘 followed by infinitely many null steps. Then sequence

{𝑥
𝑘

} converges to 𝑥
̃
𝑘 and 𝑥

̃
𝑘 minimizes the function 𝐹.

Proof. Let 𝑦𝑘+1 be the solution to (P
1
), we have

𝐹
𝑘
(𝑦
𝑘+1

) +
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑥
̃
𝑘
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐹
𝑘
(𝑥
̃
𝑘

) ≤ 𝐹 (𝑥
̃
𝑘

) . (44)

Set

𝑀
𝑘
(𝑦) := 𝐹

𝑘
(𝑦
𝑘+1

) +
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
̃
𝑘
󵄩󵄩󵄩󵄩󵄩󵄩

2

+
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑦
󵄩󵄩󵄩󵄩󵄩

2

.

(45)

Then

𝑀
𝑘
(𝑦
𝑘+1

) ≤ 𝐹 (𝑥
̃
𝑘

) ∀ 𝑘 ≤ 𝑘̃. (46)

By (30), we have

𝑀
𝑘+1

(𝑦
𝑘+2

) ≥ 𝑀
𝑘
(𝑦
𝑘+1

) +
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+2

− 𝑦
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

; (47)

𝑀
𝑘
(𝑦
𝑘+1

) +
1

2
𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑥
̃
𝑘
󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐹
𝑘
(𝑦
𝑘+1

) + 𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑥
̃
𝑘
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐹
𝛼
(𝑥
̃
𝑘

) ≤ 𝐹 (𝑥
̃
𝑘

) .

(48)

Thus, the sequence {𝑦𝑘+1} is bounded. By the relation (47), we
have

{𝑦
𝑘+1

− 𝑦
𝑘

} 󳨀→ 0 as 𝑘 󳨀→ ∞. (49)
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It is obvious from the convexity that

𝐹
𝑘
(𝑦
𝑘+1

) − 𝐹 (𝑦
𝑘

) ≤ 𝐹 (𝑦
𝑘+1

) − 𝐹𝑦
𝑘

≤ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑦
𝑘
󵄩󵄩󵄩󵄩󵄩

2

.

(50)

So, it holds that

𝐹
𝑘
(𝑦
𝑘+1

) − 𝐹 (𝑦
𝑘

) 󳨀→ 0. (51)

From the bounded sequence {𝑦
𝑘

} extract a subsequence
{𝑦
𝑘
𝑖

} → 𝑦 as 𝑖 → ∞, for {𝑦𝑘+1−𝑦
𝑘

} → 0 and {𝑦
𝑘
𝑖

+1

−𝑦} →

0; thus

𝐹 (𝑦
𝑘
𝑖

+1

) − 𝐹
𝑘
𝑖 (𝑦
𝑘
𝑖

+1

) 󳨀→ 0 as 𝑖 󳨀→ ∞. (52)

Then

𝐹
𝑘
𝑖 (𝑦
𝑘
𝑖

+1

) 󳨀→ 𝐹 (𝑦) . (53)

When 𝑘 ≥ 𝑘̃, the descent test is never satisfied, that is,
𝐹(𝑦
𝑘
𝑖

+1

) − 𝐹(𝑥
̃
𝑘

) > −𝑚𝛿
𝑘
𝑖
+1
, adding 𝛿

𝑘
𝑖
+1

to the both sides
of the inequation and using the definition of 𝛿

𝑘
𝑖
+1

in (21), we
can obtain

0 ≤ (1 − 𝑚) 𝛿
𝑘
𝑖
+1

≤ 𝐹 (𝑦
𝑘
𝑖

+1

) − 𝐹
𝑘
𝑖 (𝑦
𝑘
𝑖

+1

) . (54)

Let 𝑖 → ∞, then 𝛿
𝑘
𝑖
+1

→ 0. In addition, as 𝑖 → ∞

𝜖
𝑘
󳨀→ 0,

1

2𝜂
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

󳨀→ 0.

(55)

ByTheorem 5(iii), it holds that

𝐹 (𝑦) ≥ 𝐹 (𝑥
̃
𝑘

)

+ ⟨

𝑛𝑝
𝑘

∑

𝑖=1

𝛼
𝑖
(𝛽
∗

𝑄
𝜀
(𝐴 (𝑥

𝑖

))𝑍𝑄
𝜀
(𝐴 (𝑥

𝑖

))
𝑇

+ 𝑠
𝑖

) ,

𝑦 − 𝑥
̃
𝑘

⟩ − 𝜖
𝑘
𝑖 .

(56)

Passing to the limit as 𝑖 → ∞ the inequation shows that {𝑥̃𝑘}
minimizes the function 𝐹.

This is to show that 𝑦 = 𝑥
̃
𝑘. Since

𝐹 (𝑦) ≥ 𝐹 (𝑥
̃
𝑘

)

≥ 𝐹
𝑘
𝑖 (𝑥
̃
𝑘

)

≥ 𝐹
𝑘
𝑖 (𝑦
𝑘
𝑖

+1

) +
1

2
𝜂
𝑘
𝑖
+1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
𝑖

+1

− 𝑥
̃
𝑘
󵄩󵄩󵄩󵄩󵄩󵄩

2

≥ 𝐹
𝑘
𝑖 (𝑦
𝑘
𝑖

+1

) +
1

2
𝜂̃
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
𝑖

+1

− 𝑥
̃
𝑘
󵄩󵄩󵄩󵄩󵄩󵄩

2

,

(57)

passing to the limit as 𝑖 → ∞, we obtain

𝐹 (𝑦) ≥ 𝐹 (𝑦) +
1

2
𝜂̃
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
̃
𝑘
󵄩󵄩󵄩󵄩󵄩󵄩

2

. (58)

The inequality holds if and only if 𝑦 = 𝑥
̃
𝑘. Thus 𝑥

̃
𝑘 is the

minimizer.

5. Conclusions

In this paper, we have given an enlarged subdifferential
and constructed a more stable approximate cutting-plane
model for the objective function. Then we have proposed
an approximate proximal bundle algorithm and shown how
to use this algorithm to minimize a class of maximum
eigenvalue functions. Finally, it may be possible to extend
this method to an even larger class of constrained maximum
eigenvalue function.
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