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A credit risk mathematical model is investigated. Under regular conditions, a different recovery scheme is proposed, which is an
extension of the recovery of treasury value scheme (RTV)with time-continuous liquidation. Assuming that a function depends on
the optimal time for the liquidation and the recovery rate, we obtain the functional expression of the risky bond price. When the
firm value follows a jump-diffusion process with a Log-exponentially distributed jump, we develop a method to obtain the optimal
default probability with time-continuous liquidation.

1. Introduction

The structural model and the reduced form model are two
basic models for valuing credit risk of corporate bonds. The
structural model, pioneered by Merton [1, 2], illustrates the
firm-value process and the default threshold. By assuming
that the evolution of firm value follows a diffusion process,
Merton [2] obtained the mean recovery rate, the probability
of default and the implied credit spread of a corporate bond.
Black and Cox [3], Lonigstaff and Schwartz [4], and Leland
[5] modified and extended Merton’s model in many ways
except the diffusion process. Jones et al. [6], Sarig and Warga
[7], and Fons [8] found that as a sudden drop in firm value
is excluded, their credit spread is smaller than the observed
market spread. Zhou [9] proposes a jump-diffusion firm-
value process and obtains a much closer credit spread. The
reduced-form model, adopted by Artzner and Delbaen [10],
Jarrow and Turnbull [11], Jarrow et al. [12], Li [13], andMadan
and Unal [14] does not treat the relation between firm value
and default in an explicit way. It is in an unpredictable way.
The observed market credit spread is used in the reduced-
form model to obtain the optimal probability of default and
the mean recovery rate.

Chen and Panjer [15] unify the structural model and the
reduced-form model by showing the equivalence of yield

spreads, which leads to the use of ruin theory in credit
risk. Ruin theory was firstly applied to credit rating by
Yang [16] who used a pure jump process. Different from
those in Yang [16], Chen and Panjer [17] assumed that
the credit spread is in accord with the observed market
credit risk. Chen and Panjer [17] assumed that the credit
spread is in accord with the observed market credit spread,
which is used to obtain the implied jump distribution. Chen
and Panjer [17] make another specific assumption that the
firm can only be liquidated at the maturity of the bond,
once default occurs before it, which is far more different
from the reality. Motivated by the desire to extend the
work of Chen and Panjer [17], we relax its assumption and
study a credit risk valuation model with time-continuous
liquidation.

In this paper, a recovery scheme, which is an extension
of the recovery of treasury value scheme (RTV) with time-
continuous liquidation, is used under regular conditions. By
using the relationship of the required time for liquidation and
the recovery rate, we obtain the function expression of the
risky bond price. In addition, a relationship between credit
risk and ruin theory is constructed by using equivalence
principle. Thus, the methodology in ruin theory can be
used in credit valuation. Furthermore, when the firm value
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follows a jump-diffusion process with a Log-exponentially
distributed jump, we develop a method to obtain the optimal
default probability with time-continuous liquidation.

This paper is organized as follows. Section 2 introduces
a new recovery scheme by introducing time-continuous
liquidation. Section 3 introduces the structural model when
the firm value follows a jump-diffusion process. In Section 4,
the relationship between the ruin theory and credit risk is
established by using equivalence principle. In Section 5, we
obtain the credit spread by assuming that the firm value
follows a jump-diffusion process with Log-exponentially
distributed jumps. Two seniorities cases are considered in
Section 6. In Section 7, we propose a method to find the
implied jump size distribution and default probability caused
by a jump. Finally, we draw some conclusions.

2. The Recovery Scheme

There are three major recovery schemes in credit risk liter-
ature, which are recovery of par value (RPV), recovery of
treasury value (RTV), and recovery of market value (RMV).
Here we use a different recovery scheme by introducing time-
continuous liquidation.

Let 𝑃(𝑡, 𝑇) denote the time-𝑡 price of a risk-free zero-
coupon bond paying one dollar at maturity time 𝑇, where
0 ≤ 𝑡 ≤ 𝑇 < ∞. 𝑉(𝑡, 𝑇) denotes the time-𝑡 price of a
risk corporate bond paying one dollar at maturity time 𝑇. Let
𝑟(𝑡, 𝑇) and 𝑅(𝑡, 𝑇) represent the yield to maturity on the risk-
free bond and risky bond, respectively. The bond prices are
written as

𝑃 (𝑡, 𝑇) = 𝑒
−𝑟(𝑡,𝑇)∗(𝑇−𝑡)

,

𝑉 (𝑡, 𝑇) = 𝑒
−𝑅(𝑡,𝑇)∗(𝑇−𝑡)

.

(1)

We make the following assumptions.

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐼. We have the following.

(1) There exists a risk-neutralmeasure𝑄 so that arbitrage
opportunities are excluded.

(2) There is no liquidation cost.
(3) The recovery rate, which is denoted by 𝜛(𝜏), is the

ratio of the market value of the firm at the time of
default 𝜏 to its debt obligation.

(4) The value of the firm remains steady after default so
that recovery rate at the time of default 𝜛(𝜏) is equal
to the recovery rate at the time of liquidation 𝜛(𝜏).

(5) The short interest rate is flat and fixed and denoted by
𝑟.

(6) The defaulted firm can be liquidated at any time
before maturity 𝑇. The time of liquidation is denoted
by 𝜏.

The first five assumptions can be found in [17] and
assumption 6 is our own.

In no-arbitrage theory, a risky bond of one-dollar face
amount can be regarded as a contingent claim paying

the recovery rate if default dose happens and paying one
dollar if it does not. Under the risk-neutral measure 𝑄, the
time-𝑡 price of risky bond is the expected value of contingent
claim at time-𝑡.

From the assumption, we propose a recovery scheme,
named RTV+ as follows. When a default event happens
and the firm can be liquidated at any time before the time
of maturity of the bond, the bond holders get a fractional
payment of face amount.The remaining value of the defaulted
firmdoes not earn any interest during the period fromdefault
time to liquidation. Under RTV+ scheme, the recovery rate at
the time of the liquidation 𝜏 is equal to a payment at the time
of default 𝜏 of an amount namely, the recovery rate times the
treasure bond price 𝑃(𝜏, 𝑇). Under risk-neutral valuation a
risky bond price for a RTV+ scheme can be written as

𝑉 (𝑡, 𝑇) = 𝐸
𝑄

𝑡

[𝑃 (𝑡, 𝜏) ⋅ 𝜛 (𝜏) ⋅ 𝐼
(𝜏≤𝑇|𝜏>𝑇)

+𝑃 (𝑡, 𝑇) ⋅ 𝐼
(𝜏>𝑇|𝜏>𝑡)

] ,
(2)

where𝐸𝑄
𝑡

denotes the conditional expectation at time 𝑡 under
the risk neutral measure 𝑄 and 𝐼 is an conditional indicator
function which is

𝐼
(𝜏≤𝑇|𝜏>𝑡)

= {
1, 𝜏 ≤ 𝑇,

0, otherwise,

𝐼
(𝜏≥𝑇|𝜏>𝑡)

= {
1, 𝜏 > 𝑇,

0, otherwise.

(3)

In no-arbitrage theory, for a risk-free bond, we have

𝑃 (𝑡, 𝜏) = 𝑃 (𝑡, 𝑇) ⋅ 𝑒
−𝑟(𝑇−𝜏)

. (4)

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐼𝐼. Let required time period for liquidation (𝜏 −

𝜏) be proportional to the recovery rate𝜛(𝜏). It means that the
more the value of defaulted firm remains, the more the time
is required for liquidation.

As a result, the time period (𝑇 − 𝜏) is inversely propor-
tional to the recovery rate 𝜛(𝜏). To facilitate the calculation,
we assume

𝑇 − 𝜏 = −
1

𝑟
ln [𝜛 (𝜏)] . (5)

Substituting (4) and (5) into (2) yields

𝑉 (𝑡, 𝑇) = 𝐸
𝑄

𝑡

[𝑃 (𝑡, 𝑇) ⋅ 𝜛
2

(𝜏) ⋅ 𝐼
(𝜏≤𝑇|𝜏>𝑇)

+𝑃 (𝑡, 𝑇) ⋅ 𝐼
(𝜏>𝑇|𝜏>𝑡)

] .

(6)

If the risk-free rate 𝑟 is independent of the default process,
we have

𝑉 (𝑡, 𝑇) = 𝑃 (𝑡, 𝑇) ⋅ 𝐸
𝑄

𝑡

[𝜛] , (7)

where

𝜛 = {
1, 𝜏 > 𝑇,

𝜛2 (𝜏) , 𝑡 < 𝜏 ≤ 𝑇.
(8)
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Taking conditional expectation on the random indication
𝐼
(𝜏≤𝑇|𝜏>𝑇)

, we have

𝑉 (𝑡, 𝑇) = 𝑃 (𝑡, 𝑇) ⋅ 𝐸
𝑄

𝑡

{𝐸
𝑄

𝑡

[𝜛 | 𝐼
(𝜏≤𝑇|𝜏>𝑡)

]}

= 𝑃 (𝑡, 𝑇) ⋅ {𝐸
𝑄

𝑡

[𝜛 | 𝐼
(𝜏≤𝑇|𝜏>𝑡)

= 0]

⋅ 𝑄 (𝐼
(𝜏≤𝑇|𝜏>𝑡)

= 0)

+ 𝐸
𝑄

𝑡

[𝜛 | 𝐼
(𝜏≤𝑇|𝜏>𝑡)

= 1]

⋅ 𝑄 (𝐼
(𝜏≤𝑇|𝜏>𝑡)

= 1) }

= 𝑃 (𝑡, 𝑇) ⋅ {1 ⋅ 𝑄 (𝜏 > 𝑇 | 𝜏 > 𝑡)

+ 𝐸
𝑄

𝑡

[𝜛
2

(𝜏)] ⋅ 𝑄 (𝜏 ≤ 𝑇 | 𝜏 > 𝑡)}

= 𝑃 (𝑡, 𝑇) ⋅ {1 − 𝑄 (𝜏 ≤ 𝑇 | 𝜏 > 𝑡) + 𝐸
𝑄

𝑡

[𝜛
2

(𝜏)]

⋅ 𝑄 (𝜏 ≤ 𝑇 | 𝜏 > 𝑡) }

= 𝑃 (𝑡, 𝑇) ⋅ {1 − {1 − 𝐸
𝑄

𝑡

[𝜛
2

(𝜏)]}

⋅ 𝑄 (𝜏 ≤ 𝑇 | 𝜏 > 𝑡) } .

(9)

Taking the log operation for the both sides of (9), we
obtain the yield spread:

𝑅 (𝑡, 𝑇) − 𝑟 (𝑡, 𝑇) = −
1

𝑇 − 𝑡
ln {1 − {1 − 𝐸

𝑄

𝑡

[𝜛
2

(𝜏)]}

⋅ 𝑄 (𝜏 ≤ 𝑇 | 𝜏 > 𝑡) } .

(10)

For both structural model and reduced-form model, we
know that (10) holds. We assume that the corresponding
credit spread is consistent with the market credit spread.
Thus, we can use the market spread to obtain the default
probability and the recovery rate.

3. The Structural Model with a Jump-Diffusion
Firm-Value Process

Let us state the following assumption which can be found in
Chen and Panjer [17].

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐼𝐼𝐼. We have the following.

(1) The market is perfect and frictionless with no trans-
action cost, which means that there are many sellers
as well as buyers who can trade as much as they want
in continuous time.

(2) The short interest rate is flat and fixed.
(3) TheModigliani-Miller theorem holds so that the firm

value is invariant to its capital structure.
(4) The firm value follows the jump-diffusion process

proposed by Merton [2]. Let the capital asset pric-
ing model (CAPM) hold for equilibrium returns.
Thus the expected instantaneous return of the firm

value equals risk-free rate 𝑟. The diffusion process
represents systematic risk and the jump components
represent nonsystematic risk which has zero beta.

(5) The firm issues both equities and bonds. The bonds
mature at the same time but differ only in the priority
with which they are redeemed.

Let 𝑉 represent the total market value of the firm. The
firm value 𝑉

𝑡

at time-𝑡 is equivalent to the sum of the time-
𝑡 market price of the equity and debt obligations. Under
Assumption III, the dynamics of the firm value are defined
by the following jump-diffusion process:

𝑑𝑉
𝑡

𝑉
𝑡

= (𝑟 − 𝜆
𝜇𝐽
) 𝑑𝑡 + 𝜎𝑑𝑍

𝑡

+ 𝐽
𝑁𝑡
𝑑𝑁
𝑡

, (11)

where 𝑉
𝑡

is the firm value at time 𝑡, 𝜎2 is instantaneous
variance, 𝑟 is instantaneous return,𝑍

𝑡

is a standard Brownian
motion, 𝑁

𝑡

is total number of jumps up to time-𝑡, and 𝐽
𝑁𝑡

is
the jump size as a proportion of 𝑉

𝑡

of 𝑁
𝑡

th jump. 𝑁
𝑡

follows
a Poisson process with parameter 𝜆 and is stochastically
independent of 𝑍

𝑡

. 𝐽
𝑁𝑡

is assumed to be independent of
(𝑁
𝑡

)
𝑡≥0

and is independently and identically distributed
whose moment generating function exists with mean 𝜇

𝑗

and
variance 𝜎2

𝑗

. The mean value of the instantaneous change of
the firmvalue is𝐸[𝑑𝑉

𝑡

] = 𝑟𝑉
𝑡

𝑑𝑡.Thepercentage change of the
firm value 𝑑𝑉

𝑡

/𝑉
𝑡

as well as the jump amplitude 𝐽
𝑖

is bounded
in [−1, +∞]. If we assume that 𝑌 is a nonnegative random
variable and𝑌

𝑖

= 𝐽
𝑖

+1, for 𝑖 = 1 to𝑁
𝑡

, then𝑌
𝑖

falls in [0, +∞].
Let 𝑌(𝑡) = 1 when𝑁

𝑡

= 0, and

𝑌 (𝑡) =

𝑁𝑡

∏
𝑖=1

𝑌
𝑖

=

𝑁𝑡

∏
𝑖=1

(𝐽
𝑖

+ 1) , (12)

where𝑁
𝑡

̸= 0. From Itô’s lemma and Zhou [9], we have

𝑑 ln𝑉
𝑡

= (𝑟 −
𝜎2

2
− 𝜆
𝜇𝐽
)𝑑𝑡 + 𝜎𝑑𝑍

𝑡

+ ln𝑌
𝑁𝑡
𝑑𝑁
𝑡

. (13)

4. The Ruin Theory and Credit Risk

In this sectionwe establish a relationship between ruin theory
and credit risk by showing the relationship between the
surplus process in ruin theory and solvency-ratio process in
a structural credit risk model.

Dufresne and Gerber [18] extended the classical surplus
process model in ruin theory by introducing a diffusion
process𝑊(𝑡) into the surplus process

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 + 𝑊 (𝑡) − 𝑆 (𝑡) , 𝑡 ≥ 0, (14)

where 𝑈(𝑡) is the time-𝑡 surplus, 𝑢 is the initial surplus,
𝑐𝑡 is the premium income, and 𝑆(𝑡) is the aggregate loss.
The aggregate loss (𝑆(𝑡))

𝑡≥0

as 𝑆(𝑡) = 𝑋
1

+ 𝑋
2

+ ⋅ ⋅ ⋅ +

𝑋
𝑁𝑡

follows a compound Poisson process. Here, the random
variables 𝑋

1

, 𝑋
2

, . . . , 𝑋
𝑁𝑡

are independent and identically
distributed. The counting number process (𝑁

𝑡

)
𝑡≥0

follows a
Poisson process with a parameter 𝜆. The premium rate 𝑐 is
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set to be equal to 𝜆𝐸[𝑋](1 + 𝜃), where 𝜃 > 0 represents the
relative security loading. Ruin is triggered when the surplus
falls below zero. [𝑊(𝑡)]

𝑡≥0

is a Wiener process with drift 0.
In credit risk literature, the trigger of default is defined

when the firm value falls below its debt 𝐷, where 𝑉
0

≥ 𝐷.
In credit risk literature, the value of ln(𝑉

𝑡

/𝐷) is called the
solvency ratio at time-𝑡. If we let

𝑢 = ln(
𝑉
0

𝐷
) ,

𝑐 = 𝑟 −
𝜎2

2
− 𝜆
𝜇𝐽
,

𝑆 (𝑡) =

𝑁𝑡

∑
𝑖=1

𝑋
𝑖

= −

𝑁𝑡

∑
𝑖=1

ln𝑌
𝑖

= −

𝑁𝑡

∑
𝑖=1

ln (𝐽
𝑖

+ 1) = − ln𝑌 (𝑡) ,

(15)

then a solvency-ratio process is equivalent to the surplus
process

ln(
𝑉
𝑡

𝐷
) = ln(

𝑉
0

𝐷
) + (𝑟 −

𝜎
2

2
− 𝜆
𝜇𝐽
) 𝑡

+ 𝜎𝑍
𝑡

+

𝑁𝑡

∑
𝑖=1

ln𝑌
𝑖

= 𝑢 + 𝑐𝑡 + 𝑊 (𝑡) − 𝑆 (𝑡)

= 𝑈 (𝑡) ,

(16)

which is the relationship between ruin theory and credit risk.
The time of default or ruin is denoted by

𝜏 = inf {𝑡 | 𝑈
𝑡

< 0} = inf {𝑡 | 𝑉
𝑡

< 𝐷} . (17)

Conditional on the fact that a firm does not default at the
current time-𝑡, short-term default probability and survival
probability can be given by

𝜑(ln(
𝑉
𝑡

𝐷
) , 𝑇) = 𝑄{ inf

𝑡<𝑠≤𝑇

ln(
𝑉
𝑠

𝐷
) < 0 | 𝑉

𝑡

> 𝐷}

= 𝑄{ inf
𝑡<𝑠≤𝑇

𝑉
𝑠

< 𝐷 | 𝑉
𝑡

> 𝐷}

= 𝑄 {𝑡 < 𝜏 ≤ 𝑇 | 𝜏 > 𝑡} ,

𝜑 (ln(
𝑉
𝑡

𝐷
) , 𝑇) = 𝑄{ inf

𝑡<𝑠≤𝑇

ln(
𝑉
𝑠

𝐷
) ≥ 0 | 𝑉

𝑡

> 𝐷}

= 𝑄{ inf
𝑡<𝑠≤𝑇

𝑉
𝑠

≥ 𝐷 | 𝑉
𝑡

> 𝐷}

= 𝑄 {𝜏 ≥ 𝑇 | 𝜏 > 𝑡} .

(18)

Since both of the surplus and the solvency-ratio process
follow a jump-diffusion process, default can be triggered
either by diffusion process or a jump event. When a default is

caused by diffusion, we let 𝜏
𝑑

, 𝜑
𝑑

(ln(𝑉
𝑡

/𝐷), 𝑇) and 𝜛(𝜏
𝑑

) = 1

represent the default time, the default probability, and the
recovery rate separately. When a default is caused by a jump,
the analogous parts are 𝜏

𝑗

, 𝜑
𝑗

(ln(𝑉
𝑡

/𝐷), 𝑇) and 𝜛(𝜏
𝑗

) ≤ 1. By
the total probability law, we have

𝜑(ln(
𝑉
𝑡

𝐷
) , 𝑇) = 𝜑

𝑑

(ln(
𝑉
𝑡

𝐷
) , 𝑇) + 𝜑

𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇) .

(19)

5. The Credit Spread

When a default occurs and is triggered by a jump event, which
may cause a sudden drop in the firmvalue, the firmmay suffer
a deficit. The deficit 𝐿(𝜏

𝑗

) is defined by

𝐿 (𝜏
𝑗

) = −𝑈 (𝜏
𝑗

) = − ln(
𝑉
𝜏𝑗

𝐷
) . (20)

When the firm is default because of a jump, the recovery rate
can be rewritten as

𝜛 (𝜏
𝑗

) =
𝑉
𝜏𝑗

𝐷
= exp{ln(

𝑉
𝜏𝑗

𝐷
)} = exp {−𝐿 (𝜏

𝑗

)} . (21)

Theorem 1. Under 𝑅𝑇𝑉+ scheme, if the firm value follows a
jump-diffusion process and default occurs at any time before
maturity 𝑇, then the yield spread is

𝑅 (𝑡, 𝑇) − 𝑟 (𝑡, 𝑇)

= −
1

𝑇 − 𝑡
ln {1 − [1 − 𝐸

𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)]] 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)}

= −
1

𝑇 − 𝑡
ln {1 − [1 − 𝐸

𝑄

𝑡

[𝑒
2𝐿(𝜏𝑗)]] 𝜑

𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)} .

(22)

Proof. In general, we have

𝐸
𝑄

𝑡

[𝜛
2

(𝜏)]

= 1 ⋅ 𝑄 {default caused by diffusion process}

+ 𝐸
𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)] ⋅ 𝑄 {default caused by a jump}

=
𝜑
𝑑

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
+ 𝐸
𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)] ⋅
𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)

=
𝜑
𝑑

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
+ 𝐸
𝑄

𝑡

[𝑒
−2𝐿(𝜏𝑗)] ⋅

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
.

(23)
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Substituting (23) into (10), we get

𝑅 (𝑡, 𝑇) − 𝑟 (𝑡, 𝑇)

= −
1

𝑇 − 𝑡
ln {1 − [1 − 𝐸

𝑄

𝑡

[𝜛
2

(𝜏)]]𝑄 (𝜏 ≤ 𝑇 | 𝜏 > 𝑡)}

= −
1

𝑇 − 𝑡
ln {1 − [1 − 𝐸

𝑄

𝑡

[𝜛
2

(𝜏)]] 𝜑 (ln(
𝑉
𝑡

𝐷
) , 𝑇)}

= −
1

𝑇 − 𝑡
ln {1 − 𝜑(ln(

𝑉
𝑡

𝐷
) , 𝑇) + 𝜑

𝑑

(ln(
𝑉
𝑡

𝐷
) , 𝑇)

+ 𝐸
𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)] 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)}

= −
1

𝑇 − 𝑡
ln {1 − 𝜑

𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)

+ 𝐸
𝑄

𝑡

[𝜛
2

(𝜏)] 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)}

= −
1

𝑇 − 𝑡
ln {1 − [1 − 𝐸

𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)]] 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)}

= −
1

𝑇 − 𝑡
ln {1 − [1 − 𝐸

𝑄

𝑡

[𝑒
2𝐿(𝜏𝑗)]] 𝜑

𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)} .

(24)

A joint distribution density function 𝑓(𝑥, 𝑙, 𝑡 | 𝑉
𝑡

) of
𝑈(𝜏
𝑗

), the deficit at ruin 𝐿(𝜏
𝑗

), and the ruin time 𝜏
𝑗

are used
by Gerber and Shiu [19] and extended by Chen and Panjer
[17]. The jump 𝑋 = − ln𝑌 is assumed to be independent
and identically distributed with differentiable distribution
function 𝑃(𝑥) and probability density function 𝑝(𝑥). Chen
and Panjer [17] assumes that the jump size has a Log-
exponential probability density function 𝑓(𝑗) = 𝛼(𝑗 + 1)

𝛼−1,
−1 < 𝑗 < 0.

According to Chen and Panjer [17], we have

𝐸
𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)]

= 𝐸
𝑄

𝑡

[𝑒
−2𝐿(𝜏𝑗)]

=
1

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

× ∫
𝑇

𝑡

∫
∞

0

∫
∞

0

𝑒
−2𝑙

𝑓 (𝑥, 𝑙, 𝑡 | 𝑉
𝑡

) 𝑑𝑥 𝑑𝑙 𝑑𝑡

=
1

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

× ∫
𝑇

𝑡

∫
∞

0

∫
∞

0

𝑒
−2𝑙

𝑓 (𝑥, 𝑡 | 𝑉
𝑡

)
𝑝 (𝑥 + 𝑙)

1 − 𝑃 (𝑥)
𝑑𝑥 𝑑𝑙 𝑑𝑡.

(25)

If the jump size follows a Log-exponential distribution,
then the corresponding jump distribution 𝐿 = − ln(𝐽 +

1) possesses an exponential distribution with probability
density 𝑝(𝑙) = 𝛽𝑒−𝛽𝑙.

Thus, the probability density function of the recovery rate
is

𝑓
𝜛(𝜏)

(𝑥) =

{{{{{{

{{{{{{

{

𝜑
𝑑

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
, 𝑥 = 1,

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
𝑓
𝜛(𝜏𝑗)

(𝑥) , 0 < 𝑥 < 1,

(26)

where 𝑓
𝜛(𝜏𝑗)

(𝑥) = 𝛽𝑥𝛽−1, 0 < 𝑥 < 1.

Theorem 2. Under 𝑅𝑇𝑉+ scheme, assume that the firm value
follows a jump-diffusion process and default occurs at any
time before maturity 𝑇. If the jump follows an exponential
distribution as 𝑝

𝑙

(𝑥) = 𝛽𝑒−𝛽𝑥, it holds that

(1) 𝐸
𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)] =
𝛽

𝛽 + 2
,

(2) 𝐸
𝑄

𝑡

[𝜛
2

(𝜏)] = 1 −
2

𝛽 + 2
⋅
𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
,

(3) 𝑅 (𝑡, 𝑇) − 𝑟 (𝑡, 𝑇)

= −
1

𝑇 − 𝑡
ln{1 −

𝛽

𝛽 + 2
⋅ 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)} ,

(4)
𝑃 (𝑡, 𝑇) − 𝑉 (𝑡, 𝑇)

𝑃 (𝑡, 𝑇)
=

𝛽

𝛽 + 2
⋅ 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇) .

(27)

Proof. If default is caused by a jump, one has

𝐸
𝑄

𝑡

[𝜛
2

(𝜏
𝑗

)]

=
1

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

× ∫
𝑇

𝑡

∫
∞

0

∫
∞

0

𝑒
−2𝑙

𝑓 (𝑥, 𝑡 | 𝑉
𝑡

)
𝑝 (𝑥 + 𝑙)

1 − 𝑃 (𝑥)
𝑑𝑥 𝑑𝑙 𝑑𝑡

=
1

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

× ∫
𝑇

𝑡

∫
∞

0

𝑓 (𝑥, 𝑡 | 𝑉
𝑡

) 𝑑𝑥 𝑑𝑡 ∫
∞

0

𝑒
−2𝑙

𝛽𝑒−𝛽(𝑥+𝑙)

𝑒−𝛽𝑥
𝑑𝑙

=
1

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)
𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)∫

∞

0

𝛽𝑒
−(𝛽+2)𝑙

𝑑𝑙

=
𝛽

𝛽 + 2
.

(28)
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Substituting (28) into (23) gives rise to

𝐸
𝑄

𝑡

[𝜛
2

(𝜏)]

=
𝜑
𝑑

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
+

𝛽

𝛽 + 2
⋅
𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)

=
𝜑
𝑑

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
+

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)

−
2

𝛽 + 2
⋅
𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)

= 1 −
2

𝛽 + 2
⋅
𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
.

(29)

From (24), the credit spread is written as

𝑅 (𝑡, 𝑇) − 𝑟 (𝑡, 𝑇)

= −
1

𝑇 − 𝑡
ln {1 − (1 − 𝐸

𝑄

𝑡

[𝜛
2

(𝜏)]) 𝜑 (ln(
𝑉
𝑡

𝐷
) , 𝑇)}

= −
1

𝑇 − 𝑡
ln{1 −

𝛽

𝛽 + 2
⋅
𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)

⋅ 𝜑 (ln(
𝑉
𝑡

𝐷
) , 𝑇)}

= −
1

𝑇 − 𝑡
ln{1 −

𝛽

𝛽 + 2
⋅ 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)} .

(30)

From (9) we have

𝑃 (𝑡, 𝑇) − 𝑉 (𝑡, 𝑇)

𝑃 (𝑡, 𝑇)

= 1 −
𝑉 (𝑡, 𝑇)

𝑃 (𝑡, 𝑇)

= {1 − 𝐸
𝑄

𝑡

[𝜛
2

(𝜏)]} 𝜑 (ln(
𝑉
𝑡

𝐷
) , 𝑇)

= {1 −
𝜑
𝑑

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)

− 𝐸
𝑄

𝑡

[𝑒
−2𝐿(𝜏𝑗)]

𝜑
𝑗

(ln (𝑉
𝑡

/𝐷) , 𝑇)

𝜑 (ln (𝑉
𝑡

/𝐷) , 𝑇)
}

× 𝜑(ln(
𝑉
𝑡

𝐷
) , 𝑇)

= 𝜑(ln(
𝑉
𝑡

𝐷
) , 𝑇) − 𝜑

𝑑

(ln(
𝑉
𝑡

𝐷
) , 𝑇) − 𝐸

𝑄

𝑡

[𝑒
−2𝐿(𝜏𝑗)]

⋅ 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)

= 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇) − 𝐸

𝑄

𝑡

[𝑒
−2𝐿(𝜏𝑗)] ⋅ 𝜑

𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)

= {1 − 𝐸
𝑄

𝑡

[𝑒
−2𝐿(𝜏𝑗)]} ⋅ 𝜑

𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)

=
𝛽

𝛽 + 2
⋅ 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇) .

(31)

The proof of Theorem 2 is completed.

6. Multiple Seniorities Cases

In corporate debt market, a company may issue debts with
multiple seniorities. Under multiple seniorities cases, the
strict priority rule is applied, which means that once a default
occurs, the junior claimants can be paid until the senior
claimants are fully paid off. Suppose that 𝑛 seniority classes of
bonds are issued by a firm, and the proportion of each class
is denoted by 𝑝

1

, 𝑝
2

, . . . , 𝑝
𝑛

, with ∑
𝑛

𝑘=1

𝑝
𝑘

= 1. The recovery
rate for each class, 𝜛

1

(𝜏), 𝜛
2

(𝜏), . . . , 𝜛
𝑛

(𝜏), is given by

𝜛
1

(𝜏) = min(
𝜛 (𝜏)

𝑝
1

, 1) ,

𝜛
𝑖

(𝜏) = min(
(𝜛 (𝜏) − ∑

𝑖−1

𝑘=1

𝑝
𝑘

)
+

𝑝
𝑖

, 1) ,

𝑖 = 1, 2, . . . , (𝑛 − 1) ,

𝜛
𝑛

(𝜏) =
(𝜛 (𝜏) − ∑

𝑛−1

𝑘=1

𝑝
𝑘

)
+

𝑝
𝑛

,

(32)

where ()
+

denotes the positive value of ().

Theorem 3. If the firm-value process follows a jump-diffusion
process and default occurs at any time before maturity 𝑇, and
if 𝑅𝑇𝑉+ scheme and the strict priority rule are applied, then
the following equations are valid under the assumption that the
jump follows an exponential distribution 𝑝(𝑙) = 𝛽𝑒−𝛽𝑙:

(1) 𝐸
𝑄

𝑡

[𝜛
2

1

(𝜏
𝑗

)] = 1 −
2

𝛽 + 2
⋅ 𝑝
𝛽

1

,

(2) 𝐸
𝑄

𝑡

[𝜛
2

𝑖

(𝜏
𝑗

)] = 1 −
1

𝑝2
𝑖

3

(𝛽 + 2) (𝛽 + 1)

× [

[

(

𝑖

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

− (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

]

]

,

𝑗 = 1, 2, . . . , 𝑛 − 1,

(3) 𝐸
𝑄

𝑡

[𝜛
2

𝑛

(𝜏
𝑗

)] =
1

𝑝2
𝑛

{

{

{

1 − 2𝑝
𝑛

+ 𝑝
2

𝑛

−
𝛽 (𝛽 + 3)

(𝛽 + 2) (𝛽 + 1)

−
2

(𝛽 + 2) (𝛽 + 1)
(

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

}

}

}

.

(33)



Abstract and Applied Analysis 7

Proof. For the highest seniority class, we have

𝐸
𝑄

𝑡

[𝜛
2

1

(𝜏
𝑗

)] = 𝐸
𝑄

𝑡

[

[

{min(
𝜛2 (𝜏
𝑗

)

𝑝
1

, 1)}

2

]

]

=
1

𝑝2
1

∫
𝑝1

0

𝑥
2

⋅ 𝛽𝑥
𝛽−1

𝑑𝑥 + ∫
1

𝑝1

1 ⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

=
1

𝑝2
1

⋅
𝛽

𝛽 + 2
⋅ [𝑥
𝛽+2

]
𝑝1

0

+ [𝑥
𝛽

]
1

𝑝1

= 1 −
2

𝛽 + 2
⋅ 𝑝
𝛽

1

.

(34)

For the lower seniority classes, we get

𝐸
𝑄

𝑡

[𝜛
2

𝑖

(𝜏
𝑗

)]

= 𝐸
𝑄

𝑡

[min(
(𝜛(𝜏) − ∑

𝑖−1

𝑘=1

𝑝
𝑘

)
+

𝑝
𝑖

, 1)]

2

=
1

𝑝2
𝑖

∫
∑

𝑖−1

𝑘=1 𝑝𝑘

0

0 ⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

+
1

𝑝2
𝑖

∫
∑

𝑖

𝑘=1 𝑝𝑘

∑

𝑖−1

𝑘=1 𝑝𝑘

(𝑥 −

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

2

⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

+ ∫
1

∑

𝑖

𝑘=1 𝑝𝑘

1 ⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

=
1

𝑝2
𝑖

⋅ ∫
∑

𝑖

𝑘=1 𝑝𝑘

∑

𝑖−1

𝑘=1 𝑝𝑘

𝛽𝑥
𝛽+1

𝑑𝑥

− 2 ⋅
1

𝑝2
𝑖

⋅

𝑖−1

∑
𝑘=1

𝑝
𝑘

⋅ ∫
∑

𝑖

𝑘=1 𝑝𝑘

∑

𝑖−1

𝑘=1 𝑝𝑘

𝛽𝑥
𝛽

𝑑𝑥

+
1

𝑝2
𝑖

⋅ (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

2

⋅ ∫
∑

𝑖

𝑘=1 𝑝𝑘

∑

𝑖−1

𝑘=1 𝑝𝑘

𝛽𝑥
𝛽−1

𝑑𝑥

+ ∫
1

∑

𝑖

𝑘=1 𝑝𝑘

1 ⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

=
1

𝑝2
𝑖

⋅
𝛽

𝛽 + 2
⋅ [

[

(

𝑖

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

− (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

]

]

− 2 ⋅
1

𝑝2
𝑖

⋅

𝑖−1

∑
𝑘=1

𝑝
𝑘

⋅
𝛽

𝛽 + 1

⋅ [

[

(

𝑖

∑
𝑘=1

𝑝
𝑘

)

1+𝛽

− (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

1+𝛽

]

]

+
1

𝑝2
𝑖

⋅ (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

2

[

[

(

𝑖

∑
𝑘=1

𝑝
𝑘

)

𝛽

− (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

𝛽

]

]

+ [

[

1 − (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

𝛽

]

]

= 1 −
1

𝑝2
𝑖

3

(𝛽 + 2) (𝛽 + 1)

× [

[

(

𝑖

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

− (

𝑖−1

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

]

]

,

𝑗 = 2, 3, . . . , 𝑛 − 1.

(35)

For the lowest seniority class, it yields

𝜛
2

𝑛

(𝜏
𝑗

) = 𝐸
𝑄

𝑡

[

[

(
(𝜛(𝜏
𝑗

) − ∑
𝑛−1

𝑘=1

𝑝
𝑘

)
+

𝑝
𝑛

)

2

]

]

=
1

𝑝2
𝑛

{

{

{

∫
∑

𝑛−1

𝑘=1 𝑝𝑘

0

0 ⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

+ ∫
1

∑

𝑛−1

𝑘=1 𝑝𝑘

(𝑥 −

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

2

⋅ 𝛽𝑥
𝛽−1

𝑑𝑥
}

}

}

=
1

𝑝2
𝑛

{

{

{

∫
1

∑

𝑛−1

𝑘=1 𝑝𝑘

𝛽𝑥
𝛽+1

− 2𝛽 ⋅ (

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

⋅ 𝑥
𝛽

+ 𝛽 ⋅ (

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

2

⋅ 𝑥
𝛽−1

𝑑𝑥
}

}

}

=
1

𝑝2
𝑛

⋅
𝛽

𝛽 + 2
⋅ (𝑥
𝛽+2

)
1

∑

𝑛−1

𝑘=1 𝑝𝑘

−
1

𝑝2
𝑛

⋅
2𝛽

𝛽 + 1
⋅ (

𝑛−1

∑
𝑘=1

𝑝
𝑘

) ⋅ (𝑥
𝛽+1

)
1

∑

𝑛−1

𝑘=1 𝑝𝑘

+
1

𝑝2
𝑛

⋅ (

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

2

⋅ (𝑥
𝛽

)
1

∑

𝑛−1

𝑘=1 𝑝𝑘

=
1

𝑝2
𝑛

⋅
𝛽

𝛽 + 2
⋅ [

[

1 − (

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

]

]

−
1

𝑝2
𝑛

⋅
2𝛽

𝛽 + 1
⋅ (

𝑛−1

∑
𝑘=1

𝑝
𝑘

) ⋅ [

[

1 − (

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

𝛽+1

]

]

+
1

𝑝2
𝑛

⋅ (

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

2

⋅ [

[

1 − (

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

𝛽

]

]

=
1

𝑝2
𝑛

{

{

{

1 − 2𝑝
𝑛

+ 𝑝
2

𝑛

−
𝛽 (𝛽 + 3)

(𝛽 + 1) (𝛽 + 2)

−
2

(𝛽 + 1) (𝛽 + 2)
(

𝑛−1

∑
𝑘=1

𝑝
𝑘

)

𝛽+2

}

}

}

.

(36)

The proof of Theorem 3 is completed.
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7. The Implied Jump Size Distribution and
the Optimal Default Probability

In this section, we will find the implied jump distribution and
the optimal default probability by assuming that the credit
spread of the jump-diffusion model is in accord with the
market credit spread.

For simplicity of presentation, Chen and Panjer [17]
assume that a company issues bonds of only two seniority
classes with the same maturity time 𝑇. The proportions of
the higher and lower seniority classes of bonds are denoted
by 𝑝
1

and 1 − 𝑝
1

, respectively. The recovery rates for the
higher and lower seniority are 𝜛

1

(𝜏) = min(𝜛(𝜏)/𝑝
1

, 1) and
𝜛
2

(𝜏) = (𝜛(𝜏) − 𝑝
1

)
+

/(1 − 𝑝
1

).
FromTheorem 3, we have

𝐸
𝑄

𝑡

[𝜛
2

1

(𝜏
𝑗

)] = 𝐸
𝑄

𝑡

[

[

(min(
𝜛2 (𝜏
𝑗

)

𝑝
1

, 1))

2

]

]

=
1

𝑝2
1

∫
𝑝1

0

𝑥
2

⋅ 𝛽𝑥
𝛽−1

𝑑𝑥 + ∫
1

𝑝1

1 ⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

= 1 −
2

𝛽 + 2
⋅ 𝑝
𝛽

1

,

𝐸
𝑄

𝑡

[𝜛
2

2

(𝜏
𝑗

)] = 𝐸
𝑄

𝑡

[(
(𝜛(𝜏
𝑗

) − 𝑝
1

)
+

1 − 𝑝
1

)

2

]

=
1

(1 − 𝑝
1

)
2

⋅ ∫
𝑝1

0

0𝛽𝑥
𝛽−1

𝑑𝑥

+
1

(1 − 𝑝
1

)
2

∫
1

𝑝1

(𝑥 − 𝑝
1

)
2

⋅ 𝛽𝑥
𝛽−1

𝑑𝑥

=
1

(1 − 𝑝
1

)
2

⋅ ∫
1

𝑝1

(𝛽𝑥
𝛽+1

− 2𝑝
1

𝛽𝑥
𝛽

+𝑝
2

1

𝛽𝑥
𝛽−1

) 𝑑𝑥

=
1

(1 − 𝑝
1

)
2

⋅ [
𝛽

𝛽 + 2
⋅ (1 − 𝑝

𝛽+2

1

) −
2𝑝
1

𝛽

𝛽 + 1

⋅ (1 − 𝑝
𝛽+1

1

) + 𝑝
2

1

⋅ (1 − 𝑝
𝛽

1

) ]

=
1

(1 − 𝑝
1

)
2

⋅ [ (
𝛽

𝛽 + 2
−

2𝛽

𝛽 + 1
𝑝
1

+ 𝑝
2

1

)

−
2

(𝛽 + 1) (𝛽 + 2)
𝑝
𝛽+2

1

] .

(37)

From (31), for both of the two seniority classes of bonds,
we have
𝑃 (𝑡, 𝑇) − 𝑉

1

(𝑡, 𝑇)

𝑃 (𝑡, 𝑇)
= {1 − 𝐸

𝑄

𝑡

[𝜛
2

1

(𝜏
𝑗

)]} ⋅ 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇) ,

(38)

𝑃 (𝑡, 𝑇) − 𝑉
2

(𝑡, 𝑇)

𝑃 (𝑡, 𝑇)
= {1 − 𝐸

𝑄

𝑡

[𝜛
2

2

(𝜏
𝑗

)]} ⋅ 𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇) .

(39)

It follows from (38) and (39) that

𝑃 (𝑡, 𝑇) − 𝑉
1

(𝑡, 𝑇)

𝑃 (𝑡, 𝑇) − 𝑉
2

(𝑡, 𝑇)
=

1 − 𝐸𝑄
𝑡

[𝜛2
1

(𝜏
𝑗

)]

1 − 𝐸
𝑄

𝑡

[𝜛2
2

(𝜏
𝑗

)]
. (40)

Note that if we consider the three equations (37) and
(40), we have three unknown variables. It is clear that the
parameter 𝛽 can be solved. Thus, from (38), the default
probability caused by a jump is expressed by

𝜑
𝑗

(ln(
𝑉
𝑡

𝐷
) , 𝑇)

= {1 − 𝐸
𝑄

𝑡

[𝜛
2

1

(𝜏
𝑗

)]}
−1

⋅
𝑃 (𝑡, 𝑇) − 𝑉

1

(𝑡, 𝑇)

𝑃 (𝑡, 𝑇)

=
𝛽 + 2

2𝑝
𝛽

1

⋅
𝑃 (𝑡, 𝑇) − 𝑉

1

(𝑡, 𝑇)

𝑃 (𝑡, 𝑇)
.

(41)

We have considered the situation that a firm issues
bonds of only two seniorities with the same maturity time
and obtained the implied jump distribution and the default
probability caused by a jump. When a firm issues bonds of
more than two seniorities, we may have more than three
equations. In this case, we can improve Assumption II in
Section 2 where (𝑇 − 𝜏) is a function with parameters of the
recovery rate𝜛(𝜏). For instance, if a firm issues bonds of three
seniorities classes, we can assume that 𝑇 − 𝜏 = −(1/𝑟) ln(𝑎 ⋅

𝜛(𝜏)). When a firm issues bonds of 𝑚(𝑚 ≥ 2) seniorities
classes, we assume the function to be a (𝑚 − 1)-parameter
edition.

8. Conclusion

In this paper, we have studied and tried to lay a theoretical
groundwork for a credit risk valuation model with time-
continuous liquidation based on ruin theory. We develop
a recovery scheme, named RTV+ scheme, which is an
extension of the recovery of treasury value scheme (RTV)

with time-continuous liquidation. By using the function
of the optimal time for liquidation and the recovery rate,
we obtain the function expression of the risky bond price.
In addition, a relationship between credit risk and ruin
theory is constructed by using equivalence principle. Thus,
the methodology in ruin theory can be used in credit risk
valuation. Specifically, when the firm value follows a jump-
diffusion process with a Log-exponentially distributed jump,
we find a method to obtain the optimal default probability
with time-continuous liquidation.
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