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Tensor subspace analysis (TSA) and discriminant TSA (DTSA) are two effective two-sided projection methods for dimensionality
reduction and feature extraction of face image matrices. However, they have two serious drawbacks. Firstly, TSA and DTSA
iteratively compute the left and right projection matrices. At each iteration, two generalized eigenvalue problems are required
to solve, which makes them inapplicable for high dimensional image data. Secondly, the metric structure of the facial image
space cannot be preserved since the left and right projection matrices are not usually orthonormal. In this paper, we propose the
orthogonal TSA (OTSA) and orthogonal DTSA (ODTSA). In contrast to TSA and DTSA, two trace ratio optimization problems
are required to be solved at each iteration. Thus, OTSA and ODTSA have much less computational cost than their nonorthogonal
counterparts since the trace ratio optimization problem can be solved by the inexpensive Newton-Lanczos method. Experimental
results show that the proposed methods achieve much higher recognition accuracy and have much lower training cost.

1. Introduction

Many applications in the field of information process, such
as data mining, information retrieval, machine learning, and
pattern recognition, require dealing with high-dimensional
data. Dimensionality reduction has been a key technique for
achieving high efficiency in manipulating the high-dimen-
sional data. In dimensionality reduction, the high-dimen-
sional data are transformed into a low-dimensional subspace
with limited loss of information.

Principal component analysis (PCA) [1] and linear dis-
criminant analysis (LDA) [2] are two of the most well-known
and widely used dimension reduction methods. PCA is an
unsupervised method, which aims to find the projection
directions by maximizing variance of features in the low-
dimensional subspace. It is also considered as the best data
representation method in that the mean squared error
between the original data and the data reconstructed using
the PCA transform result is the minimum. LDA is a super-
vised method and is based on the following idea: the trans-
form results of the data points of different classes should be

far as much as possible from each other and the transform
results of the data points of the same class should be close
as much as possible to each other. To achieve this goal, LDA
seeks to find optimal linear transformation by minimizing
the within-class distance and maximizing the between-class
distance simultaneously. The optimal transformation of LDA
can be computed by solving a generalized eigenvalue problem
involving scatter matrices. LDA has been applied successfully
for decades inmany important applications including pattern
recognition [2–4], information retrieval [5], face recognition
[6, 7], microarray data analysis [8, 9], and text classification
[10]. One of main drawbacks of LDA is that the scatter
matrices are required to be nonsingular, which is not true
when the data dimension is larger than the number of data
samples. This is known as the undersampled problem and
also called a small sampled problem [2]. To make LDA
applicable for undersampled problems, researchers have pro-
posed several variants of LDA including PCA + LDA [7, 11],
LDA/GSVD [12, 13], two-stage LDA [14], regularized LDA
[15–18], orthogonal LDA [19, 20], null space LDA [21, 22], and
uncorrelated LDA [20, 23].
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As is well known, both PCA and LDA only take into
account the global Euclidean structure of the original data.
However, the high-dimensional data in real-world often lie on
or near a smooth low-dimensional manifold. So, it is impor-
tant to preserve the local structure. Locality preserving pro-
jection (LPP) [24] is a locality structure preserving method
that aims to preserve the intrinsic geometry of the original
data. Usually, LPP has better performance than the methods
only preserving the global structure information such as PCA
and LDA for recognition problems.Moreover, LPP is not sen-
sitive to noise and outliers. In its original form, LPP is only an
unsupervised dimension reduction method. The supervised
version of LPP (SLPP) [25] exploits the class label information
of the training samples and thus has a higher classification
accuracy than the unsupervised LPP. Other improvements to
LPP include the discriminant locality preserving projection
(DLPP) [26] and the orthogonal discriminant locality pre-
serving projection method (ODLPP) [27].

During dealing with two-dimensional data such as
images, the traditional approach is first to transform these
image matrices into one-dimensional vectors and then apply
these dimension reduction methods mentioned above to the
vectorized image data. The approach of vectorizing image
matrices can bring high computational cost and a loss of
the underlying spatial structure information of the images.
In order to overcome disadvantages of the vectorization
approach, researchers have proposed 2D-PCA [28], 2D-LDA
[29], 2D-LPP [30], and 2D-DLPP [31]. These methods are
directly based on the matrix expression of image data. How-
ever, these two-dimensionalmethods only employ single-side
projection and thus cannot still preserve the intrinsic spatial
structure information of the images.

In the last decade, some researchers have developed sev-
eral second-order tensormethods for dimension reduction of
image data.Thesemethods aim to find two subspaces for two-
sided projection. Ye [32] has proposed a generalized low-rank
approximationmethod (GLRAM),which seeks to find the left
and right projections byminimizing the reconstruction error.
Moreover, an iterative procedure is presented. One of the
main drawbacks of GLRAM is that one eigenvalue decompo-
sition is required at each iteration step. So, the computational
cost is high. To overcome this disadvantage, Ren and Dai
[33] have proposed to replace the projection vectors obtained
from the eigenvalue decomposition by the bilinear Lanczos
vectors at each iteration step of GLRAM. Experimental
results show that the approach based on bilinear Lanczos
vectors is competitive with the conventional GLRAM in clas-
sification accuracy, while it has a much lower computational
cost. We note that GLRAM is an unsupervised method and
only preserves the global Euclidean structure of the image
data. Tensor subspace analysis (TSA) [34] is another two-
sided projectionmethod for dimension reduction and feature
extraction of image data. TSA preserves the local structure
information of the original data, while it does not employ the
discriminant information. Wang et al. [35] have proposed a
discriminant TSA (DTSA) by combining TSA with the dis-
criminant information. Like GLRAM, both TSA and DTSA
use an iterative procedure to compute the optimal solution of
two projection matrices. At each iteration of TSA and DTSA,

two generalized eigenvalue problems are required to solve,
which makes them inapplicable for dimension reduction and
feature extraction of high-dimensional image data.

In this paper, we propose the orthogonal TSA (OTSA)
and orthogonal DTSA (ODTSA) by constraining the left and
right projectionmatrices to orthogonal matrices. Similarly to
TSA and DTSA, OTSA and ODTSA also iteratively compute
the left and right projection matrices. However, instead of
solving two generalized eigenvalue problems as in TSA and
DTSA, we require solving two trace ratio optimization prob-
lems at each iteration of OTSA andODTSA during iteratively
computing the left and right projectionmatrices.Thus, OTSA
and ODTSA have much less computational cost than their
nonorthogonal counterparts since the trace ratio optimiza-
tion problem can be solved by the inexpensive Newton-
Lanczos method. Two experiments on face recognition are
conducted to evaluate the efficiency and effectiveness of the
proposedOTSA andODTSA. Experimental results show that
these methods proposed in this paper achieve much higher
recognition accuracy and havemuch lower training cost than
TSA and DTSA.

The remainder of the paper is organized as follows. In
Section 2, we briefly review TSA and DTSA. In Section 3, we
firstly propose the OTSA and ODTSA. Then, we give a brief
review of the trace ratio optimization problem and outline
the Newton’s method and the Newton-Lanczos for solving
the trace ratio optimization problem. Finally, we present
the algorithms for computing the left and right projection
matrices of OTSA and ODTSA. Section 4 is devoted to
numerical experiments. Some concluding remarks are pro-
vided in Section 5.

2. A Brief Review of TSA and DTSA

In this section, we give a brief review of TSA and DTSA,
which are two recently proposed linear methods for dimen-
sion reduction and feature extraction of face recognition.

Given a set of𝑁 image data,

X = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
} , (1)

where 𝑋
𝑖
∈ R𝐿1×𝐿2 . For simplicity of discussion, we assume

that the given data setX is partitioned into 𝐶 classes as

X = {𝑋
(1)

1
, 𝑋
(1)

2
, . . . , 𝑋

(1)

𝑁
1

, 𝑋
(2)

1
, 𝑋
(2)

2
, . . . , 𝑋

(2)

𝑁
2

, . . . ,

𝑋
(𝐶)

1
, 𝑋
(𝐶)

2
, . . . , 𝑋

(𝐶)

𝑁
𝑐

} ,

(2)

where 𝑁
𝑐
is the number of samples in the 𝑐th class and 𝑁 =

∑
𝐶

𝑐=1
𝑁
𝑐
.

Let 𝑊 ∈ R𝑁×𝑁 denote the total within-class similarity
matrix. Its entry is defined by

𝑊
𝑖𝑗
=

{{

{{

{

exp(
−

𝑋
𝑖
− 𝑋
𝑗



𝑡
) ,

if 𝑋
𝑖
, 𝑋
𝑗
are from

the same class,
0, otherwise,

(3)

where 𝑡 is a positive parameter which can be determined
empirically and ‖ ⋅ ‖ denotes the Frobenius norm for a matrix,
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that is, ‖𝐴‖ = √∑𝑖∑𝑗 𝐴
2

𝑖𝑗
. Note that the total within-class

similarity matrix𝑊 has a block diagonal form, where the 𝑐th
block is the within-class similarity matrix𝑊

𝑐
of the 𝑐th class

and the size of the 𝑐th block is equal to the number 𝑁
𝑐
of

samples in the 𝑐th class; that is,

𝑊 = diag (𝑊
1
,𝑊
2
, . . . ,𝑊

𝐶
) . (4)

The between-class similarity matrix 𝐵 is defined as fol-
lows:

𝐵
𝑖𝑗
= exp(

−

𝑋
𝑖
− 𝑋
𝑗



𝑡
) , 𝑖, 𝑗 = 1, 2, . . . , 𝐶, (5)

where

𝑋
𝑖
=

1

𝑁
𝑖

𝑁
𝑖

∑

𝑘=1

𝑋
(𝑖)

𝑘
(6)

is the mean of samples in the 𝑖th class.
Define the diagonal matrix𝐷 = diag(𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑁
) with

𝑑
𝑖
=

𝑁

∑

𝑗=1

𝑊
𝑖𝑗
. (7)

Then, 𝐿
𝑊

= 𝐷 − 𝑊 is called the within-class Laplacian
matrix and is symmetric positive semidefinite. Similarly, the
between-class Laplacian matrix is defined as 𝐿

𝐵
= 𝐸 − 𝐵,

where 𝐸 is a diagonal matrix with its 𝑖th entry being the row
sum of the 𝑖th row of 𝐵.

In two-sided projection methods such as TSA and DTSA
for dimension reduction and feature extraction of matrix
data, we aim to find two projection matrices 𝑈 ∈ R𝐿1×𝑙1 ,
𝑉 ∈ R𝐿2×𝑙2 with 𝑙

1
≤ 𝐿
1
and 𝑙
2
≤ 𝐿
2
such that the low-

dimensional data

𝑌
𝑖
= 𝑈
𝑇
𝑋
𝑖
𝑉 (8)

are easier to be distinguished.

2.1. Tensor Subspace Analysis. In TSA, we seek to find the left
and right transformationmatrices𝑈,𝑉 by solving the follow-
ing optimization problem:

max
𝑈,𝑉

∑
𝑁

𝑖=1
𝑑
𝑖

𝑌𝑖


2
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𝑁
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∑
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𝑗=1
𝑊
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𝑌
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2
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𝑁
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𝑑
𝑖


𝑈
𝑇
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𝑖
𝑉


2

∑
𝑁
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∑
𝑁
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𝑊
𝑖𝑗


𝑈𝑇𝑋
𝑖
𝑉 − 𝑈𝑇𝑋

𝑗
𝑉


2
.

(9)

The numerator part of the objective function in (9) denotes
the global variance on the manifold in low-dimensional sub-
space, while the denominator part of the objective function
is a measure of nearness of samples from the same class.
Therefore, by maximizing the objective function, the samples
from the same class are transformed into data points close to

each other and samples fromdifferent classes are transformed
into data points far from each other.

Define

𝑃
𝑈
=

[
[
[
[
[

[

𝑈
𝑇
𝑋
1

𝑈
𝑇
𝑋
2

...
𝑈
𝑇
𝑋
𝑁

]
]
]
]
]

]

, 𝑃
𝑉
=

[
[
[
[
[

[

𝑉
𝑇
𝑋
𝑇

1

𝑉
𝑇
𝑋
𝑇

2

...
𝑉
𝑇
𝑋
𝑇

𝑁

]
]
]
]
]

]

. (10)

These two matrices, respectively, are called the total left and
right transformation matrices in [35].

The optimization problem (9) can be equivalently rewrit-
ten as the following optimization problem:

max
𝑈,𝑉

tr (𝑉𝑇𝑃𝑇
𝑈
(𝐷 ⊗ 𝐼

𝑙
1

) 𝑃
𝑈
𝑉)

tr (𝑉𝑇𝑃𝑇
𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙
1

) 𝑃
𝑈
𝑉)

, (11)

or

max
𝑈,𝑉

tr (𝑈𝑇𝑃𝑇
𝑉
(𝐷 ⊗ 𝐼

𝑙
2

) 𝑃
𝑉
𝑈)

tr (𝑈𝑇𝑃𝑇
𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙
2

) 𝑃
𝑉
𝑈)

. (12)

Here and in the following, 𝐼
𝑙
denotes an identity matrix of

order 𝑙 and ⊗ represents the Kronecker product of the matri-
ces.

Clearly, from the equivalence between the maximization
problem (9) and the optimization problem (11) or (12), we
have the following results, from which an iterative algorithm
for the computation of the transformation matrices 𝑈 and 𝑉
results.

Theorem 1. Let 𝑈 and 𝑉 be the solution of the maximization
problem (9). Then, Consider the following.

(1) For a given 𝑈, 𝑉 consists of the 𝑙
2
eigenvectors of the

generalized eigenvalue problem

[𝑃
𝑇

𝑈
(𝐷 ⊗ 𝐼

𝑙
1

) 𝑃
𝑈
] V = 𝜆 [𝑃

𝑇

𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙
1

) 𝑃
𝑈
] V (13)

corresponding to the largest 𝑙
2
eigenvalues.

(2) For a given 𝑉, 𝑈 consists of the 𝑙
1
eigenvectors of the

generalized eigenvalue problem

[𝑃
𝑇

𝑉
(𝐷 ⊗ 𝐼

𝑙
2

) 𝑃
𝑉
] 𝑢 = 𝜆 [𝑃

𝑇

𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙
2

) 𝑃
𝑉
] 𝑢 (14)

corresponding to the largest 𝑙
1
eigenvalues.

Based onTheorem 1, iterative implementation of TSA has
been given in Algorithm 1; see, also, [34].

2.2. Discriminant Tensor Subspace Analysis. In this sub-
section, we simply review the second-order DTSA, which
is proposed in [35] for face recognition. DTSA combines
the advantages of tensor methods and manifold methods
and thus preserves the spatial structure information of the
original image data and the local structure of the samples dis-
tribution.Moreover, by integrating the class label information
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Input: A set of𝑁 sample matrices {𝑋
𝑖
}
𝑁

𝑖=1
with class label information, 𝑙

1
, 𝑙
2
.

Output: left and right transformation matrices 𝑈 and 𝑉.
(1) Initialize 𝑈 with an identity matrix;
(2) Until convergence Do:

(2.1) Form the matrix𝑀(𝑈)
𝐷

= 𝑃
𝑇

𝑈
(𝐷 ⊗ 𝐼

𝑙1
) 𝑃
𝑈
;

(2.2) Form the matrix𝑀(𝑈)
𝐿

= 𝑃
𝑇

𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙1
) 𝑃
𝑈
;

(2.3) Compute the 𝑙
2
eigenvectors {V

𝑖
}
𝑙2

𝑖=1
of the pencil (𝑀(𝑈)

𝐷
,𝑀
(𝑈)

𝐿
)

corresponding to the largest 𝑙
2
eigenvalues.

(2.4) Set 𝑉 = [V
1
, V
2
, . . . , V

𝑙2
];

(2.5) Form the matrix𝑀(𝑉)
𝐷

= 𝑃
𝑇

𝑉
(𝐷 ⊗ 𝐼

𝑙2
) 𝑃
𝑉
;

(2.6) Form the matrix𝑀(𝑉)
𝐿

= 𝑃
𝑇

𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙2
) 𝑃
𝑉
;

(2.7) Compute the 𝑙
1
eigenvectors {𝑢

𝑖
}
𝑙1

𝑖=1
of the pencil (𝑀(𝑉)

𝐷
,𝑀
(𝑉)

𝐿
)

corresponding to the largest 𝑙
1
eigenvalues.

(2.8) Set 𝑈 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑙1
];

End Do

Algorithm 1: TSA.

into TSA, DTSA obtains higher recognition accuracy for face
recognition.

In DTSA, the optimization problem is described as
follows:

max
𝑈,𝑉

∑
𝐶

𝑖=1
∑
𝐶

𝑗=1


𝑌
𝑖
− 𝑌
𝑗



2

𝐵
𝑖𝑗

∑
𝑁

𝑖=1
∑
𝑁

𝑗=1


𝑌
𝑖
− 𝑌
𝑗



2

𝑊
𝑖𝑗

= max
𝑈,𝑉

∑
𝐶

𝑖=1
∑
𝐶

𝑗=1


𝑈
𝑇
𝑋
𝑖
𝑉 − 𝑈

𝑇
𝑋
𝑗
𝑉


2

𝐵
𝑖𝑗

∑
𝑁

𝑖=1
∑
𝑁

𝑗=1


𝑌
𝑖
− 𝑌
𝑗



2

𝑊
𝑖𝑗

,

(15)

where𝑋
𝑖
is the mean of samples in the 𝑖th class.

We note that the objective function in (15) has the same
denominator part as that of the objective function in (9) and
however has a different numerator part from that of the objec-
tive function in (9). Since the numerator part of the objective
function in (15) is established based on the class label infor-
mation, DTSA has better performance than TSA for trans-
forming samples from different classes into data points far
from each other.

Define the mean left and right transformation matrices
𝑄
𝑈
, 𝑄
𝑉
by

𝑄
𝑈
=

[
[
[
[
[

[

𝑈
𝑇
𝑋
1

𝑈
𝑇
𝑋
2

...
𝑈
𝑇
𝑋
𝐶

]
]
]
]
]

]

, 𝑄
𝑉
=

[
[
[
[
[
[
[

[

𝑉
𝑇
𝑋
𝑇

1

𝑉
𝑇
𝑋
𝑇

2

...

𝑉
𝑇
𝑋
𝑇

𝐶

]
]
]
]
]
]
]

]

. (16)

Then, similarly, the optimization problem (15) can be equiv-
lently formulated as the optimization problem

max
𝑈,𝑉

tr (𝑉𝑇𝑄𝑇
𝑈
(𝐿
𝐵
⊗ 𝐼
𝑙
1

)𝑄
𝑈
𝑉)

tr (𝑉𝑇𝑃𝑇
𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙
1

) 𝑃
𝑈
𝑉)

(17)

or the optimization problem

max
𝑈,𝑉

tr (𝑈𝑇𝑄𝑇
𝑉
(𝐿
𝐵
⊗ 𝐼
𝑙
2

)𝑄
𝑉
𝑈)

tr (𝑈𝑇𝑃𝑇
𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙
2

) 𝑃
𝑉
𝑈)

, (18)

where 𝐿
𝑊
is the within-class Laplacian matrix and 𝐿

𝐵
is the

between-class Laplacian matrix.
Similarly, for the optimization problem (15), we have the

following result.

Theorem 2. Let 𝑈 and 𝑉 be the solution of the maximization
problem (15). Then, Consider the following.

(1) For a given 𝑈, 𝑉 consists of the 𝑙
2
eigenvectors of the

generalized eigenvalue problem

[𝑄
𝑇

𝑈
(𝐿
𝐵
⊗ 𝐼
𝑙
1

)𝑄
𝑈
] V = 𝜆 [𝑃

𝑇

𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙
1

) 𝑃
𝑈
] V (19)

corresponding to the largest 𝑙
2
eigenvalues.

(2) For a given 𝑉, 𝑈 consists of the 𝑙
1
eigenvectors of the

generalized eigenvalue problem

[𝑄
𝑇

𝑉
(𝐿
𝐵
⊗ 𝐼
𝑙
2

)𝑄
𝑉
] 𝑢 = 𝜆 [𝑃

𝑇

𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙
2

) 𝑃
𝑉
] 𝑢 (20)

corresponding to the largest 𝑙
1
eigenvalues.

The algorithm proposed in [35] for implementing DTSA
is described in Algorithm 2.

3. Orthogonal TSA and DTSA

Although TSA and DTSA are two effective methods for
dimension reduction and feature extraction of facial images,
they still have two serious defects. Firstly, as shown in the
section above, the column vectors of the left and right trans-
formation matrices 𝑈 and 𝑉 are the eigenvectors of sym-
metric positive semidefinite pencils. So, they are not usually
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Input: A set of𝑁 sample matrices {𝑋
𝑖
}
𝑁

𝑖=1
with class label information, 𝑙

1
, 𝑙
2
.

Output: left and right transformation matrices 𝑈 and 𝑉.
(1) Initialize 𝑈 with an identity matrix;
(2) Until convergence Do:

(2.1) Form the matrix𝑀(𝑈)
𝐿𝐵

= 𝑄
𝑇

𝑈
(𝐿
𝐵
⊗ 𝐼
𝑙1
)𝑄
𝑈
;

(2.2) Form the matrix𝑀(𝑈)
𝐿𝑊

= 𝑃
𝑇

𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙1
) 𝑃
𝑈
;

(2.3) Compute the 𝑙
2
eigenvectors {V

𝑖
}
𝑙2

𝑖=1
of the pencil (𝑀(𝑈)

𝐿𝐵
,𝑀
(𝑈)

𝐿𝑊
)

corresponding to the largest 𝑙
2
eigenvalues.

(2.4) Set 𝑉 = [V
1
, V
2
, . . . , V

𝑙2
];

(2.5) Form the matrix𝑀(𝑉)
𝐿𝐵

= 𝑄
𝑇

𝑉
(𝐿
𝐵
⊗ 𝐼
𝑙2
)𝑄
𝑉
;

(2.6) Form the matrix𝑀(𝑉)
𝐿𝑊

= 𝑃
𝑇

𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙2
) 𝑃
𝑉
;

(2.7) Compute the 𝑙
1
eigenvectors {𝑢

𝑖
}
𝑙1

𝑖=1
of the pencil (𝑀(𝑉)

𝐿𝐵
,𝑀
(𝑉)

𝐿𝑊
)

corresponding to the largest 𝑙
1
eigenvalues.

(2.8) Set 𝑈 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑙1
];

End Do

Algorithm 2: DTSA.

orthonormal. The requirement of the orthogonality of the
columns of projectionmatrices is common in that orthogonal
projectionmatrices preserve themetric structure of the facial
image space. Thus, orthogonal methods have better locality
preserving power and higher discriminating power than
nonorthogonal methods. Secondly, at each iteration step of
TSA algorithm or DTSA algorithm, two generalized eigen-
value problems are required to solve for iteratively computing
the left and right projection matrices. As a result, when com-
putational efficiency is critical, relatively high computational
complexities of TSA and DTSA make them inapplicable for
real applications.

In this section, we propose the orthogonal TSA (OTSA)
and the orthogonalDTSA (ODTSA) for dimension reduction
and feature extraction of facial images.

In OTSA, we seek to obtain the orthogonal projection
matrices 𝑈 and 𝑉 by solving the optimization problem

max
𝑈∈R𝐿1×𝑙1 ,𝑉∈R𝐿2×𝑙2

∑
𝑁

𝑖=1
𝑑
𝑖

𝑌𝑖


2

∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
𝑊
𝑖𝑗


𝑌
𝑖
− 𝑌
𝑗



2
,

𝑈
𝑇
𝑈 = 𝐼
𝑙
1

, 𝑉
𝑇
𝑉 = 𝐼
𝑙
2

(21)

while in ODTSA, the optimization problem to be solved is

max
𝑈∈R𝐿1×𝑙1 ,𝑉∈R𝐿2×𝑙2

∑
𝐶

𝑖=1
∑
𝐶

𝑗=1


𝑌
𝑖
− 𝑌
𝑗



2

𝐵
𝑖𝑗

∑
𝑁

𝑖=1
∑
𝑁

𝑗=1


𝑌
𝑖
− 𝑌
𝑗



2

𝑊
𝑖𝑗

,

𝑈
𝑇
𝑈 = 𝐼
𝑙
1

, 𝑉
𝑇
𝑉 = 𝐼
𝑙
2

.

(22)

Clearly, for OTSA and ODTSA, we have the following
theorems.

Theorem 3. Let 𝑈 and 𝑉 be the solution of the maximization
problem (21). Then, Consider the following.

(1) For a given 𝑈, 𝑉 is the solution of the trace ratio opti-
mization problem

max
𝑉∈R𝐿2×𝑙2 ,𝑉𝑇𝑉=𝐼

𝑙2

tr (𝑉𝑇𝑃𝑇
𝑈
(𝐷 ⊗ 𝐼

𝑙
1

) 𝑃
𝑈
𝑉)

tr (𝑉𝑇𝑃𝑇
𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙
1

) 𝑃
𝑈
𝑉)

. (23)

(2) For a given 𝑉, 𝑈 is the solution of the trace ratio opti-
mization problem

max
𝑈∈R𝐿1×𝑙1 ,𝑈𝑇𝑈=𝐼

𝑙1

tr (𝑈𝑇𝑃𝑇
𝑉
(𝐷 ⊗ 𝐼

𝑙
2

) 𝑃
𝑉
𝑈)

tr (𝑈𝑇𝑃𝑇
𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙
2

) 𝑃
𝑉
𝑈)

. (24)

Theorem 4. Let 𝑈 and 𝑉 be the solution of the maximization
problem (22). Then, Consider the following.

(1) For a given 𝑈, 𝑉 is the solution of the trace ratio opti-
mization problem

max
𝑉∈R𝐿2×𝑙2 ,𝑉𝑇𝑉=𝐼

𝑙2

tr (𝑉𝑇𝑄𝑇
𝑈
(𝐿
𝐵
⊗ 𝐼
𝑙
1

)𝑄
𝑈
𝑉)

tr (𝑉𝑇𝑃𝑇
𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙
1

) 𝑃
𝑈
𝑉)

. (25)

(2) For a given 𝑉, 𝑈 is the solution of the trace ratio
optimization problem

max
𝑈∈R𝐿1×𝑙1 ,𝑈𝑇𝑈=𝐼

𝑙1

tr (𝑈𝑇𝑄𝑇
𝑉
(𝐿
𝐵
⊗ 𝐼
𝑙
2

)𝑄
𝑉
𝑈)

tr (𝑈𝑇𝑃𝑇
𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙
2

) 𝑃
𝑉
𝑈)

. (26)

The only difference between OTSA and TSA or between
ODTSA andDTSA is that𝑈 and𝑉 are constrained to orthog-
onal matrices in OTSA andODTSA. However, the projection
matrices 𝑈 and 𝑉 of orthogonal methods are quite different
from those of nonorthogonal methods. In nonorthogonal
methods,𝑈 and𝑉 can be formulated by some eigenvectors of
the generalized eigenvalue problems, while those of orthogo-
nal methods are the solutions of the trace ratio optimization
problems.
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3.1. Trace Ratio Optimization. In this subsection, we consider
the following trace ratio optimization problem:

max
𝑉∈R𝑛×𝑙,𝑉𝑇𝑉=𝐼

tr (𝑉𝑇𝐴𝑉)
tr (𝑉𝑇𝐵𝑉)

, (27)

where 𝐴, 𝐵 ∈ R𝑛×𝑛 are symmetric matrices.
For the trace ratio optimization problem (27), we have the

following result, which is given in [36].

Theorem 5. Let 𝐴, 𝐵 be two symmetric matrices and assume
that 𝐵 is positive semidefinite with rank greater than 𝑛−𝑙.Then
the ratio (27) admits a finite maximum value 𝜌

∗
.

Define the function 𝑓(𝜌) as follows:

𝑓 (𝜌) = max
𝑉∈R𝑛×𝑙,𝑉𝑇𝑉=𝐼

tr (𝑉𝑇 (𝐴 − 𝜌𝐵)𝑉) . (28)

We collect some important properties presented in [36]
on the function𝑓(𝜌) in the following theorem. Some of them
indicate the relation between the trace ratio optimization
problem (27) and the function 𝑓(𝜌).

Theorem 6. Let 𝐴, 𝐵 be two symmetric matrices and assume
that𝐵 is positive semidefinite with rank greater than 𝑛−𝑙.Then

(1) 𝑓(𝜌) is a non-increasing function of 𝜌;
(2) 𝑓(𝜌) = 0 if and only if 𝜌 = 𝜌

∗
, where 𝜌

∗
is the finite

maximum value of the ratio (27);
(3) the derivative of 𝑓(𝜌) is given by

𝑑𝑓 (𝜌)

𝑑𝜌
= − tr [𝑉(𝜌)𝑇𝐵𝑉 (𝜌)] , (29)

where

𝑉 (𝜌) = arg max
𝑉
𝑇
𝑉=𝐼

tr (𝑉𝑇 (𝐴 − 𝜌𝐵)𝑉) ; (30)

(4) the columns of the solution matrix 𝑉
∗
of the trace ratio

optimization problem (27) consists of the 𝑙 eigenvectors
of the matrix 𝐴 − 𝜌

∗
𝐵 corresponding to the largest 𝑙

eigenvalues, that is,

𝑉
∗
≡ arg max

𝑉∈R𝑛×𝑝,𝑉𝑇𝑉=𝐼

tr (𝑉𝑇𝐴𝑉)
tr (𝑉𝑇𝐵𝑉)

= arg max
𝑉
𝑇
𝑉=𝐼

tr (𝑉𝑇 (𝐴 − 𝜌
∗
𝐵)𝑉) .

(31)

Theorem 6 shows that instead of solving the trace ratio
optimization problem (27), 𝑉

∗
, the solution of the trace ratio

optimization problem (27), can be obtained through two
steps:

(1) compute the solution 𝜌
∗
of the nonlinear equation

𝑓(𝜌) = 0;
(2) compute the 𝑙 eigenvectors of the matrix 𝐴 − 𝜌

∗
𝐵

corresponding to the largest 𝑙 eigenvalues.

Newton’s method [37] is the most well-known and widely
used method for solving a nonlinear equation. The iterative
scheme of Newton’s method for solving 𝑓(𝜌) = 0 takes the
form

𝜌
𝑘+1

= 𝜌
𝑘
−
𝑓 (𝜌
𝑘
)

𝑓 (𝜌
𝑘
)

= 𝜌
𝑘
−

tr (𝑉(𝜌
𝑘
)
𝑇

(𝐴 − 𝜌
𝑘
𝐵)𝑉 (𝜌

𝑘
))

− tr (𝑉(𝜌
𝑘
)
𝑇

𝐵𝑉 (𝜌
𝑘
))

=

tr (𝑉(𝜌
𝑘
)
𝑇

𝐴𝑉 (𝜌
𝑘
))

tr (𝑉(𝜌
𝑘
)
𝑇

𝐵𝑉 (𝜌
𝑘
))

,

(32)

where𝑉(𝜌
𝑘
) ∈ R𝑛×𝑙 consists of the 𝑙 eigenvectors of thematrix

𝐴 − 𝜌
𝑘
𝐵 corresponding to the largest 𝑙 eigenvalues.

We now outline the procedure of Newton’s method
for solving the trace ratio optimization problem (27) in
Algorithm 3.

We remark that since Newton’s method is commonly of
quadratic convergence, only several iterations are required
in Algorithm 3 for obtaining a good approximation of 𝑉

∗
.

The main cost at each iteration in Algorithm 3 is due to
the computation of the 𝑙 eigenvectors of a symmetric matrix
corresponding to the largest 𝑙 eigenvalues.

3.2. Lanczos Vectors. In this subsections we review the Lanc-
zos procedure for generating the Lanczos vectors of a sym-
metric matrix and the Newton-Lanczos method for solving
the trace ratio optimization problem (27).

Given a symmetric matrix 𝐴 and an initial unit vector V.
Let K

𝑙
(𝐴, V) denote the Krylov subspace associated with 𝐴

and V, which is defined as

K
𝑙
(𝐴, V) = span {V, 𝐴V, 𝐴2V, . . . , 𝐴𝑙−1V} . (33)

The Lanczos vectors V
1
, V
2
, . . . , V

𝑙
, which form an ortho-

normal basis of the Krylov subspace K
𝑙
(𝐴, V), can be estab-

lished by the 3-term recurrence

𝛽
𝑘+1

V
𝑘+1

= 𝐴V
𝑘
− 𝛼
𝑘
V
𝑘
− 𝛽
𝑘
𝑞
𝑘−1 (34)

with 𝛽
1
𝑞
0
= 0. The coefficients 𝛼

𝑘
and 𝛽

𝑘+1
are computed so

as to ensure that V𝑇
𝑘+1

V
𝑘
and ‖V

𝑘+1
‖
2
= 1. The pseudocode of

the Lanczos procedure for constructing the Lanczos vectors
V
1
, V
2
, . . . , V

𝑙
is outlined in Algorithm 4.

It is known [38] that Lanczos vectors are commonly good
approximation of the eigenvectors of a symmetric matrix
corresponding to the largest eigenvalues. So it is reasonable
that the 𝑙 eigenvectors of the matrix𝐴− 𝜌𝐵 corresponding to
the largest 𝑙 eigenvalues in Algorithm 3 are substituted by the
Lanczos vectors of thematrix𝐴−𝜌𝐵 to save the expensive cost
for computing the 𝑙 eigenvectors. This substitution deduces
the Newton-Lanczos method for solving the trace ratio
optimization problem (27), which is outlined in Algorithm 5;
see, also, [36].
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Input: 𝐴, 𝐵 and a dimension 𝑙
Output: 𝑉 which solves the trace ratio optimization problem (27)

(1) Select an initial 𝑛 × 𝑙 unitary matrix 𝑉;
(2) Compute

𝜌 =

tr (𝑉𝑇𝐴𝑉)
tr [𝑉𝑇𝐵𝑉]

;

(3) Until convergence Do:
(3.1) Compute the 𝑙 eigenvectors {V

𝑖
}
𝑙

𝑖=1
of the matrix 𝐴 − 𝜌𝐵

corresponding to the largest 𝑙 eigenvalues.
(3.2) Set 𝑉 = [V

1
, V
2
, . . . , V

𝑙
];

(3.3) Compute

𝜌 =

tr (𝑉𝑇𝐴𝑉)
tr [𝑉𝑇𝐵𝑉]

.

End Do

Algorithm 3: Newton’s method for trace ratio optimization.

Input: 𝐴, V and a dimension 𝑙
Output: Lanczos vectors V

1
, V
2
, . . . , V

𝑙

(1) Set V
1
= V, 𝛽

1
= 0 and V

0
= 0;

(2) For 𝑘 = 1 : 𝑙

(2.1) 𝑤
𝑘
= 𝐴V
𝑘
− 𝛽
𝑘
V
𝑘−1

;
(2.2) 𝛼

𝑘
= 𝑤
𝑇

𝑘
V
𝑘
;

(2.3) 𝑤
𝑘
= 𝑤
𝑘
− 𝛼
𝑘
V
𝑘
;

(2.4) 𝛽
𝑘+1

=
𝑤𝑘

2
;

(2.5) V
𝑘+1

= 𝑤
𝑘
/𝛽
𝑘+1

;
End For

Algorithm 4: Lanczos procedure.

3.3. OTSA and ODTSA. Similarly, from Theorem 3, we can
obtain two iterative procedures for computing the left and
right transformationmatrices𝑈 and𝑉 ofOTSA andODTSA.
Algorithms 6 and 7 summarize the steps to compute𝑈 and𝑉
for OTSA and ODTSA, respectively.

The trace ratio optimization problem in Algorithms 6
and 7 can be solved by Newton’s method or Newton-Lanczos
method. For distinguishing these two cases, we use OTSA-N
and ODTSA-N to denote the OTSA and ODTSA algorithms
with the trace ratio optimization problem being solved by
Newton’s method and use OTSA-NL and ODTSA-NL to
denote the OTSA and ODTSA algorithms with the trace
ratio optimization problem being solved by Newton-Lanczos
method.

3.4. Computational Complexity Analysis. Wenowdiscuss the
computational complexity of TSA,DTSA,OTSA-N,ODTSA-
N, OTSA-NL, and ODTSA-NL.

In each iteration of TSA, it costs about 2𝑙
1
𝐿
1
𝐿
2
𝑁,

2𝑙
2
𝐿
1
𝐿
2
𝑁, 2𝑙

1
𝐿
2

2
𝑁, 2𝑙

1
𝐿
2

2
𝑁, 2𝑙

2
𝐿
2

1
𝑁, and 2𝑙

2
𝐿
2

1
𝑁 flops

(floating-point operations) for computing 𝑃
𝑈
, 𝑃
𝑉
, 𝑀𝑈
𝐷
, 𝑀𝑈
𝐿
,

𝑀
(𝑉)

𝐷
, and𝑀(𝑉)

𝐿
, respectively.Moreover, it takes 66𝐿3

2
flops for

computing the eigenvectors of the pencil (𝑀𝑈
𝐷
,𝑀
𝑈

𝐿
) and 66𝐿3

1

for (𝑀(𝑉)
𝐷
,𝑀
(𝑉)

𝐿
). So, the total cost for each iteration of TSA

is about (2(𝑙
1
+ 𝑙
2
)𝐿
1
𝐿
2
+4𝑙
1
𝐿
2

2
+4𝑙
2
𝐿
2

1
)𝑁+66(𝐿

3

1
+𝐿
3

2
) flops.

The main difference between DTSA and TSA is that the
matrix𝑀𝑈

𝐷
,𝑀(𝑉)
𝐷

in TSA is replaced by𝑀(𝑈)
𝐿
𝐵

,𝑀(𝑉)
𝐿
𝐵

in DTSA,
respectively. For computing 𝑄

𝑈
, 𝑄
𝑉
,𝑀(𝑈)
𝐿
𝐵

, and𝑀(𝑉)
𝐿
𝐵

in each
iteration of DTSA, it will spend about 2𝑙

1
𝐿
1
𝐿
2
𝐶, 2𝑙
2
𝐿
1
𝐿
2
𝐶,

2𝑙
1
𝐿
2

2
𝐶, and 2𝑙

2
𝐿
2

1
𝐶 flops.Thus, DTSA costs (2(𝑙

1
+ 𝑙
2
)𝐿
1
𝐿
2
+

2𝑙
1
𝐿
2

2
+2𝑙
2
𝐿
2

1
)(𝑁+𝐶)+66(𝐿

3

1
+𝐿
3

2
) flops for each iteration. In

case 𝐶 ≪ 𝑁, The computation amount of DTSA is less than
TSA.

It is known that for solving the trace ratio optimiza-
tion problem (27), it costs 9𝑇𝑛3 flops in Newton’s method
(Algorithm 3) and 2𝑇𝑙𝑛

2 in the Newton-Lanczos method
(Algorithm 5), where 𝑇 is the number of the Newton’s
iteration steps. So, the total cost for each iteration of OTSA-
N, ODTSA-N, OTSA-NL, and ODTSA-NL is about (2(𝑙

1
+

𝑙
2
)𝐿
1
𝐿
2
+ 4𝑙
1
𝐿
2

2
+ 4𝑙
2
𝐿
2

1
)𝑁 + 9𝑇(𝐿

3

1
+ 𝐿
3

2
), (2(𝑙

1
+ 𝑙
2
)𝐿
1
𝐿
2
+

2𝑙
1
𝐿
2

2
+2𝑙
2
𝐿
2

1
)(𝑁+𝐶)+9𝑇(𝐿

3

1
+𝐿
3

2
), (2(𝑙
1
+ 𝑙
2
)𝐿
1
𝐿
2
+4𝑙
1
𝐿
2

2
+

4𝑙
2
𝐿
2

1
)𝑁 + 2𝑇(𝑙

1
𝐿
2

1
+ 𝑙
2
𝐿
2

2
), and (2(𝑙

1
+ 𝑙
2
)𝐿
1
𝐿
2
+ 2𝑙
1
𝐿
2

2
+

2𝑙
2
𝐿
2

1
)(𝑁+𝐶)+2𝑇(𝑙

1
𝐿
2

1
+𝑙
2
𝐿
2

2
) flops, respectively. In general,

2 or 3 iteration steps are enough for the convergence of the
Newton’s iteration.Therefore, OTSA andODTSA require less
computation amount than TSA and DTSA.
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Input: 𝐴, 𝐵 and a dimension 𝑙
Output: 𝑉 which solves the trace ratio optimization problem (27)

(1) Select an initial 𝑛 × 𝑙 unitary matrix 𝑉;
(2) Compute

𝜌 =

tr (𝑉𝑇𝐴𝑉)
tr [𝑉𝑇𝐵𝑉]

;

(3) Until convergence Do:
(3.1) Compute the 𝑙 Lanczos vectors {V

𝑖
}
𝑙

𝑖=1
of 𝐴 − 𝜌𝐵 by Algorithm 4.

(3.2) Set 𝑉 = [V
1
, V
2
, . . . , V

𝑙
];

(3.3) Compute

𝜌 =

tr (𝑉𝑇𝐴𝑉)
tr [𝑉𝑇𝐵𝑉]

.

End Do

Algorithm 5: Newton-Lanczos method for trace ratio optimization.

Input: A set of𝑁 sample matrices {𝑋
𝑖
}
𝑁

𝑖=1
with class label information, 𝑙

1
, 𝑙
2
.

Output: left and right transformation matrices 𝑈 and 𝑉.
(1) Initialize 𝑈 with an identity matrix;
(2) Until convergence Do:

(2.1) Form the matrix𝑀(𝑈)
𝐷

= 𝑃
𝑇

𝑈
(𝐷 ⊗ 𝐼

𝑙1
) 𝑃
𝑈
;

(2.2) Form the matrix𝑀(𝑈)
𝐿

= 𝑃
𝑇

𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙1
) 𝑃
𝑈
;

(2.3) Compute 𝑉 by solving the trace ratio optimization problem (27) with
𝐴 = 𝑀

(𝑈)

𝐷
and 𝐵 = 𝑀

(𝑈)

𝐿
;

(2.4) Form the matrix𝑀(𝑉)
𝐷

= 𝑃
𝑇

𝑉
(𝐷 ⊗ 𝐼

𝑙2
) 𝑃
𝑉
;

(2.5) Form the matrix𝑀(𝑉)
𝐿

= 𝑃
𝑇

𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙2
) 𝑃
𝑉
;

(2.6) Compute 𝑈 by solving the trace ratio optimization problem (27) with
𝐴 = 𝑀

(𝑉)

𝐷
and 𝐵 = 𝑀

(𝑉)

𝐿
.

End Do

Algorithm 6: OTSA.

The time complexity for TSA, DTSA, OTSA-N, ODTSA-
N, OTSA-NL, and ODTSA-NL is presented in Table 1.
We note that the space complexity of all the methods is
𝐿
1
𝐿
2
𝑁.

It is well known that Newton’s iterative method for a
nonlinear equation is commonly of quadratic convergence.
So, it converges very fast for the nonlinear equation 𝑓(𝜌) =

0, where 𝑓(𝜌) is defined in (28). We have observed in our
numerical experiments that 5 Newton’s iteration steps are
enough for convergence. Therefore, the total computation
costs of OTSA and ODTSA are much less than those of TSA
and DTSA for obtaining the left and right transformation
matrices 𝑈 and 𝑉.

4. Experimental Results

In order to evaluate the performance of the proposed OTSA-
N, ODTSA-N, OTSA-NL, ODTSA-NL algorithms, two well-
known face image databases, that is, ORL (http://www.cl.cam
.ac.uk/research/dtg/attarchive/facedatabase.html) and Yale
(http://www.cad.zju.edu.cn/home/dengcai/Data/data.html),
are used in the experiments. We compare the recognition

performance of OTSA-N, ODTSA-N, OTSA-NL, and
ODTSA-NL algorithms with TSA [34] and DTSA [35]. In
the experiments, the nearest neighbor classifier is used to
classify the transformed results of samples obtained using
different methods.

4.1. Experiment on the ORL Database of Face Images. The
ORL database contains 400 images of 40 individuals. Each
individual has 10 images, which were taken at different time,
different lighting conditions, different facial expressions, and
different accessories (glasses/no glasses). The sample images
of one individual from the ORL database are shown in
Figure 1.

We randomly select 𝑖 (𝑖 = 2, 3, . . . , 7, 8) samples of each
individual for training, and the remaining ones are used for
testing. Based on the training set, the project matrices are
obtained by TSA, DTSA, OTSA-N, ODTSA-N, OTSA-NL,
and ODTSA-NL. Then all the testing samples are projected
to generate the low-dimensional samples, which will be
recognized by using the nearest neighbor classifier.We repeat
the process 10 times and calculate the mean and standard
deviation of recognition rates.
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Input: A set of𝑁 sample matrices {𝑋
𝑖
}
𝑁

𝑖=1
with class label information, 𝑙

1
, 𝑙
2
.

Output: left and right transformation matrices 𝑈 and 𝑉.
(1) Initialize 𝑈 with an identity matrix;
(2) Until convergence Do:

(2.1) Form the matrix𝑀(𝑈)
𝐿𝐵

= 𝑄
𝑇

𝑈
(𝐿
𝐵
⊗ 𝐼
𝑙1
)𝑄
𝑈
;

(2.2) Form the matrix𝑀(𝑈)
𝐿𝑊

= 𝑃
𝑇

𝑈
(𝐿
𝑊
⊗ 𝐼
𝑙1
) 𝑃
𝑈
;

(2.3) Compute 𝑉 by solving the trace ratio optimization problem (27) with
𝐴 = 𝑀

(𝑈)

𝐿𝐵
and 𝐵 = 𝑀

(𝑈)

𝐿𝑊
;

(2.4) Form the matrix𝑀(𝑉)
𝐿𝐵

= 𝑄
𝑇

𝑉
(𝐿
𝐵
⊗ 𝐼
𝑙2
)𝑄
𝑉
;

(2.5) Form the matrix𝑀(𝑉)
𝐿𝑊

= 𝑃
𝑇

𝑉
(𝐿
𝑊
⊗ 𝐼
𝑙2
) 𝑃
𝑉
;

(2.6) Compute 𝑈 by solving the trace ratio optimization problem (27) with
𝐴 = 𝑀

(𝑉)

𝐿𝐵
and 𝐵 = 𝑀

(𝑉)

𝐿𝑊
.

End Do

Algorithm 7: ODTSA.

Table 1: Time complexity of TSA, DTSA, OTSA-N, ODTSA-N, OTSA-NL, and ODTSA-NL.

Method Time complexity
TSA (2 (𝑙

1
+ 𝑙
2
) 𝐿
1
𝐿
2
+ 4𝑙
1
𝐿
2

2
+ 4𝑙
2
𝐿
2

1
)𝑁 + 66 (𝐿

3

1
+ 𝐿
3

2
)

DTSA (2 (𝑙
1
+ 𝑙
2
) 𝐿
1
𝐿
2
+ 2𝑙
1
𝐿
2

2
+ 2𝑙
2
𝐿
2

1
) (𝑁 + 𝐶) + 66 (𝐿

3

1
+ 𝐿
3

2
)

OTSA-N (2 (𝑙
1
+ 𝑙
2
) 𝐿
1
𝐿
2
+ 4𝑙
1
𝐿
2

2
+ 4𝑙
2
𝐿
2

1
)𝑁 + 9𝑇 (𝐿

3

1
+ 𝐿
3

2
)

ODTSA-N (2 (𝑙
1
+ 𝑙
2
) 𝐿
1
𝐿
2
+ 2𝑙
1
𝐿
2

2
+ 2𝑙
2
𝐿
2

1
) (𝑁 + 𝐶) + 9𝑇 (𝐿

3

1
+ 𝐿
3

2
)

OTSA-NL (2 (𝑙
1
+ 𝑙
2
) 𝐿
1
𝐿
2
+ 4𝑙
1
𝐿
2

2
+ 4𝑙
2
𝐿
2

1
)𝑁 + 2𝑇 (𝑙

1
𝐿
2

1
+ 𝑙
2
𝐿
2

2
)

ODTSA-NL (2 (𝑙
1
+ 𝑙
2
) 𝐿
1
𝐿
2
+ 2𝑙
1
𝐿
2

2
+ 2𝑙
2
𝐿
2

1
) (𝑁 + 𝐶) + 2𝑇 (𝑙

1
𝐿
2

1
+ 𝑙
2
𝐿
2

2
)

Table 2: Recognition accuracy (%) on ORL database (mean ± std).

TSA DTSA OTSA-N OTSA-NL ODTSA-N ODTSA-NL
2 Train 75.62 ± 3.02 78.03 ± 3.28 77.89 ± 3.34 77.44 ± 3.24 81.25 ± 3.04 80.78 ± 3.16

3 Train 84.56 ± 2.42 88.07 ± 2.26 87.32 ± 2.45 87.54 ± 2.35 89.87 ± 2.44 89.57 ± 2.47

4 Train 90.19 ± 1.55 92.25 ± 1.80 91.67 ± 1.56 91.87 ± 1.42 93.95 ± 1.84 93.64 ± 1.78

5 Train 92.55 ± 1.16 94.35 ± 1.23 93.30 ± 2.08 93.35 ± 1.78 95.39 ± 1.28 95.42 ± 1.38

6 Train 93.77 ± 1.44 95.63 ± 1.79 94.65 ± 1.80 94.46 ± 1.69 96.34 ± 1.76 94.50 ± 1.58

7 Train 94.66 ± 1.36 96.25 ± 1.98 95.67 ± 2.19 95.48 ± 1.98 97.88 ± 2.09 97.60 ± 1.23

8 Train 96.50 ± 1.75 97.25 ± 1.65 97.32 ± 1.44 97.52 ± 1.56 98.76 ± 1.30 98.45 ± 1.57

Table 3: Training time (second) on ORL database.

TSA DTSA OTSA-N OTSA-NL ODTSA-N ODTSA-NL
4 Train 1.5440 1.6573 0.8912 0.2438 0.8766 0.2518
8 Train 2.1647 2.2371 1.0576 0.3429 1.1592 0.3262

In our experiments, the parameters 𝑙
1
and 𝑙
2
in all the

methods are set to be 10.The parameter 𝑡 is set to 1.Themean
and standard deviation of recognition accuracy of 10 runs of
tests of six algorithms are presented in Table 2. The training
time for each method is presented in Table 3. It shows that
for all methods, the recognition increases with the increase
in training sample size. Moreover, the orthogonal methods
have higher recognition accuracy than their nonorthogonal
versions, and the orthogonal methods based on the Newton-
Lanczos approach cost least computational time.

4.2. Experiment on the Yale Database. The Yale face database
contains 165 gray-scale images for 15 individuals where each
individual has 11 images. These facial images have variations
in lighting conditions (left-light, center-light, right-light),
facial expressions (normal, happy, sad, sleepy, surprised, and
wink), and with/without glasses. The 11 sample images of one
individual from the Yale database are shown in Figure 2.

As in the previous experiments, the parameters 𝑙
1
and

𝑙
2
are set to be 10, and 𝑡 is set to 1. The mean and standard

deviation of recognition accuracy of 10 runs of tests for the
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Table 4: Recognition accuracy (%) on Yale database (mean ± std).

TSA DTSA OTSA-N OTSA-NL ODTSA-N ODTSA-NL
2 Train 41.78 ± 5.04 45.41 ± 5.97 43.41 ± 5.97 43.51 ± 6.10 47.59 ± 5.36 47.23 ± 5.87

3 Train 52.25 ± 4.43 56.17 ± 3.40 54.72 ± 3.44 54.61 ± 4.09 58.33 ± 3.15 58.47 ± 3.54

4 Train 59.14 ± 3.90 63.10 ± 4.00 62.10 ± 4.04 62.76 ± 4.20 66.45 ± 4.32 66.33 ± 4.15

5 Train 64.22 ± 3.40 65.78 ± 4.51 65.34 ± 4.41 65.69 ± 4.53 67.98 ± 4.09 67.63 ± 4.60

6 Train 69.00 ± 4.54 70.13 ± 5.59 70.52 ± 5.33 70.46 ± 5.84 72.88 ± 5.67 72.59 ± 5.48

7 Train 72.17 ± 3.43 74.29 ± 4.65 74.47 ± 4.92 74.65 ± 3.70 76.79 ± 4.28 76.72 ± 4.12

8 Train 74.78 ± 4.38 76.89 ± 5.62 76.56 ± 5.13 76.83 ± 6.27 79.43 ± 5.05 79.26 ± 5.42

Table 5: Training time (second) on Yale database.

TSA DTSA OTSA-N OTSA-NL ODTSA-N ODTSA-NL
4 Train 0.5497 0.5744 0.3468 0.0980 0.3362 0.0933
8 Train 0.7808 0.8059 0.4378 0.1350 0.5484 0.1311

Figure 1: Sample images for one individual of the ORL database.

Figure 2: Sample images for one individual of the Yale database.

Yale database are presented in Table 4. The training time of
each method for the Yale database is presented in Table 5.
Clearly, ODTSA-N and ODTSA-NL perform better than
TSA, DTSA, OTSA-N, and OTSA-NL for this database, and
ODTSA-NL and OTSA-NL outperform TSA, DTSA, OTSA-
N, and ODTSA-N according to computational time.

5. Conclusion

In this paper, we propose an orthogonal TSA and orthogonal
DTSA for face recognition by constraining the left and right
projection matrices to orthogonal matrices. Similarly to TSA
and DTSA, OTSA and ODTSA also iteratively compute the
left and right projectionmatrices. However, instead of solving
two generalized eigenvalue problems as in TSA and DTSA,
it requires solving two trace ratio optimization problems
at each iteration of OTSA and ODTSA during iteratively
computing the left and right projectionmatrices.Thus, OTSA
and ODTSA have much less computational cost than their
nonorthogonal counterparts since the trace ratio optimiza-
tion problem can be solved by the inexpensive Newton-
Lanczos method. Experimental results show that these meth-
ods proposed in this paper achieve much higher recognition
accuracy and have much lower training cost than TSA and
DTSA.
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