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This paper presents a data-driven adaptive predictive control method using closed-loop subspace identification. As the predictor is
the key element of the predictive controller, we propose to derive such predictor based on the subspacematrices which are obtained
through the closed-loop subspace identification algorithm driven by input-output data. Taking advantage of transformational
systemmodel, the closed-loop data is effectively processed in this subspace algorithm. By combining themerits of receding window
and recursive identification methods, an adaptive mechanism for online updating subspace matrices is given. Further, the data
inspection strategy is introduced to eliminate the negative impact of the harmful (or useless) data on the system performance. The
problems of online excitation data inaccuracy and closed-loop identification in adaptive control are well solved in the proposed
method. Simulation results show the efficiency of this method.

1. Introduction

With the development of industrial technology, the industrial
processes become more complex than before and it is more
difficult to build the accurate mechanism models of these
processes. Hence, the data-driven approach has obtained
widespread attention since it emerged. Data-driven control
also turns into focus of study. Simply, the data-driven control
is a method from data to design controller directly [1, 2].
Model predictive control (MPC) has been attractive for
decades in control theory field. It has become more estab-
lished as the one of the choices for the control architecture
in the industry, especially with the improvement of compu-
tational capabilities of processors [3–8]. But one drawback of
the traditional industrial predictive control is based on input-
outputmodel, including parametric and nonparametric ones.
In order to improve the control performance, a state-space
model should be adopted, so the modern filter theory and
the design method of controller developed in recent years
can play a role [9]. Subspace identification is one of the

system identification algorithms for state-space modeling.
The control workers may relieve completely from the tedious
mechanismmodeling and the accurate state-spacemodel can
be obtained when there is enough process input-output data
[10–12]. More attractively, the subspace matrices obtained
through the subspace identification algorithm can be used
to derive the predictor of predictive controllers, eliminating
the intermediate step of process model identification and
providing a method of data-driven predictive control [13].
This method has been applied in some industrial processes
and achieved good results.

Most data-driven predictive controllers are designed
based on open-loop subspace identification, but in practice
it is often necessary to perform identification experiments
on systems operating in closed-loop. This is especially true
when open-loop experiments are not allowed due to safety
(unstable processes) or production (undesirable open-loop
behavior) reasons [14]. It is found that the regular open-loop
subspace identification algorithm yields a biased estimate
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when applied to closed-loop data [15]. The closed-loop data-
driven predictive control methods in [16, 17] have been
presented. But the predictor is derived with the estimated
Markov parameters which lead to a complicated predictor.
We get a simple predictor constructed by subspace matrices.
Jansson [18] developed a subspace method that can perform
well on data collected both in open- and closed-loop condi-
tions.

It is a major problem to implement adaptive control in
closed-loop system. In this paper, based on the subspace
prediction model derived from [18], we design a closed-loop
data-driven predictive controller to solve this problem that
obtains subspace matrices simply fromHankel matrices for a
better implementation of the following adaptive mechanism
in closed-loop system.

The control performance of predictive control is depen-
dent on the model quality [19]. The linear fixed model is
used to design the controller in conventional data-driven
predictive control method. It is applied to a linear system
showed good results in a short period. But there are nonlinear
and time-varying characteristics of long period in industrial
processes, resulting in a poor performance when using the
fixed model. It is highly desirable to implement adaptive
mechanism to adjust the system model online. The feature
of subspace identification is suitable for designing adaptive
predictive controller perfectly. The adaptive mechanism is
realized by online updating subspace matrices. At present,
there are two ways of online adaptive subspace identifica-
tion [20]. One is recursive identification method; by using
different weighting to the new and old data, the variation
of the process is tracked. The size of modeling data set
will become larger with the process operation which needs
enough memory storage. The other one is receding window
method; the size of modeling data set remains unchanged
and the oldest data is removed at the arriving of the new
data. It is unfavorable that the harmless (or useless) data
will increase information missing in the whole window and
the computation time is longer than recursive one [21]. The
recursive adaptive predictive control method is shown in [22,
23]; in [22] an adaptive predictive control strategy based on
recursive subspace identification has been presented, adopt-
ing the prediction model with the smallest matching error.
Mardi and Wang [23] presented an approach to constrained
subspace-based MPC of time-varying systems. The central
ideas are to find the predictive control law recursively using a
subspace identification technology and to update the control
law once a plant-model mismatch is detected. Although
both of them consider the forgetting factor to weaken the
negative impact of the old data on the identification model,
the identification accuracy will be declined as the old data
more or less. Accordingly, we can find the receding window
method in [24, 25]. Yang and Li [24] designed a subspace-
based predictive controller, using receding window method
to update subspace matrices at each time step for adaptive
mechanism. Wahab et al. [25] proposed a direct adaptive
MPC method which requires a single QR decomposition
for obtaining the controller parameters and uses a receding
horizon approach to process input-output data for the iden-
tification. These two methods require 𝑄𝑅 decomposition at

every time instant which increase the computational load
and have incapability of handling harmless (or useless) data
that bring performance degradation. Only one way of online
adaptive subspace identification is employed in the above
adaptive predictive control methods. We have been trying
to combine the two ways, in our previous work [26]; an
adaptivemechanism through online updating of the𝑅matrix
is proposed. By comparing the prediction error before and
after updating, we consider whether or not to update the
prediction model. This method employs a recursive strategy
to derive𝑅matrix but it requires us to compute every element
value of 𝑅 matrix that increases the computation time. The
model inspection can bring a promotion in harmless (or
useless) data suppression but it cannot eliminate the harmless
(or useless) data. Kameyama et al. [27] derived a recursive
subspace-based identification algorithm with fixed input-
output data size. It only solves the identification problem.
We get the online updated subspace matrices from partial
results in [27] but stress the derivation of the key elements of
𝑅 matrix which can reduce the computation time compared
to the method in [26] and extend it to design the predictive
controller. Another major problem to implement adaptive
control is the inaccuracy of online excitation data. When
the model or system parameters change, it needs to be
adequately excited. Otherwise, some of the obtained data
become harmless (or useless) ones which have a negative
impact on system performance. The data inspection strategy
introduced is a good solution for this problem through
comparing the prediction error.

The main contribution of the paper is the development
of a new solution of data-driven adaptive predictive control
ensuring adaptation of closed-loop systems. The method can
offer an attractive alternative for industrial nonlinear, time-
varying systems of long period in closed-loop condition and
there is no need for obtaining the system explicitmodelwhich
can reduce the complexity. Through transforming system
model form, the closed-loop subspace identification algo-
rithm is developed and the subspace matrices are obtained
from the closed-loop data.The adaptive mechanism is imple-
mented by combining the advantages of recedingwindowand
recursive identification methods. The subspace matrices are
derived by recursive method using a fixedmodest size of data
set with receding windowmethod.The proposedmechanism
can sufficiently fade the influence of the old data better than
only recursive method and bring less computation load than
only receding window method. By comparing the prediction
error before and after updating, we consider whether or not
to add the new data in data inspection strategy. The purpose
of the strategy is to eliminate the new arrival of harmful (or
useless) data produced by the online insufficient excitation.
The control performance is superior to adopt open-loop
identification and other methods of data-driven adaptive
predictive control.

The paper is organized as follows. In Section 2 the
open-loop data-driven predictive control method is given.
Section 3 provides the closed-loop data-driven predictive
control method. The adaptive mechanism is highlighted
in Section 4. Some simulation results are presented and
discussed in Section 5. Section 6 gives the conclusions.
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2. Open-Loop Data-Driven Predictive Control

Consider a discrete state-space system of order 𝑛 described
by innovations form

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐾𝑒𝑘,

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑒𝑘,
(1)

where 𝑢𝑘 ∈ R𝑚, 𝑦𝑘 ∈ R𝑙, and 𝑥𝑘 ∈ R𝑛 are input, output,
and state vectors, respectively.𝐾 is the Kalman filter gain and
𝑒𝑘 ∈ R𝑙 is an innovation sequence where variance 𝐸(𝑒𝑘𝑒

𝑇

𝑘
) =

𝑆. (𝐴, 𝐵, 𝐶,𝐷) are systemmatrices of appropriate dimensions
and 𝑆 is the innovations covariance matrix.

Construct the inputs block Hankel matrices using the
data of 𝑢𝑘 with 𝑘 ∈ {1, 2, . . . , 𝑁} at instant 𝑡:

𝑈𝑝 =

[
[
[
[

[

𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢𝑁−𝑓−𝑝+1
𝑢2 𝑢3 ⋅ ⋅ ⋅ 𝑢𝑁−𝑓−𝑝+1
...

... d
...

𝑢𝑝 𝑢𝑝+1 ⋅ ⋅ ⋅ 𝑢𝑁−𝑓

]
]
]
]

]

,

𝑈𝑓 =

[
[
[
[

[

𝑢𝑝+1 𝑢𝑝+2 ⋅ ⋅ ⋅ 𝑢𝑁−𝑓+1
𝑢𝑝+2 𝑢𝑝+3 ⋅ ⋅ ⋅ 𝑢𝑁−𝑓+2
...

... d
...

𝑢𝑝+𝑓 𝑢𝑝+𝑓+1 ⋅ ⋅ ⋅ 𝑢𝑁

]
]
]
]

]

,

(2)

where the subscripts𝑝 and𝑓 represent the “past” and “future”
time. Similarly, the outputs and noise Hankel matrices𝑌𝑝,𝑌𝑓,
𝐸𝑝, and 𝐸𝑓 can also be obtained in the same way. The system
past and future state sequences are defined as

𝑋𝑝 = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑁−𝑓−𝑝+1] ,

𝑋𝑓 = [𝑥𝑝+1 𝑥𝑝+2 ⋅ ⋅ ⋅ 𝑥𝑁−𝑓+1] .

(3)

The subspace prediction expression of the outputs can be
derived by recursive substitution of (1):

𝑌𝑓 = Γ𝑋𝑓 + 𝐻𝑈𝑓 + 𝐻
𝑠
𝐸𝑓, (4)

where Γ ∈ R𝑓𝑙×𝑛 is the extended observability matrix and
𝐻 ∈ R𝑓𝑙×𝑓𝑚 and 𝐻

𝑠
∈ R𝑓𝑙×𝑓𝑙 are the low triangular Toeplitz

matrices, respectively, denoted by

Γ =

[
[
[
[

[

𝐶

𝐶𝐴

...
𝐶𝐴
𝑓−1

]
]
]
]

]

, 𝐻 =

[
[
[
[
[

[

𝐷 0 ⋅ ⋅ ⋅ 0

𝐶𝐵 𝐷 d
...

... d d 0

𝐶𝐴
𝑓−2

𝐵 ⋅ ⋅ ⋅ 𝐶𝐵 𝐷

]
]
]
]
]

]

,

𝐻
𝑆
=

[
[
[
[
[

[

𝐼𝑙 0 ⋅ ⋅ ⋅ 0

𝐶𝐾 𝐼𝑙 d
...

... d d 0

𝐶𝐴
𝑓−2

𝐾 ⋅ ⋅ ⋅ 𝐶𝐾 𝐼𝑙

]
]
]
]
]

]

.

(5)

The optimal prediction of 𝑌𝑓 can be written as

𝑌̂𝑓 = 𝐿𝑤𝑊𝑝 + 𝐿𝑢𝑈𝑓, (6)

where𝑊𝑝 denotes the past input-output data matrix as𝑊𝑝 =

[𝑌
𝑇

𝑝
𝑈
𝑇

𝑝
]
𝑇, 𝐿𝑤 is the subspace matrix that corresponds to

the past input-output data, and 𝐿𝑢 is the subspacematrix that
corresponds to the future input data.

In order to calculate the subspace matrices 𝐿𝑤 and 𝐿𝑢
from block Hankel matrices, by solving the following least
squares problem:

min
𝐿
𝑤
,𝐿
𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑌𝑓 − (𝐿𝑤, 𝐿𝑢) (

𝑊𝑝
𝑈𝑓

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (7)

where ‖ ⋅ ‖𝐹 represents the Frobenius norm, the solution can
be found from the orthogonal projection of the row space of
𝑌𝑓 onto the row space of the matrix (

𝑊
𝑝

𝑈
𝑓

):

𝑌̂𝑓 =
𝑌𝑓

(
𝑊
𝑝

𝑈
𝑓

)
, (8)

where / denotes the orthogonal projection. The solution for
(8) can be done in an efficient way by performing a 𝑄𝑅-
decomposition:

[
[
[
[

[

𝑊𝑝

𝑈𝑓

𝑌𝑓

]
]
]
]

]

= 𝑅
𝑇
𝑄
𝑇

= [

[

𝑅11 0 0

𝑅21 𝑅22 0

𝑅31 𝑅32 𝑅33

]

]

[
[
[
[
[

[

𝑄
𝑇

1

𝑄
𝑇

2

𝑄
𝑇

3

]
]
]
]
]

]

, (9)

where 𝑅 is a low triangular matrix and 𝑄 is an orthogonal
matrix. By letting

𝐿 = [𝑅31 𝑅32] [
𝑅11 0

𝑅21 𝑅22
]

†

, (10)

with

𝐿 = [𝐿𝑤 𝐿𝑢] , (11)

where superscript † represents theMoore-Penrose pseudoin-
verse and 𝐿𝑤 ∈ R𝑓𝑙×𝑝(𝑚+𝑙), 𝐿𝑢 ∈ R𝑓𝑙×𝑓𝑚.

The model predictive control problem is realized by the
minimization of a cost function. A typical form of cost
function in MPC is given as follows:

𝐽 =

𝑁
𝑝

∑

𝑘=1

(𝑦𝑡+𝑘 − 𝑟𝑡+𝑘)
𝑇
𝐺𝑄 (𝑦𝑡+𝑘|𝑡 − 𝑟𝑡+𝑘)

+

𝑁
𝑐

∑

𝑘=1

Δ𝑢
𝑇

𝑡+𝑘−1
𝐺𝑅Δ𝑢𝑡+𝑘−1,

(12)

where 𝑟𝑡 is the reference setpoint signal at the current time 𝑡,
𝐺𝑄 and 𝐺𝑅 are the weight matrices, and 𝑁𝑝 and 𝑁𝑐 are the
prediction and control horizon, respectively. 𝑁𝑝 and 𝑁𝑐 are
defined as being equal to 𝑓, and (12) can be rewritten as

𝐽 = (𝑦𝑓 − 𝑟𝑓)
𝑇

𝐺𝑄 (𝑦𝑓 − 𝑟𝑓) + Δ𝑢
𝑇

𝑓
𝐺𝑅Δ𝑢𝑓. (13)
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Figure 1: The structure of closed-loop data-driven predictive
control.

In MPC framework, only the leftmost column is used to
predict output. And to avoid steady-state error, the predictor
of predictive controllers can be written in terms of incremen-
tal Δ𝑤𝑝 and Δ𝑢𝑓 as follows:

𝑦𝑓 = 𝐹𝑙𝑦𝑡 + Γ𝑙𝐿𝑤Δ𝑤𝑝 + Γ𝑙𝐿𝑢Δ𝑢𝑓, (14)

where

𝐹𝑙 = [𝐼
𝑇

𝑙
⋅ ⋅ ⋅ 𝐼
𝑇

𝑙
]
𝑇

, Γ𝑙 =

[
[
[
[

[

𝐼𝑙 0 ⋅ ⋅ ⋅ 0

𝐼𝑙 𝐼𝑙 ⋅ ⋅ ⋅ 0

...
... d

...
𝐼𝑙 𝐼𝑙 ⋅ ⋅ ⋅ 𝐼𝑙

]
]
]
]

]

,

Δ𝑢𝑓 = [Δ𝑢
𝑇

𝑡
Δ𝑢
𝑇

𝑡+1
⋅ ⋅ ⋅ Δ𝑢

𝑇

𝑡+𝑓−1
]
𝑇

,

Δ𝑤𝑝 = [Δ𝑦
𝑇

𝑡−𝑝+1
⋅ ⋅ ⋅ Δ𝑦

𝑇

𝑡
Δ𝑢
𝑇

𝑡−𝑝
⋅ ⋅ ⋅ Δ𝑢

𝑇

𝑡−1
]
𝑇

.

(15)

Using (14) in the minimization of cost function 𝐽 of (13), the
control sequence can be obtained as follows:

Δ𝑢𝑓 = −((Γ𝑙𝐿𝑢)
𝑇
𝐺𝑄(Γ𝑙𝐿𝑢) + 𝐺𝑅)

−1

× (Γ𝑙𝐿𝑢)
𝑇
𝐺𝑄 (Γ𝑙𝐿𝑤Δ𝑤𝑝 + 𝐹𝑙 (𝑦𝑡 − 𝑟𝑡)) .

(16)

At each time instance, only the first element ofΔ𝑢𝑓 is used
for calculating the control input. Therefore the control input
𝑢𝑡 is drawn as

𝑢𝑡 = 𝑢𝑡−1 + Δ𝑢𝑡. (17)

At the next instant, when the new input-output data
arrive, the same optimization is repeated. The above results
can also be seen in [28–32]. In the above objectives, subspace
matrices are identified using the open-loop data and applied
to the open-loop system suitably. But, in closed-loop system,
as the data correlations due to feedback, above identification
algorithm will result in a less accurate model and it will
lead to degradation in control performance. To overcome
the drawback, a closed-loop data-driven predictive control
method is given in Section 3.

3. Closed-Loop Data-Driven Predictive Control

The structure of closed-loop data-driven predictive control
method is shown in Figure 1.

In order to use the closed-loop structure of the subspace
identification technique, the necessary steps are presented.
Firstly, transform the system model in (1); define

𝐴 = 𝐴 − 𝐾𝐶,

𝐵 = 𝐵 − 𝐾𝐷.

(18)

It is well known that we can rewrite system model form
as follows:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐾𝑦𝑘,

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑒𝑘.
(19)

The prediction model can be represented as the subspace
expression:

𝑌𝑓 = Γ̃𝑋𝑓 + 𝐻̃𝑈𝑓 + 𝐻̃
𝑠
𝑌𝑓 + 𝐸𝑓, (20)

where

Γ̃ =

[
[
[
[

[

𝐶

𝐶𝐴

...
𝐶𝐴
𝑓−1

]
]
]
]

]

, 𝐻̃ =

[
[
[
[

[

𝐷 0 ⋅ ⋅ ⋅ 0

𝐶𝐵 𝐷 ⋅ ⋅ ⋅ 0

...
... d

...
𝐶𝐴
𝑓−2

𝐵 𝐶𝐴
𝑓−3

𝐵 ⋅ ⋅ ⋅ 𝐷

]
]
]
]

]

,

𝐺 =

[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

𝐶𝐾 0 ⋅ ⋅ ⋅ 0

...
... d

...
𝐶𝐴
𝑓−2

𝐾 𝐶𝐴
𝑓−3

𝐾 ⋅ ⋅ ⋅ 0

]
]
]
]

]

.

(21)

Next, it’s directly to obtain the system state-space model
in previous paper [18]. But in this paper, we focus on the
derivation of subspace matrices to implement data-driven
predictive control. Equation (20) can be rewritten as

𝑌̃𝑓 = Γ̃𝑋𝑓 + 𝐻̃𝑈𝑓 + 𝐸𝑓, (22)

where 𝑌̃𝑓 = (𝐼 − 𝐻̃
𝑠
)𝑌𝑓 and 𝐼 is the appropriate identity

matrix. 𝑌̃𝑓 can be denoted by constituting the subspace
matrices as follows:

𝑌̃𝑓 = 𝐿̃𝑤𝑋𝑓 + 𝐿̃𝑢𝑈𝑓 + 𝐸𝑓. (23)

The intermediate subspace matrices 𝐿̃𝑤 and 𝐿̃𝑢 are pro-
vided by the least squares problem:

[𝐿̃𝑤 𝐿̃𝑢] = arg min
𝐿̃
𝑤
,𝐿̃
𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑌̃𝑓 − (𝐿̃𝑤, 𝐿̃𝑢) (

𝑊𝑝
𝑈𝑓

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

. (24)

The solution procedure is similar to the derivation of
𝐿𝑤 and 𝐿𝑢 in Section 2. Therefore, the closed-loop subspace
matrices 𝐿𝑤 and 𝐿𝑢 can be calculated as

𝐿𝑤 = (𝐼 − 𝐻̃
𝑠
)
−1

𝐿̃𝑤,

𝐿𝑢 = (𝐼 − 𝐻̃
𝑠
)
−1

𝐿̃𝑢.

(25)
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We use incremental form to denote the predictor:

𝑦𝑓 = 𝐹𝑙𝑦𝑡 + Γ𝑙𝐿𝑤Δ𝑤𝑝 + Γ𝑙𝐿𝑢Δ𝑢𝑓. (26)

So the control sequence becomes

Δ𝑢𝑓 = −((Γ𝑙𝐿𝑢)
𝑇
𝐺𝑄(Γ𝑙𝐿𝑢) + 𝐺𝑅)

−1

× (Γ𝑙𝐿𝑢)
𝑇

𝐺𝑄 (Γ𝑙𝐿𝑤Δ𝑤𝑝 + 𝐹𝑙 (𝑦𝑡 − 𝑟𝑡)) ,

Δ𝑢𝑡 = [𝐼1 0 ⋅ ⋅ ⋅ 0] Δ𝑢𝑓,

(27)

where 𝐼1 is an identity matrix of size 1. The control input is

𝑢𝑡 = 𝑢𝑡−1 + Δ𝑢𝑡. (28)

At the next time step, measuring the new input-output
data and the new control input will be calculated using the
above optimization.

The above method relies on transforming system model
form for reducing the impact of the noise sequence 𝐸𝑓 on
input sequence 𝑈𝑓 greatly. It can be applied in closed-loop
system but also is suitable for open-loop system.

4. Adaptive Mechanism

The linear fixed model is used to design the controller in
traditional data-driven predictive control. But, in industrial
processes, in presence of nonlinear and time-varying char-
acteristics, the control performance is difficult to achieve the
desired control effect and it will cause great mismatch of the
model. Therefore, the adaptive control methods, updating
the model online according to the conditions, have been
attractive for decades and gradually applied to industrial
processes.The adaptive predictive control, one of the adaptive
methods, also has achieved a number of applications [33].
In this paper, an adaptive predictive control method is
presented. Drawing the advantages of the receding window
approach, the size of window ismaintained asmodest a priori
while the recursive approach is used for updating the model.
Additionally, due to the systemdisturbance andnoise, a larger
match error will be produced between the test data with
the real time data at some time when the model or system
parameters change. Such data is referred to as the harmful
(or useless) data. A data inspection strategy is suggested to
use the 1-step output prediction error for filtering the harmful
(or useless) data and eliminating the negative impact on
the system of the harmful (or useless) data. Then, updating
the subspace matrices online and implementing the adaptive
mechanism are done.

The subspace matrices are obtained from 𝑅 matrix, so
we update the 𝑅 matrix online using recursive method; then
the prediction model can be obtained to calculate the control
input.

Let 𝐴
∗

∈ R2(𝑝+𝑓)(𝑚+𝑙)×(𝑁−𝑓−𝑝+1) be the input-output
Hankel matrix at instant 𝑡 as

𝐴
∗

= [𝑊
𝑇

𝑃
(𝑡) 𝑈

𝑇

𝑓
(𝑡) 𝑌

𝑇

𝑓
(𝑡)]
𝑇

, (29)

where 𝑊𝑝(𝑡), 𝑈𝑓(𝑡), and 𝑌𝑓(𝑡) are the past input-output
data matrix, future input data matrix, and future output
data matrix, respectively, in closed-loop system. The oldest
column of 𝐴

∗ is defined as 𝑏 = [𝑤
𝑇

𝑃
(1) 𝑢

𝑇

𝑓
(1) 𝑦

𝑇

𝑓
(1)]
𝑇

,
where

𝑤𝑝 (1) = [𝑦
𝑇

𝑝
(1) 𝑢

𝑇

𝑝
(1)]
𝑇

= [𝑦
𝑇

1
⋅ ⋅ ⋅ 𝑦
𝑇

𝑝
𝑢
𝑇

1
⋅ ⋅ ⋅ 𝑢
𝑇

𝑝
]
𝑇

,

𝑢𝑓 (1) = [𝑢
𝑇

𝑝+1
𝑢
𝑇

𝑝+2
⋅ ⋅ ⋅ 𝑢
𝑇

𝑝+𝑓
]
𝑇

,

𝑦𝑓 (1) = [𝑦
𝑇

𝑝+1
𝑦
𝑇

𝑝+2
⋅ ⋅ ⋅ 𝑦
𝑇

𝑝+𝑓
]
𝑇

.

(30)

Given a set of new input-output data 𝑐 =

[𝑤
𝑇

𝑃
(𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)]

𝑇

at instant 𝑡 + 1, where

𝑤𝑝 (1) = [𝑦
𝑇

𝑝
(𝑡 + 1) 𝑢

𝑇

𝑝
(𝑡 + 1)]

𝑇

= [𝑦
𝑇

𝑁−𝑓−𝑝+2
⋅ ⋅ ⋅ 𝑦
𝑇

𝑁−𝑓+1
𝑢
𝑇

𝑁−𝑓−𝑝+2
⋅ ⋅ ⋅ 𝑢
𝑇

𝑁−𝑓+1
]
𝑇

,

𝑢𝑓 (𝑡 + 1) = [𝑢
𝑇

𝑁−𝑓+2
𝑢
𝑇

𝑁−𝑓+3
⋅ ⋅ ⋅ 𝑢
𝑇

𝑡+1
]
𝑇

,

𝑦𝑓 (𝑡 + 1) = [𝑦
𝑇

𝑁−𝑓+2
𝑦
𝑇

𝑁−𝑓+3
⋅ ⋅ ⋅ 𝑦
𝑇

𝑡+1
]
𝑇

.

(31)

The input-output Hankel matrix 𝐷
∗ at instant 𝑡 + 1 is

defined as

𝐴
∗

= [𝑊
𝑇

𝑃
(𝑡) 𝑈

𝑇

𝑓
(𝑡) 𝑌

𝑇

𝑓
(𝑡)]
𝑇

, (32)

where 𝑊𝑝(𝑡 + 1), 𝑈𝑓(𝑡 + 1), and 𝑌𝑓(𝑡 + 1) are similar to the
definitions of 𝑊𝑝(𝑡), 𝑈𝑓(𝑡), and 𝑌𝑓(𝑡).

In order to maintain the size of receding window con-
stant, it is necessary to exclude 𝑏 from 𝐴

∗ and add 𝑐 to 𝐴
∗.

So we can get the relation as [𝐴
∗

... 𝑐] = [𝑏
... 𝐷
∗
]; then the

relation [𝐴
∗

... 𝑐][𝐴
∗

... 𝑐]
𝑇

= [𝑏
... 𝐷
∗
][𝑏

... 𝐷
∗
]
𝑇 gives

𝐴
∗
𝐴
∗𝑇

+ 𝑐𝑐
𝑇

= 𝑏𝑏
𝑇
+ 𝐷
∗
𝐷
∗𝑇

. (33)

The 𝑄𝑅 decomposition of 𝐴∗ is

𝐴
∗

= 𝑅
𝑇
(𝑡) 𝑄
𝑇
(𝑡) = [

[

𝑅11 (𝑡) 0 0

𝑅21 (𝑡) 𝑅22 (𝑡) 0

𝑅31 (𝑡) 𝑅32 (𝑡) 𝑅33 (𝑡)

]

]

[
[
[
[
[

[

𝑄
𝑇

1
(𝑡)

𝑄
𝑇

2
(𝑡)

𝑄
𝑇

3
(𝑡)

]
]
]
]
]

]

=

[
[
[
[
[

[

𝑅11 (𝑡) 𝑄
𝑇

1
(𝑡)

𝑅21 (𝑡) 𝑄
𝑇

1
(𝑡) + 𝑅22 (𝑡) 𝑄

𝑇

2
(𝑡)

𝑅31 (𝑡) 𝑄
𝑇

1
(𝑡) + 𝑅32 (𝑡) 𝑄

𝑇

2
(𝑡) + 𝑅33 (𝑡) 𝑄

𝑇

3
(𝑡)

]
]
]
]
]

]

.

(34)

The objective is to get the results from the 𝑄𝑅 decompo-
sition of 𝐷∗:
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𝐷
∗

= 𝑅
𝑇
(𝑡 + 1)𝑄

𝑇
(𝑡 + 1)

=

[
[
[
[
[

[

𝑅11 (𝑡 + 1)𝑄
𝑇

1
(𝑡 + 1)

𝑅21 (𝑡 + 1)𝑄
𝑇

1
(𝑡 + 1) + 𝑅22 (𝑡 + 1)𝑄

𝑇

2
(𝑡 + 1)

𝑅31 (𝑡 + 1)𝑄
𝑇

1
(𝑡 + 1) + 𝑅32 (𝑡 + 1)𝑄

𝑇

2
(𝑡 + 1) + 𝑅33 (𝑡 + 1)𝑄

𝑇

3
(𝑡 + 1)

]
]
]
]
]

]

.

(35)

From (34)-(35), we have

𝐴
∗
𝐴
∗𝑇

+ 𝑐𝑐
𝑇

=

[
[
[
[
[

[

𝑅11 (𝑡) 𝑅
𝑇

11
(𝑡) 𝑅11 (𝑡) 𝑅

𝑇

21
(𝑡) 𝑅11 (𝑡) 𝑅

𝑇

31
(𝑡)

𝑅21 (𝑡) 𝑅
𝑇

11
(𝑡) 𝑅21 (𝑡) 𝑅

𝑇

21
(𝑡) + 𝑅22 (𝑡) 𝑅

𝑇

22
(𝑡) 𝑅21 (𝑡) 𝑅

𝑇

31
(𝑡) + 𝑅22 (𝑡) 𝑅

𝑇

32
(𝑡)

𝑅31 (𝑡) 𝑅
𝑇

11
(𝑡) 𝑅31 (𝑡) 𝑅

𝑇

21
(𝑡) + 𝑅32 (𝑡) 𝑅

𝑇

22
(𝑡) 𝑅31 (𝑡) 𝑅

𝑇

31
(𝑡) + 𝑅32 (𝑡) 𝑅

𝑇

32
(𝑡) + 𝑅33 (𝑡) 𝑅

𝑇

33
(𝑡)

]
]
]
]
]

]

+

[
[
[
[
[

[

𝑤𝑝 (𝑡 + 1)𝑤
𝑇

𝑝
(𝑡 + 1) 𝑤𝑝 (𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑤𝑝 (𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)

𝑢𝑓 (𝑡 + 1)𝑤
𝑇

𝑝
(𝑡 + 1) 𝑢𝑓 (𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑢𝑓 (𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)

𝑦𝑓 (𝑡 + 1)𝑤
𝑇

𝑝
(𝑡 + 1) 𝑦𝑓 (𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑦𝑓 (𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)

]
]
]
]
]

]

,

𝑏𝑏
𝑇
+ 𝐷
∗
𝐷
∗𝑇

=

[
[
[
[
[

[

𝑤𝑝 (1) 𝑤
𝑇

𝑝
(1) 𝑤𝑝 (1) 𝑢

𝑇

𝑓
(1) 𝑤𝑝 (1) 𝑦

𝑇

𝑓
(1)

𝑢𝑓 (1) 𝑤
𝑇

𝑝
(1) 𝑢𝑓 (1) 𝑢

𝑇

𝑓
(1) 𝑢𝑓 (1) 𝑦

𝑇

𝑓
(1)

𝑦𝑓 (1) 𝑤
𝑇

𝑝
(1) 𝑦𝑓 (1) 𝑢

𝑇

𝑓
(1) 𝑦𝑓 (1) 𝑦

𝑇

𝑓
(1)

]
]
]
]
]

]

+
[
[
[

[

𝑅
11
(𝑡 + 1) 𝑅

𝑇

11
(𝑡 + 1) 𝑅

11
(𝑡 + 1) 𝑅

𝑇

21
(𝑡 + 1) 𝑅

11
(𝑡 + 1) 𝑅

𝑇

31
(𝑡 + 1)

𝑅
21
(𝑡 + 1) 𝑅

𝑇

11
(𝑡 + 1) 𝑅

21
(𝑡 + 1) 𝑅

𝑇

21
(𝑡 + 1) + 𝑅

22
(𝑡 + 1) 𝑅

𝑇

22
(𝑡 + 1) 𝑅

21
(𝑡 + 1) 𝑅

𝑇

31
(𝑡 + 1) + 𝑅

22
(𝑡 + 1) 𝑅

𝑇

32
(𝑡 + 1)

𝑅
31
(𝑡 + 1) 𝑅

𝑇

11
(𝑡 + 1) 𝑅

31
(𝑡 + 1) 𝑅

𝑇

21
(𝑡 + 1) + 𝑅

32
(𝑡 + 1) 𝑅

𝑇

22
(𝑡 + 1) 𝑅

31
(𝑡 + 1) 𝑅

𝑇

31
(𝑡 + 1) + 𝑅

32
(𝑡 + 1) 𝑅

𝑇

32
(𝑡 + 1) + 𝑅

33
(𝑡 + 1) 𝑅

𝑇

33
(𝑡 + 1)

]
]
]

]

.

(36)

From (33), firstly, we can get the first element 𝑅11(𝑡+1) of
𝑅(𝑡 + 1):

𝑅11 (𝑡 + 1) 𝑅
𝑇

11
(𝑡 + 1)

= 𝑅11 (𝑡) 𝑅
𝑇

11
(𝑡) + 𝑤𝑝 (𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1) − 𝑤𝑝 (1) 𝑤

𝑇

𝑝
(1) ,

(37)

𝑅11 (𝑡 + 1) = chol (𝑅11 (𝑡) 𝑅
𝑇

11
(𝑡) + 𝑤𝑝 (𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1)

−𝑤𝑝 (1) 𝑤
𝑇

𝑝
(1)) ,

(38)

where chol is Cholesky factorization [34]. The subspace
matrices are obtained from 𝑅 matrix as in (10), so we just
calculate the elements required in 𝑅(𝑡 + 1):

𝑅21 (𝑡 + 1) = [𝑅21 (𝑡) 𝑅
𝑇

11
(𝑡) + 𝑢𝑓 (𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1)

− 𝑢𝑓 (1) 𝑤
𝑇

𝑝
(1)] [𝑅

𝑇

11
(𝑡 + 1)]

−1

,

𝑅31 (𝑡 + 1) = [𝑅31 (𝑡) 𝑅
𝑇

11
(𝑡) + 𝑦𝑓 (𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1)

− 𝑦𝑓 (1) 𝑤
𝑇

𝑝
(1)] [𝑅

𝑇

11
(𝑡 + 1)]

−1

,

𝑅22 (𝑡 + 1) = chol (𝑅21 (𝑡) 𝑅
𝑇

21
(𝑡) + 𝑅22 (𝑡) 𝑅

𝑇

22
(𝑡)

+ 𝑢𝑓 (𝑡 + 1) 𝑢
𝑇

𝑓
(𝑡 + 1) − 𝑢𝑓 (1) 𝑢

𝑇

𝑓
(1)

− 𝑅21 (𝑡 + 1) 𝑅
𝑇

21
(𝑡 + 1)) ,

𝑅32 (𝑡 + 1) = [𝑅31 (𝑡) 𝑅
𝑇

21
(𝑡) + 𝑅32 (𝑡) 𝑅

𝑇

22
(𝑡)

+ 𝑦𝑓 (𝑡 + 1) 𝑢
𝑇

𝑓
(𝑡 + 1) − 𝑦𝑓 (1) 𝑢

𝑇

𝑓
(1)

− 𝑅31 (𝑡 + 1) 𝑅
𝑇

21
(𝑡 + 1)] [𝑅

𝑇

22
(𝑡 + 1)]

−1

.

(39)
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Substituting (38) and (39) into (10), the subspace matrices at
instant 𝑡 + 1 can be derived by

[𝐿𝑤 (𝑡 + 1) 𝐿𝑢 (𝑡 + 1)]

= [𝑅31 (𝑡 + 1) 𝑅32 (𝑡 + 1)] [
𝑅11(𝑡 + 1) 0

𝑅21(𝑡 + 1) 𝑅22(𝑡 + 1)
]

†

.

(40)

By this way, the subspace matrices can be obtained
through the above method; then the predictor will be cal-
culated using (14) in open-loop system and (26) in closed-
loop system. So we can get the control input at instant 𝑡 + 1.
At the next time, repeat the above procedure to implement
the online adaptive mechanism and it will result in a quicker
response to process changes.

In presence of noise and online disturbance, it would
result in an inaccurate identification precision and an
unneglectable match error as the presence of the harmful
(or useless) data in the online excitation. In our previous
work [26], an inspection strategy of model precession was
proposed, but it cannot eliminate the negative impact of
harmful (or useless) data on system performance. In this
paper, a data inspection strategy introduced is the use of
prediction error to remove the harmful (or useless) data.

Calculate the following prediction error before adding
new data:

𝑒𝑡+1|𝑡 =
󵄨󵄨󵄨󵄨𝑦𝑡+1|𝑡 − 𝑦𝑡+1

󵄨󵄨󵄨󵄨 , (41)

where 𝑦𝑡+1 is the process output at 𝑡 + 1 time and 𝑦𝑡+1|𝑡 is the
predictive output at 𝑡 time predicting 𝑡+1 time before adding
new data.

Similarly, the prediction error after adding new data can
be also introduced:

𝑒
󸀠

𝑡+1|𝑡
=

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

𝑡+1|𝑡
− 𝑦𝑡+1

󵄨󵄨󵄨󵄨󵄨
, (42)

where 𝑦
󸀠

𝑡+1|𝑡
is the output at 𝑡 time predicting 𝑡 + 1 time after

adding new data.
While 𝑒𝑘+1|𝑘 ≤ 𝑒

󸀠

𝑘+1|𝑘
, the new data is a harmful (or

useless) one, so maintain 𝑅 matrix and the system model
invariably. Inversely, while 𝑒𝑘+1|𝑘 > 𝑒

󸀠

𝑘+1|𝑘
, use the new data

to update the 𝑅 matrix and predictor. At the next sampling
time, when the new data arrives, recycle the above progress.

For the sake of clarity, the proposed adaptive mechanism
implemented in the closed-loop data-driven predictive con-
troller is summarized in Algorithm 1.

5. Simulation Examples

In this section, a SISO (single input single output) example
and a MIMO (multiple input multiple output) example iden-
tified and controlled by the proposed method are presented
and discussed as follows.

Remark 1. Thedata usedwere preprocessedwith themethods
in Section 14 of [35].

Table 1: The prediction errors of open-loop and closed-loop
identified hair dryer models.

Identified method Open-loop Closed-loop
Prediction error 15.6561 8.6039

5.1. A Hair Dryer Example. This hair dryer system is a simple
mechanical device. The input 𝑢 is the power of the heating
device, which is a mesh of resistor wires. The output 𝑇

is the outlet air temperature, which can be measured by
thermocouple. Air is fanned through a tube and heated at
the inlet. The details can be seen in [35]. In this example,
we operated in case of closed-loop system. 𝑢 was chosen
to be a binary random signal shifting between 35W and
65W. The length of samples and sampling time were set to
1000 and 0.2 s, respectively. Firstly, totally 100 samples were
used to verify the identification accuracy.The comparisons in
Figure 2 show the response of the identified model and pro-
cess output using open-loop data-driven predictive control
(ODPC) in Section 1 and closed-loop data-driven predictive
control (CDPC) in Section 2, where “Rf ” is process output,
“open-loop” is open-loop identifiedmodel, and “closed-loop”
is closed-loop identified model.

To test the cross-validation in Figure 2, a form of predic-
tion error in [10] is given as

𝜀 = 100
1

𝑙

𝑙

∑
𝑐=1

[
[
[

[

√
∑
𝑁

𝑘=1
((𝑦𝑘)𝑐 − (𝑦

𝑝

𝑘
)𝑐)
2

∑
𝑁

𝑘=1
((𝑦𝑘)𝑐)

2

]
]
]

]

%, (43)

where 𝑦𝑘 and 𝑦
𝑝

𝑘
are the values at instant 𝑘 of process and

model output, respectively. Table 1 illustrates the prediction
errors of open-loop and closed-loop identified models.

The cross-validation results indicate that the closed-loop
model is more accurate than open-loop model. Then, the
system is given a performance of desired output changes to
track using ODPC and CDPC. The sample 𝑁 was set to
1000 and the sampling time 𝑡 used was 0.2 s. The tuning
parameters used in this simulation were 𝑝 = 𝑓 = 3,
𝑄 = 𝐼3, and 𝑅 = 0.16 ∗ 𝐼3. Figure 3 depicts the output
𝑇 tracking performance. It can be seen that CDPC shows
the favorable control performance and has a better tracking
ability compared to ODPC.

In order to verify the adaptive mechanism in Section 4,
the model of closed-loop identification was identified as a
state-space model:

𝐴 = [
0.9398 0.1275

−0.3046 0.8897
] , 𝐵 = [

−0.0019

−0.0721
] ,

𝐶 = [
−41.9003

5.5421
] , 𝐷 = [0.1157] .

(44)

We changed the system model at 𝑡 = 600 as

𝐴 = [
1.1762 −0.1275

−0.3046 0.8897
] , 𝐵 = [

−0.0019

−0.0721
] ,

𝐶 = [
−41.9003

5.5421
] , 𝐷 = [0.1157] .

(45)
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(1) Construct the block Hankel matrices from the closed-loop data.
(2) Obtain the intermediate subspace matrices 𝐿̃

𝑤
and 𝐿̃

𝑢
by solving the least squares problem (24).

(3) Compute the closed-loop subspace matrices 𝐿𝑤 and 𝐿𝑢 using (25).
(4) Derive the predictor 𝑦𝑓 of predictive controller with (26).
(5) Implement the control input 𝑢 using (27) and (28).
(6) At the next time, when new data arrives, implement the data inspection strategy. If the data
is harmful (or useless), keep the 𝑢 constant. Otherwise, implement the following steps.
(7) Build the new input-output Hankel matrix 𝐷

∗ and the new Rmatrix is the QR decomposition
results of 𝐷∗ with (35).
(8) Recursively computer the elements 𝑅11, 𝑅21, 𝑅22, 𝑅31, 𝑅32 of Rmatrix using (38) and (39).
(9) Calculate the new subspace matrices using (40) and computer the control input by
repeating steps 4-5. Then, back to step 6.

Algorithm 1: Summary of the proposed method.
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Figure 2: The response of the identified model and process output.

For comparison, the adaptive methods in [25, 26] are
given. The method in [25] is an original receding window
method which is performed by only 𝑄𝑅 decomposition. In
[26], recursive approach is presented to obtain every element
value of 𝑅 matrix and the model inspection strategy is given.
Figure 4 shows the response comparison in the presence
of disturbance after the system model changes. We can get
that, in performance of disturbance rejection, the method in
this paper is better than the other two methods. The data
inspection strategy makes the contribution for this result.
The harmless (or useless) data are always produced when
we implement online identification.The control performance
depends on the better data preprocessing in this paper
compared to the methods in [25, 26].

By comparing computation time of 1000 samples, the
methods in [25, 26] and this paper take about 71 s, 62 s,
and 52 s, respectively. The method in [25] requiring 𝑄𝑅

decomposition at every instant results in the most time of
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Figure 3: The output 𝑇 tracking performance.

the three methods. The computation time of our proposed
method is less than that taken by the method in [26] since it
only requires calculating the key elements 𝑅11, 𝑅21, 𝑅22, 𝑅31,
and 𝑅32 of 𝑅 matrix of our method but every element value
of 𝑅 matrix of the method in [26].

Additionally, to verify the usefulness of the data inspec-
tion strategy, the prediction error in (43) is used. When
systemmodel was changed, we introduced two identification
ways, the data inspection strategy is used in one way and the
other not.The prediction errors of these two ways are showed
in Table 2 from 600 s to 1000 s. We can get that the data
inspection strategy improves the accuracy of the method.

5.2. An Industrial 4-Stage Evaporator Example. The evap-
orator is a nonlinear and time-varying industrial process
control system, and considering the stability of system the
evaporator is often necessary to work in the closed-loop
case.The conventional control methods, such as PID control,
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Figure 4: The response comparison in the presence of disturbance
after the model changes.

Table 2:The prediction errors with and without the data inspection
strategy in the hair dryer example.

Identification way
in hair dryer

The method with
the data inspection

strategy

The method
without the data

inspection strategy
Prediction error 19.2230 26.0138

Table 3: The prediction errors of open-loop and closed-loop
identified evaporator model.

Identification
algorithm Open-loop Closed-loop

Prediction error 53.1732 28.0058

will result in poor control performance. The product quality
will be also affected accordingly. The evaporator is used to
reduce the water content of a product and is widely applied
in chemical industry, food industry, pharmaceuticals, and
others. Therefore, it is of an extremely important practical
significance to use an effective control method to achieve
fast and accurate control performance of the evaporator. A
typical industrial 4-stage evaporator system and the detailed
principle of operation can be seen in [36]. The system has
three inputs and three outputs. The three inputs are input
product flow 𝑞𝑖, vapour flow 𝑞V to the first evaporator, and
cooling water flow 𝑞𝑐 to condenser, respectively. The three
outputs are dry matter content TDS of output product,
output product flow 𝑞𝑜, and output product temperature 𝑇,
respectively [37].

The open-loop and closed-loop identification algorithms
are applied in system. Using 1000 validation data for identifi-
cation, the prediction errors in (43) are given in Table 3.

It is similar to the hair dryer example in Section 5.1; the
closed-loop identification computes a more accurate model.

Table 4:The prediction errors with and without the data inspection
strategy in the evaporator example.

Identification way
in evaporator

The method with
the data inspection

strategy

The method
without the data

inspection strategy
Prediction error 32.1687 41.3125
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Figure 5: The tracking comparison of output TDS.

The target is set for the output TDS tracking the reference
signal in the system.The parameters of proposed data-driven
adaptive predictive control (DAPC) method were tuned as
𝑁 = 4000, 𝑡 = 1 s, 𝑝 = 𝑓 = 10, 𝑄 = 𝐼30, and
𝑅 = 0.1 ∗ 𝐼30. The initial value of TDS was 1.5mg/L.
For comparison, the recursive adaptive subspace predictive
control (RASPC) method in [23] and an adaptive fuzzy-PID
controller in [38] were selected as competitors to compare the
tracking capability. Figure 5 depicts the tracking comparison
of these three controllers in the first 2000 samples and
Figure 6 showed the partial enlarged drawing between 1000 s
and 1200 s of Figure 5. At 1600 s, we changed 𝑞𝑖 to increase
by 10 percent; the response comparison after the parameters
change is showed in Figure 7.

Through the simulation results, it may fairly be said that
our proposed method is much better in output tracking
and disturbance rejection than that performed by recursive
method in [23] and fuzzy-PID controller in [38]. It can be
interpreted that the reduction of the influence of the old data
plays an important role.

As for the computation time, our method takes about 76 s
for 1000 samples, while their recursivemethod in [23] is about
64 s; the lattermethod is somewhat superior to ours because it
needs to add new data and eliminate old data at every instant
in ours but theirs only add new data.

Similar to Section 5.1, the prediction errors with and
without the data inspection strategy from 1600 s to 2000 s are
listed in Table 4. Corresponding to the conclusion in the hair
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Figure 6: The partial enlarged comparison of Figure 5.

Fuzzy-PID
RASPC

DAPC
Rf

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t (s)

TD
S 

(m
g/

L)

Figure 7: The response comparison in the presence of disturbance
after the parameters change.

dryer example, the superior performance is obtained as using
the data inspection strategy.

6. Conclusion

In this paper, the design of a data-driven adaptive predictive
controller based on closed-loop subspace identification has
been addressed. The predictor is identified through the
closed-loop subspace identification and used to design a
data-driven predictive controller. The adaptive mechanism
is presented that combines the merits of both receding
window and recursive identification methods, keeping the
size of input-output data matrix constant and using recursive

identification to obtain the subspace matrices which can
derive the predictor. Meanwhile, the data inspection strategy
is used to eliminate the new harmless (or useless) data. By
simulation studies for two examples its performance has been
proved to be efficient by comparing with other methods.
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