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We establish an iterative method for finding a common element of the set of fixed points of nonexpansive semigroup and the set of
split equilibrium problems. Under suitable conditions, some strong convergence theorems are proved. Our works improve previous
results for nonexpansive semigroup.

1. Introduction

Let𝐻 be a real Hilbert space whose inner product and norm
are denoted by ⟨⋅, ⋅⟩ and ‖⋅‖, respectively. Let𝐶 be a nonempty
closed convex subset of 𝐻, and let 𝐹 be a bifunction of 𝐶 ×

𝐶 into R which is the set of real numbers. The equilibrium
problem introduced by Blum and Oettli [1] for 𝐹 : 𝐶 × 𝐶 →

R is to find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (1)

The set of solutions of (1) is denoted by EP(𝐹). Numerous
problems in physics, optimization, and economics reduce to
finding a solution of (1) (see [2–8]). The split equilibrium
problem was introduced by Moudafi in [9]; he considers the
following pair of equilibrium problems in different spaces: let
𝐻
1
and 𝐻

2
be two real Hilbert spaces, let 𝐹

1
: 𝐶 × 𝐶 → 𝑅

and 𝐹
2

: 𝑄 × 𝑄 → 𝑅 be nonlinear bifunctions, and let
𝐴 : 𝐻

1
→ 𝐻

2
be a bounded linear operator, and consider

the nonempty closed convex subsets 𝐶 ⊆ 𝐻
1
and 𝑄 ⊆ 𝐻

2
;

then the split equilibrium problem (SEP) is to find 𝑥
∗
∈ 𝐶

such that

𝐹
1
(𝑥
∗
, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶, (2)

and such that

𝑦
∗
∈ 𝐴𝑥
∗
∈ 𝑄, 𝐹

2
(𝑦
∗
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝑄. (3)

The solution set of SEP (2)-(3) is denoted by Ω = {𝑝 ∈

EP(𝐹
1
) : 𝐴𝑝 ∈ EP(𝐹

2
)}.

Recall that mapping 𝑇 of 𝐶 into itself is called nonexpan-
sive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (4)

Let a family 𝑆 = (𝑇(𝑠))
𝑠≥0

be a nonexpansive semigroup on
𝐻, if it satisfies the following conditions:

(S1) 𝑇(0)𝑥 = 𝑥 ∀𝑥 ∈ 𝐻;
(S2) 𝑇(𝑠 + 𝑡) = 𝑇(𝑠)𝑇(𝑡) for each 𝑠, 𝑡 ≥ 0;
(S3) ‖𝑇(𝑠)𝑥−𝑇(𝑡)𝑦‖ ≤ ‖𝑥−𝑦‖ for each 𝑥, 𝑦 ∈ 𝐻 and 𝑠 ≥ 0;
(S4) ∀𝑥 ∈ 𝐻, 𝑠 → 𝑇(𝑠)𝑥 is continuous.

The set of all the common fixed points of family 𝑆 is denoted
by 𝐹
𝑖𝑥
(𝑆); that is,

𝐹
𝑖𝑥
(𝑆) = {𝑥 ∈ 𝐶 : 𝑇 (𝑠) 𝑥 = 𝑥, 0 ≤ 𝑠 < ∞} = ⋂

0≤𝑠<∞

𝐹
𝑖𝑥
(𝑇 (𝑠)) ,

(5)

where 𝐹
𝑖𝑥
(𝑇(𝑠)) is the set of fixed points of 𝑇(𝑠). It is well

known that 𝐹
𝑖𝑥
(𝑆) is closed and convex.

In 2010, Tian [10] introduced the following general
iterative scheme for finding an element of set of solutions to
the fixed point of nonexpansive mapping in a Hilbert space.
Define the sequence {𝑥

𝑛
} by

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (1 − 𝜇𝛼

𝑛
𝐵)𝑇𝑥

𝑛
, (6)
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where 𝐵 is 𝑘-Lipschitzian and 𝜂-strongly monotone operator.
Then he proved that if the sequence {𝛼

𝑛
} satisfies appropriate

conditions, the sequence {𝑥
𝑛
} generated by (6) converges

strongly to the unique solution 𝑥
∗
∈ 𝐹
𝑖𝑥
(𝑇) of the variational

inequality

⟨(𝛾𝑓 − 𝜇𝐵) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0, ∀𝑥 ∈ 𝐹

𝑖𝑥
(𝑇) . (7)

In 2011, Ceng et al. [11] added the metric project to the
method of Tian (6) and studied the following explicit iterative
scheme to find fixed points:

𝑥
𝑛+1

= 𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (1 − 𝜇𝛼

𝑛
𝐵)𝑇𝑥

𝑛
] . (8)

They prove the strong convergence of 𝑥
𝑛
to a fixed point 𝑥∗ ∈

𝐹
𝑖𝑥
(𝑇) of the same variational inequality (7).
In 2008, Plubtieng and Punpaeng [12] introduced the

following implicit iterative algorithm to prove a strong con-
vergence theorem for fixed point problemwith nonexpansive
semigroup:

𝑥
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
)
1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑥
𝑛
𝑑𝑠, (9)

where 𝑥
𝑛
is a continuous net and 𝑠

𝑛
is a positive real divergent

net.
In 2014, Kazmi and Rizvi [13] studied the following

implicit iterative algorithm. Under some assumptions, they
obtain some strong convergence theorem for EP (1) and the
fixed point problem:

𝑢
𝑛
= 𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
) ,

𝑥
𝑛
= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠,

(10)

where 𝑠
𝑛
and 𝑟
𝑛
are the continuous nets in (0, 1).

Motivated and inspired by [10–13], we introduce an
explicit iterative scheme for finding a common element of
the set of solutions SEP and fixed point for a nonexpansive
semigroup in real Hilbert spaces. Starting with an arbitrary
𝑥
1
∈ 𝐻, define sequences {𝑥

𝑛
} and {𝑢

𝑛
} by

𝑢
𝑛
= 𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠] .

(11)

Under suitable conditions, some strong convergence the-
orems for approximating to these common elements are
proved.

2. Preliminaries

This section collects some results that will be used in the
proofs.

Let𝐻 be a real Hilbert space with the inner product ⟨⋅, ⋅⟩
and the norm ‖ ⋅ ‖, respectively.

It is well known that, for all 𝑥, 𝑦 ∈ 𝐻 and 𝜆 ∈ [0, 1], the
following holds:

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆)𝑦
󵄩󵄩󵄩󵄩

2

= 𝜆‖𝑥‖
2
+ (1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(12)

Let𝐶 be a nonempty closed convex subset of𝐻.Then, for
any 𝑥 ∈ 𝐻, there exists a unique nearest point of 𝐶, denoted
by 𝑃
𝐶
𝑥, such that ‖𝑥 − 𝑃

𝐶
𝑥‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑦 ∈ 𝐶. Such 𝑃

𝐶

is called the metric projection from𝐻 into 𝐶. We know that
𝑃
𝐶
is nonexpansive. It is also known that 𝑃

𝐶
𝑥 ∈ 𝐶 and

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑃
𝐶
𝑥 − 𝑧⟩ ≥ 0, ∀𝑥 ∈ 𝐻, 𝑧 ∈ 𝐶. (13)

It is easy to see that (13) is equivalent to

‖𝑥 − 𝑧‖
2
≥
󵄩󵄩󵄩󵄩𝑥 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑃𝐶𝑥 − 𝑧

󵄩󵄩󵄩󵄩

2

, ∀𝑥 ∈ 𝐻, 𝑧 ∈ 𝐶.

(14)

Let 𝐵 : 𝐶 → 𝐻 be a nonlinear mapping. Recall the
following definitions.

Definition 1. 𝐵 is said to be

(i) monotone if

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶, (15)

(ii) strongly monotone if there exists a constant 𝛼 > 0

such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶, (16)

for such a case, 𝐵 is said to be 𝛼-strongly monotone,
(iii) 𝛼-inverse strongly monotone (𝛼-ism) if there exists a

constant 𝛼 > 0 such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶, (17)

(iv) 𝑘-Lipschitz continuous if there exists a constant 𝑘 ≥ 0

such that
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩 ≤ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (18)

Remark 2. Let F = 𝜇𝐵 − 𝛾𝑓, where 𝐵 is a 𝑘-Lipschitz and
𝜂-strongly monotone operator on 𝐻 with 𝑘 > 0 and 𝑓 is a
Lipschitzmapping on𝐻with coefficient 𝐿 > 0, 0 < 𝛾 ≤ 𝜇𝜂/𝐿.
It is a simple matter to see that the operator F is (𝜇𝜂 − 𝛾𝐿)-
strongly monotone over𝐻; that is,

⟨F𝑥 −F𝑦, 𝑥 − 𝑦⟩ ≥ (𝜇𝜂 − 𝛾𝐿)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

,

∀ (𝑥, 𝑦) ∈ 𝐻 × 𝐻.

(19)

Lemma 3 (see [14]). Let 𝑇 be a nonexpansive mapping of a
closed convex subset 𝐶 of a Hilbert space 𝐻. If 𝑇 has a fixed
point, then 𝐼−𝑇 is demiclosed; that is, whenever the sequence of
𝑥
𝑛
is weakly convergent to𝑥 and (𝐼−𝑇)𝑥

𝑛
is strongly convergent

to 𝑦, then (𝐼 − 𝑇)𝑥 = 𝑦.
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Lemma 4 (see [15]). Let 𝐶 be a nonempty bounded closed
convex subset of a Hilbert space 𝐻 and let (𝑇(𝑠))

𝑠≥0
be a

nonexpansive semigroup on 𝐶. Then, for each ℎ ≥ 0,

lim
𝑡→+∞

sup
𝑥∈𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
∫

𝑡

0

𝑇 (𝑠) 𝑥𝑑𝑠 − 𝑇 (ℎ)
1

𝑡
∫

𝑡

0

𝑇 (𝑠) 𝑥𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0.

(20)

Definition 5 (see [9]). A mapping 𝑇 : 𝐻 → 𝐻 is said to
be averaged if it can be written as the average of the identity
mapping and a nonexpansive mapping; that is,

𝑇 = (1 − 𝜀) 𝐼 + 𝜀𝑆, (21)

where 𝜀 ∈ (0, 1), 𝑆 : 𝐻 → 𝐻 is nonexpansive, and 𝐼 is the
identity operator on𝐻.

Proposition 6 (see [9]).

(i) If 𝑇 = (1 − 𝜀)𝑆 + 𝜀𝑉, where 𝑆 : 𝐻 → 𝐻 is averaged,
𝑉 : 𝐻 → 𝐻 is nonexpansive, and 𝜀 ∈ (0, 1), then 𝑇 is
averaged.

(ii) The composite of finitely many averaged mappings is
averaged.

(iii) If 𝑇 is ]-ism, then, for 𝛾 > 0, 𝛾𝑇 is (]/𝛾)-ism.
(iv) 𝑇 is averaged if, and only if, its complement 𝐼 − 𝑇 is

]-ism for some ] > 1/2.

Assumption 7 (see [1]). For solving the equilibrium problem
for a bifunction 𝐹 : 𝐶×𝐶 → R, let us assume that 𝐹 satisfies
the following conditions:

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone, that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐶;
(A3) for each 𝑥, 𝑦, 𝑧 ∈ 𝐶,

lim
𝑡→0

𝐹 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝐹 (𝑥, 𝑦) ; (22)

(A4) for each 𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝐹(𝑥, 𝑦) is convex and lower
semicontinuous.

Lemma 8 (see [2]). Let 𝐶 be a nonempty closed convex subset
of𝐻, and let 𝐹 be a bifunction of 𝐶×𝐶 intoR satisfying (A1)–
(A4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then there exists 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (23)

Define a mapping 𝑇
𝑟
: 𝐻 → 𝐶 as follows:

𝑇
𝐹

𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(24)

for all 𝑥 ∈ 𝐻. Then the following hold:

(1) 𝑇𝐹
𝑟
is single-valued;

(2) 𝑇𝐹
𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹

𝑟
𝑥 − 𝑇
𝐹

𝑟
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩ ; (25)

(3) 𝐹
𝑖𝑥
(𝑇
𝐹

𝑟
) = 𝐸𝑃(𝐹);

(4) 𝐸𝑃(𝐹) is closed and convex.

Lemma9 (see [16]). Let𝐶 be a nonempty closed convex subset
of a Hilbert space𝐻, and let 𝐹 : 𝐶 × 𝐶 → R be a bifunction.
Let 𝑥 ∈ 𝐶 and 𝑟

1
, 𝑟
2
∈ (0,∞). Then

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹

𝑟
1

𝑥 − 𝑇
𝐹

𝑟
2

𝑥
󵄩󵄩󵄩󵄩󵄩
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
2

𝑟
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹

𝑟
1

𝑥
󵄩󵄩󵄩󵄩󵄩
+ ‖𝑥‖) . (26)

Lemma 10 (see [17]). Assume that 𝜆 ∈ (0, 1) and 𝜇 > 0. Let
𝐵 be a 𝐵 : 𝐻 → 𝐻 which is 𝜂-strongly monotone and 𝜃-
Lipschitzian on𝐻 with 𝜃 > 0, 𝜂 > 0. Let 0 < 𝜇 < 2𝜂/𝜃

2. Then
the operator 𝐼−𝜆𝜇𝐵 is contraction; that is, ‖𝐼−𝜆𝜇𝐵‖ ≤ (1−𝜆𝜏),
where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜃2) ∈ (0, 1].

Lemma 11 (see [10]). Let𝐻 be a Hilbert space, 𝑓 : 𝐻 → 𝐻 is
a contractive mapping with constant 𝛽 ∈ (0, 1). 𝐵 : 𝐻 → 𝐻 is
𝜃-Lipschitzian and 𝜂-strongly monotone operator with 𝜃 > 0,
𝜂 > 0. Then, for 0 < 𝜎 < 𝜇𝜂/𝛽,

⟨𝑥 − 𝑦, (𝜇𝐵 − 𝜎𝑓) 𝑥 − (𝜇𝐵 − 𝜎𝑓) 𝑦⟩ ≥ (𝜇𝜂 − 𝜎𝛽)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

,

𝑥, 𝑦 ∈ 𝐻.

(27)

That is, 𝜇𝐵 − 𝜎𝑓 is strongly monotone with coefficient 𝜇𝜂 − 𝜎𝛽.

Lemma 12. Let 𝐻 be a real Hilbert space. Then the following
well-known results hold: ∀𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ . (28)

Lemma 13 (see [18]). Assume that {𝛼
𝑛
} is a sequence of

nonnegative real numbers such that

𝛼
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝛼
𝑛
+ 𝛿
𝑛
, 𝑛 ≥ 0, (29)

where {𝛼
𝑛
} is a sequence in (0, 1) and {𝛿

𝑛
} is a sequence in 𝑅

such that

(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞,

(ii) lim sup
𝑛→∞

(𝛿
𝑛
/𝛾
𝑛
) ≤ 0 or ∑∞

𝑛=1
|𝛿
𝑛
| < ∞.

Then lim
𝑛→∞

𝛼
𝑛
= 0.

3. The General Explicit Iterative Method

Let 𝑓 : 𝐻
1

→ 𝐻
1
be a contractive mapping with constant

𝛽 ∈ (0, 1) and let 𝐵 : 𝐻
1

→ 𝐻
1
be 𝜂-strongly monotone

and 𝜃-Lipschitzian with 𝜃 > 0, 𝜂 > 0. Let 0 < 𝜇 < 2𝜂/𝜃
2 and

0 < 𝛾 < 𝜇(𝜂−𝜇𝜃
2
/2)/𝛽 = 𝜏/𝛽. Let 𝑆 = {𝑇(𝑠) : 0 ≤ 𝑠 < ∞} be a

nonexpansive semigroup on 𝐶 such that Γ = 𝐹
𝑖𝑥
(𝑆)⋂Ω ̸= 0.

Assume {𝑟
𝑛
} and {𝑠

𝑛
} are the continuous nets of positive real

numbers such that lim
𝑛→0

𝑟
𝑛
= 𝑟 > 0 and lim

𝑛→0
𝑠
𝑛
= +∞.
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In this section, we introduce the following explicit itera-
tive scheme that the nets {𝑢

𝑛
} and {𝑥

𝑛
} are generated by

𝑢
𝑛
= 𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠] ,

(30)

where 𝛿 ∈ (0, 1/𝐿), 𝐿 is the spectral radius of the operator
𝐴
∗
𝐴, and 𝐴

∗ is the adjoint of 𝐴.
We prove the strong convergence of {𝑢

𝑛
} and {𝑥

𝑛
} to a

fixed point 𝑥∗ of 𝑆 which solves the following variational
inequality:

⟨(𝜇𝐹 − 𝛾𝑓) 𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≤ 0, ∀ 𝑥 ∈ Γ = 𝐹

𝑖𝑥
(𝑆)⋂Ω. (31)

In the sequel, we denote by 𝑦
𝑛
the sequence defined by

𝑦
𝑛
=

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠. (32)

Next, we will prove first a lemma and then some corollaries
to be used in the proofs for the main result of this section.

Theorem 14. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces and

let 𝐶 ⊆ 𝐻
1
and 𝑄 ⊆ 𝐻

2
be nonempty closed subsets. Let

𝐴 : 𝐻
1

→ 𝐻
2
be a bounded linear operator. Assume that

𝐹
1
: 𝐶 × 𝐶 → R and 𝐹

2
: 𝑄 × 𝑄 → R are the bifunctions

satisfying Assumption 7 and 𝐹
2
is upper semicontinuous in the

first argument. Let the sequences {𝑢
𝑛
} and {𝑥

𝑛
} be generated by

(30), and suppose that the sequence {𝛼
𝑛
} satisfies the following

conditions:

(a) 𝛼
𝑛
∈ (0, 1) and lim

𝑛→∞
𝛼
𝑛
= 0;

(b) ∑∞
𝑛=0

𝛼
𝑛
= 0;

(c) either ∑∞
𝑛=0

|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞ or lim

𝑛⇒∞
(𝛼
𝑛
/𝛼
𝑛+1

) = 1.

Then the sequences {𝑢
𝑛
} and {𝑥

𝑛
} converge strongly to 𝑥∗ ∈

Γ = 𝐹
𝑖𝑥
(𝑆)⋂Ω, where 𝑥∗ = 𝑃

Γ
(𝐼 − 𝜇𝐵 + 𝛾𝑓)𝑥

∗, which is the
unique solution of the variational inequality (31).

Proof. We divide the proof into several steps.
(i) {𝑥
𝑛
} is well defined.

For 𝛼
𝑛
∈ (0, 1) and ∀𝑥 ∈ 𝐻

1
, define a mapping 𝐺 : 𝐻

1
→

𝐻
2
by

𝐺𝑥 = 𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 (𝑥) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

×∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑇
𝐹
1

𝑟
𝑛

(𝑥 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥) 𝑑𝑠] .

(33)

According to Lemma 8, we can easily know that 𝑇𝐹1
𝑟
1

and
𝑇
𝐹
2

𝑟
2

both are firmly nonexpansive mappings and are averaged

operators. From Proposition 6, we can obtain that the opera-
tor (𝐼 + 𝛿𝐴

∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴) is averaged and hence nonexpansive.
Following Lemma 9 and ∀𝑥, 𝑦 ∈ 𝐻

1
, we get

󵄩󵄩󵄩󵄩𝐺𝑥 − 𝐺𝑦
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

× ∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴) 𝑑𝑠] 𝑥

− 𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

×∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴) 𝑑𝑠] 𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[𝛼
𝑛
𝛾𝑓 + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

×∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴) 𝑑𝑠] 𝑥

− [𝛼
𝑛
𝛾𝑓 + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

×∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴) 𝑑𝑠] 𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩 + (1 − 𝛼
𝑛
𝜏)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) [𝑇
𝐹
1

𝑟
𝑛

(𝑥 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥) 𝑑𝑠

− 𝑇
𝐹
1

𝑟
𝑛

(𝑦 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑦) 𝑑𝑠]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + (1 − 𝛼

𝑛
𝜏)

×
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥) 𝑑𝑠

− 𝑇
𝐹
1

𝑟
𝑛

(𝑦 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑦) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + (1 − 𝛼

𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(𝜏 − 𝛼

𝑛
𝛽))

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(34)

Since 0 < 1 −𝛼
𝑛
(𝜏 − 𝛼

𝑛
𝛽) < 1, we can claim that the mapping

𝐺 is a contractionmapping.Therefore, by Banach contraction
principle, 𝐺 has the unique fixed point 𝑥∗.

(ii) The sequences {𝑢
𝑛
}, {𝑦
𝑛
}, and {𝑥

𝑛
} are bounded.

Letting 𝑝 ∈ Γ = 𝐹
𝑖𝑥
(𝑆)⋂Ω, we obtain that 𝑝 = 𝑇

𝐹
1

𝑟
𝑛

𝑝,
𝐴𝑝 = 𝑇

𝐹
2

𝑟
𝑛

𝐴𝑝, and 𝑝 = 𝑇(𝑠)𝑝.
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From (30), we obtain

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴)𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴)𝑥
𝑛
− 𝑇
𝐹
1

𝑟
𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛿 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
2
⟨(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
, 𝐴𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

+ 2𝛿 ⟨𝐴 (𝑥
𝑛
− 𝑝) , (𝑇

𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝐿𝛿
2
⟨(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
, (𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

+ 2𝛿 ⟨𝐴 (𝑥
𝑛
− 𝑝) + (𝑇

𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

− (𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
, 𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝐿𝛿
2󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛿 {⟨𝑇
𝐹
2

𝑟
𝑛

𝐴𝑥
𝑛
− 𝐴𝑝, (𝑇

𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

−
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

}

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝐿𝛿
2󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛿 {
1

2

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

}

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝐿𝛿
2󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝛿
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿 (𝐿𝛿 − 1)
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

.

(35)

Since 𝛿 ∈ (0, 1/𝐿), we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (36)

From (32), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

𝑠
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛

0

(𝑇 (𝑠) 𝑢
𝑛
− 𝑇 (𝑠) 𝑝) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(37)

Further, using (31) again, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠] − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
(𝛾𝑓 (𝑥

𝑛
) − 𝜇𝐵𝑝) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

× ∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 − (𝐼 − 𝜇𝛼

𝑛
𝐵) 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝜇𝐵𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼
𝑛
𝜏)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝜇𝐵𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼
𝑛
𝜏)

1

𝑠
𝑛

× ∫

𝑠
𝑛

0

󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝑢
𝑛
− 𝑇 (𝑠) 𝑝

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝛼
𝑛
𝛾
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

= [1 − 𝛼
𝑛
(𝜏 − 𝛾𝛽)]

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝
󵄩󵄩󵄩󵄩 .

(38)

It follows from (40) and induction that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝
󵄩󵄩󵄩󵄩

𝜏 − 𝛾𝛽
. (39)

Hence, the sequence {𝑥
𝑛
} is bounded and therefore {𝑢

𝑛
}, {𝑦
𝑛
},

and {𝑓(𝑥
𝑛
)} are also bounded.

(iii) Consider that lim
𝑛⇒∞

‖𝑥
𝑛
− 𝑢
𝑛
‖ = 0.

According to (35) and Lemma 12, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
𝜏)
2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇(𝑠)𝑢
𝑛
𝑑𝑠 − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝛾𝑓 (𝑥

𝑛
) − 𝛾𝑓 (𝑝) + 𝛾𝑓 (𝑝) − 𝜇𝐵𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 + 𝛼
2

𝑛
𝜏
2
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝛾𝑓 (𝑝) − 𝜇𝐵𝑝, 𝑥

𝑛
− 𝑝⟩
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≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜏
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿 (𝐿𝛿 − 1)
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜏
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(40)

From (40), we obtain

𝛿 (1 − 𝐿𝛿)
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
( (𝜏
2
+ 2𝛾𝛽)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ) .

(41)

Since 𝑥
𝑛
is bounded, lim

𝑛→∞
𝛼
𝑛
= 0, and 𝛿(1 − 𝐿𝛿) > 0, we

obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

= 0. (42)

From (30), we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴) 𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝐼 + 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴) 𝑥
𝑛
− 𝑇
𝐹
1

𝑟
𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢
𝑛
− 𝑝, 𝑥

𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
− 𝑝⟩

=
1

2
{
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑝 − [𝑥

𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
− 𝑝]

󵄩󵄩󵄩󵄩󵄩

2

}

≤
1

2
{
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑥
𝑛
− 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

}

≤
1

2
{
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

− 𝛿
2󵄩󵄩󵄩󵄩󵄩
𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛿
󵄩󵄩󵄩󵄩𝐴 (𝑢
𝑛
− 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
} .

(43)

Hence, we obtain
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

− 𝛿
2󵄩󵄩󵄩󵄩󵄩
𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛿
󵄩󵄩󵄩󵄩𝐴 (𝑢
𝑛
− 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛿
󵄩󵄩󵄩󵄩𝐴 (𝑢
𝑛
− 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(44)

It follows from (40) and (44) that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜏
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛿
󵄩󵄩󵄩󵄩𝐴 (𝑢
𝑛
− 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜏
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝜇𝐵𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛿
󵄩󵄩󵄩󵄩𝐴 (𝑢
𝑛
− 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝛼
𝑛
𝑀
1
,

(45)

where 𝑀
1

= 𝜏
2
‖𝑥
𝑛
− 𝑝‖
2

+ 2𝛾𝛽‖𝑥
𝑛
− 𝑝‖
2

+ 2‖𝛾𝑓(𝑝) −

𝜇𝐵𝑝‖‖𝑥
𝑛
− 𝑝‖. From (46), we obtain

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

2

≤ 2𝛿
󵄩󵄩󵄩󵄩𝐴 (𝑢
𝑛
− 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝛼
𝑛
𝑀
1
.

(46)

Since 𝑥
𝑛
is bounded, lim

𝑛→∞
𝛼
𝑛

= 0, and 𝛿 > 0 and
considering (42), we can claim that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (47)

(iv) Consider that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0.

From (30) and Lemma 13, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− 𝑇
𝐹
1

𝑟
𝑛−1

(𝑥
𝑛−1

+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛−1

− 𝐼)𝐴𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛−1

+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩
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≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1
− 𝛿𝐴
∗
𝐴 (𝑥
𝑛
− 𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩

+ 𝛿 ‖𝐴‖
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
2

𝑟
𝑛

𝐴𝑥
𝑛
− 𝑇
𝐹
2

𝑟
𝑛−1

𝐴𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

2

− 2𝛿
󵄩󵄩󵄩󵄩𝐴 (𝑥
𝑛
− 𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩

2

+ 𝛿
2
‖𝐴‖
4󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

2

)
1/2

+ 𝛿 ‖𝐴‖(
󵄩󵄩󵄩󵄩𝐴 (𝑥
𝑛
− 𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
2

𝑟
𝑛

𝐴𝑥
𝑛
− 𝐴𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 2𝛿‖𝐴‖
2
+ 𝛿
2
‖𝐴‖
4
)
1/2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛿‖𝐴‖
2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
2

𝑟
𝑛

𝐴𝑥
𝑛
− 𝐴𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛿‖𝐴‖
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛿‖𝐴‖
2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝛿 ‖𝐴‖
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
2

𝑟
𝑛

𝐴𝑥
𝑛
− 𝐴𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 + 𝛿 ‖𝐴‖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
2

𝑟
𝑛

𝐴𝑥
𝑛
− 𝐴𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛿 ‖𝐴‖ 𝜀𝑛 + 𝜉
𝑛
) ,

(48)

where

𝜀
𝑛
=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
2

𝑟
𝑛

𝐴𝑥
𝑛
− 𝐴𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
,

𝜉
𝑛
=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)

− (𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩
.

(49)

From (32), we obtain
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 −

1

𝑠
𝑛−1

∫

𝑠
𝑛−1

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 −

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠 −
1

𝑠
𝑛−1

∫

𝑠
𝑛−1

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

𝑠
𝑛

∫

𝑠
𝑛

0

󵄩󵄩󵄩󵄩𝑇 (𝑠) (𝑢
𝑛
− 𝑢
𝑛−1

)
󵄩󵄩󵄩󵄩 𝑑𝑠

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠 −
1

𝑠
𝑛−1

∫

𝑠
𝑛−1

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑛−1

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑠
𝑛

−
1

𝑠
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛−1

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
1

𝑠
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛

𝑠
𝑛−1

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(50)

Following (48) and (50), we obtain
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛿 ‖𝐴‖ 𝜀
𝑛
+ 𝜉
𝑛
))

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑠
𝑛

−
1

𝑠
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛−1

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
1

𝑠
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛

𝑠
𝑛−1

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(51)

Using (30) again, we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃𝐶 [𝛼𝑛𝛾𝑓 (𝑥

𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵) 𝑦
𝑛
]

− 𝑃
𝐶
[𝛼
𝑛−1

𝛾𝑓 (𝑥
𝑛−1

) + (𝐼 − 𝜇𝛼
𝑛−1

𝐵) 𝑦
𝑛−1

]
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑓 (𝑥

𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵) 𝑦
𝑛
− 𝛼
𝑛−1

𝛾𝑓 (𝑥
𝑛−1

)

− (𝐼 − 𝜇𝛼
𝑛−1

𝐵) 𝑦
𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑥

𝑛−1
)) + 𝛾 (𝛼

𝑛
− 𝛼
𝑛−1

) 𝑓 (𝑥
𝑛−1

)

+ (𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑦
𝑛
− 𝑦
𝑛−1

) + 𝜇 (𝛼
𝑛
− 𝛼
𝑛−1

) 𝑦
𝑛−1

󵄩󵄩󵄩󵄩
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≤ 𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 + 𝛾
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩 + 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 + 𝛾
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝜏) (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛿 ‖𝐴‖ 𝜀
𝑛
+ 𝜉
𝑛
))

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑠
𝑛

−
1

𝑠
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛−1

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
1

𝑠
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛

𝑠
𝑛−1

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1
󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(𝜏 − 𝛾𝛽))

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 + 𝛾
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛−1

)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛿 ‖𝐴‖ 𝜀
𝑛
+ 𝜉
𝑛
))

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑠
𝑛

−
1

𝑠
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛−1

0

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
1

𝑠
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛

𝑠
𝑛−1

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝛽))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+𝑀
2
(𝛾

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑛−1

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑛−1

𝑟
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑠
𝑛

−
1

𝑠
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

𝑠
𝑛−1

+ 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨) ,

(52)

where

𝑀
2
= max{sup

𝑛≥1

(𝛿 ‖A‖ 𝜀𝑛 + 𝜉
𝑛
) ,

sup
𝑛≥1

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑠
𝑛−1

𝑠
𝑛

𝑇 (𝑠) 𝑢
𝑛−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) , sup
𝑛≥1

󵄩󵄩󵄩󵄩𝑦𝑛−1
󵄩󵄩󵄩󵄩} .

(53)

Since {𝑥
𝑛
}, {𝑢
𝑛
}, and {𝑦

𝑛
} are bounded, we can claim that

{𝐴𝑥
𝑛
} and {𝑇(𝑠)𝑢

𝑛−1
} are bounded. We can deduce that

sup
𝑛≥1

(𝛿‖𝐴‖𝜀
𝑛
+ 𝜉
𝑛
) < ∞, sup

𝑛≥1
(‖ ∫
𝑠
𝑛−1

𝑠
𝑛

𝑇(𝑠)𝑢
𝑛−1

𝑑𝑠‖) < ∞

and sup
𝑛≥1

‖𝑦
𝑛−1

‖ < ∞, and𝑀
2
< ∞.

Following conditions (a)–(c), lim
𝑛→0

𝑟
𝑛

= 𝑟 > 0,
lim
𝑛→0

𝑠
𝑛
= +∞, and Lemma 13, we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (54)

(v) Consider that lim
𝑛→∞

‖𝑇(𝑠)𝑥
𝑛
− 𝑥
𝑛
‖ = 0.

From (30) and (32), we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
[𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠]

− 𝑃
𝐶
𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 − 𝑦

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾𝑓 (𝑥
𝑛
) − 𝜇𝐵

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(55)

Since lim
𝑛→∞

𝛼
𝑛
= 0 and 𝑥

𝑛
and 𝑢

𝑛
are bounded, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (56)

By (54) and (56), we get
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 . (57)

Next, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (58)

On the other hand, by (30), we have
󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝑥

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠) 𝑥
𝑛
− 𝑇 (𝑠)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠)
1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 −

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 − 𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑛
−

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠)
1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 −

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 − 𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠)
1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

−
1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(59)

So without loss of generality, we may assume that 𝑆 = {𝑇(𝑠) :

0 ≤ 𝑠 < +∞} is nonexpansive semigroup on 𝐾, and, by
Lemma 4, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠)
1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠 −

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

. (60)
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From (58), (59), and (60), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (61)

(vi) Consider that 𝜔 ∈ EP(𝐹
1
)⋂EP(𝐹

2
).

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑖

} of
{𝑥
𝑛
} which converges weakly to 𝜔. From (47), we obtain {𝑢

𝑛
𝑖

}

which converges weakly to𝜔. From (58), 𝑦
𝑛
𝑖

⇀ 𝜔 follows.We
show 𝜔 ∈ EP(𝐹

1
). According to (30) and (A2),

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 𝐹
1
(𝑦, 𝑢
𝑛
) (62)

and hence

⟨𝑦 − 𝑢
𝑛
𝑖

,

𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝑟
𝑛
𝑖

⟩ ≥ 𝐹
1
(𝑦, 𝑢
𝑛
𝑖

) . (63)

Since (𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

)/𝑟
𝑛
𝑖

→ 0 and 𝑢
𝑛
𝑖

⇀ 𝜔, from (A4), it follows
that 0 ≥ 𝐹

1
(𝑦, 𝜔) for all 𝑦 ∈ 𝐻. For 𝑡 with 0 < 𝑡 ≤ 1 and

𝑦 ∈ 𝐻, let 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝜔; then we get 0 ≥ 𝐹

1
(𝑦
𝑡
, 𝜔). So,

from (A1) and (A4) we have

0 = 𝐹
1
(𝑦
𝑡
, 𝑦
𝑡
) ≤ 𝑡𝐹

1
(𝑦
𝑡
, 𝑦) + (1 − 𝑡) 𝐹 (𝑦

𝑡
, 𝜔) ≤ 𝑡𝐹

1
(𝑦
𝑡
, 𝑦)

(64)

and hence 0 ≤ 𝐹(𝑦
𝑡
, 𝑦). From (A3), we have 0 ≤ 𝐹

1
(𝜔, 𝑦) for

all 𝑦 ∈ 𝐻. Therefore, 𝜔 ∈ EP(𝐹
1
).

Since 𝑥
𝑛
𝑖

⇀ 𝜔 and 𝐴 is a bounded linear operator, we
obtain 𝐴𝑥

𝑛
𝑖

⇀ 𝐴𝜔. Let V
𝑛
𝑗

= 𝐴𝑥
𝑛
𝑗

− 𝑇
𝐹
2

𝑟
𝑛
𝑗

𝑥
𝑛
𝑗

. Following (42),

we obtain lim
𝑛→∞

V
𝑛
𝑗

= 0 and 𝐴𝑥
𝑛
𝑗

− V
𝑛
𝑗

= 𝑇
𝐹
2

𝑟
𝑛
𝑗

𝑥
𝑛
𝑗

. Then
from Lemma 8, we get

𝐹
2
(𝐴𝑥
𝑛
𝑗

− V
𝑛
𝑗

, 𝑦) +
1

𝑟
𝑛
𝑗

⟨𝑦 − (𝐴𝑥
𝑛
𝑗

− V
𝑛
𝑗

) , (𝐴𝑥
𝑛
𝑗

− V
𝑛
𝑗

)

− 𝐴𝑥
𝑛
𝑗

⟩ ≥ 0, ∀𝑦 ∈ 𝑄.

(65)

Since 𝐹
2
is upper semicontinuous in the first argument,

taking lim sup to above inequality as 𝑗 → ∞ and using
lim sup

𝑛→∞
𝑟
𝑛
= 𝑟 > 0, we obtain that

𝐹
2
(𝐴𝜔, 𝑦) ≥ 0, ∀𝑦 ∈ 𝑄, (66)

which means that 𝐴𝜔 ∈ EP(𝐹
2
) and hence 𝜔 ∈ Ω.

(vii) Consider that ⟨(𝜇𝐹 − 𝛾𝑓)𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≤ 0, ∀ 𝑥 ∈ Γ =

𝐹
𝑖𝑥
(𝑆)⋂Ω.
According to (30), letting

𝑧
𝑛
= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠, (67)

we can observe that

𝑥
𝑛+1

= 𝑃
𝐶
𝑧
𝑛
= 𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
+ 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
)

+ (𝐼 − 𝜇𝛼
𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠.

(68)

Observe that

(𝜇𝐵 − 𝛾𝑓) 𝑥
𝑛
=

1

𝛼
𝑛

(𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
) +

1

𝛼
𝑛

(𝑥
𝑛
− 𝑥
𝑛+1

)

+ (𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑦
𝑛
− 𝑥
𝑛
) .

(69)

Hence, for each 𝑝 ∈ Γ = 𝐹
𝑖𝑥
(𝑆)⋂Ω, we can obtain

⟨(𝜇𝐵 − 𝛾𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩

=
1

𝛼
𝑛

⟨𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
, 𝑥
𝑛
− 𝑝⟩ , +

1

𝛼
𝑛

⟨𝑥
𝑛
− 𝑥
𝑛+1

, 𝑥
𝑛
− 𝑝⟩

+
1

𝛼
𝑛

⟨(𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑦
𝑛
− 𝑥
𝑛
) , 𝑥
𝑛
− 𝑝⟩

=
1

𝛼
𝑛

⟨𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
, 𝑥
𝑛
− 𝑝⟩ , +

1

𝛼
𝑛

⟨𝑥
𝑛
− 𝑥
𝑛+1

, 𝑥
𝑛
− 𝑝⟩

+
1

𝛼
𝑛

⟨𝑦
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩ − 𝜇 ⟨𝐵𝑦

𝑛
− 𝐵𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩ .

(70)

Taking limit 𝑛 → ∞ in (70) and noticing that 𝐵𝑦
𝑛
− 𝐵𝑥
𝑛
→

𝐵𝑥
∗
−𝐵𝑥
∗
= 0, 𝑦

𝑛
− 𝑥
𝑛
→ ∞, and 𝑃

𝐶
𝑧
𝑛
− 𝑧
𝑛
→ 𝑃
𝐶
𝑥
∗
−

𝑥
∗
= 0, we obtain that

⟨(𝜇𝐵 − 𝛾𝑓)𝜔, 𝜔 − 𝑝⟩ ≤ 0, (71)

which implies 𝜔 = 𝑃
Γ
(𝐼 − 𝜇𝐵 + 𝛾𝑓).

(viii) Consider that 𝜔 ∈ Γ = 𝐹
𝑖𝑥
(𝑆)⋂Ω.

From (30), we have 𝑥
𝑛+1

= 𝑃
𝐶
𝑧
𝑛
, and, for any given 𝑥

∗
∈

Γ,

𝑥
𝑛+1

− 𝑥
∗
= 𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
+ 𝑧
𝑛
− 𝑥
∗

= 𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
+ 𝛼
𝑛
(𝛾𝑓 (𝑥

𝑛
) − 𝜇𝐵𝑥

∗
)

+ (𝐼 − 𝜇𝛼
𝑛
𝐵) 𝑦
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐵) 𝑥
∗
.

(72)

Since 𝑃
𝐶
is the metric projection from𝐻

1
onto 𝐶, we obtain

⟨𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
, 𝑃
𝐶
𝑧
𝑛
− 𝑥
∗
⟩ ≤ 0. (73)

It follows from (72) and (37) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
󵄩󵄩󵄩󵄩

2

= ⟨𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑥
∗
⟩ + 𝛼
𝑛
⟨𝛾𝑓 (𝑥

𝑛
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑦
𝑛
− 𝑥
∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩
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≤ 𝛼
𝑛
⟨𝛾𝑓 (𝑥

𝑛
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑦
𝑛
− 𝑥
∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ 𝛼
𝑛
𝛾 ⟨𝑓 (𝑥

𝑛
) − 𝑓 (𝑥

∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑥

∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑦
𝑛
− 𝑥
∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ 𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑥

∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑥

∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝛽))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑥

∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ 𝛼
𝑛
𝛾𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑥

∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
(1 − 𝛼

𝑛
(𝜏 − 𝛾𝛽))

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

)

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑥

∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ ,

(74)

which hence implies that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

󵄩󵄩󵄩󵄩

2

≤
(1 − 𝛼

𝑛
(𝜏 − 𝛾𝛽))

(1 + 𝛼
𝑛
(𝜏 − 𝛾𝛽))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛

1 + 𝛼
𝑛
(𝜏 − 𝛾𝛽)

⟨𝛾𝑓 (𝑥
∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝛽))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛

1 + 𝛼
𝑛
(𝜏 − 𝛾𝛽)

⟨𝛾𝑓 (𝑥
∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝑏
𝑛
,

(75)

where
𝑎
𝑛
= 𝛼
𝑛
(𝜏 − 𝛾𝛽) ,

𝑏
𝑛
=

2

1 + 𝛼
𝑛
(𝜏 − 𝛾𝛽)

⟨𝛾𝑓 (𝑥
∗
) − 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ .

(76)

It is easily seen that ∑∞
𝑛=0

𝑎
𝑛
= ∞ and lim sup

𝑛→∞
𝑏
𝑛
≤ 0

(due to (a), (b), (c), and (72)). According to Lemma 13, we
can conclude that 𝑥

𝑛
→ 𝑥
∗. This completes the proof.

Corollary 15. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces and

let 𝐶 ⊆ 𝐻
1
and 𝑄 ⊆ 𝐻

2
be nonempty closed subsets. Let

𝐴 : 𝐻
1

→ 𝐻
2
be a bounded linear operator. Assume that

𝐹
1
: 𝐶 × 𝐶 → R and 𝐹

2
: 𝑄 × 𝑄 → R are the bifunctions

satisfying Assumption 7 and 𝐹
2
is upper semicontinuous in the

first argument. Let the sequences {𝑢
𝑛
} and {𝑥

𝑛
} be generated by

𝑢
𝑛
= 𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠.

(77)

Suppose that the sequence {𝛼
𝑛
} satisfies the following condi-

tions: (a), (b), and (c) (the same in Theorem 14). Then the
sequences {𝑢

𝑛
} and {𝑥

𝑛
} converge strongly to 𝑥

∗
∈ Γ =

𝐹
𝑖𝑥
(𝑆)⋂Ω, where𝑥∗ = 𝑃

Γ
(𝐼− 𝜇𝐵+ 𝛾𝑓)𝑥

∗, which is the unique
solution of the variational inequality (31).

If 𝐵 is a strongly positive bounded linear self-adjoint
operator on𝐻

1
with constant 𝛾 > 0 such that 0 < 𝛾 < 𝛾/𝛼 <

𝛾 + 1/𝛼, we can easily obtain the following corollary.

Corollary 16. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces and

let 𝐶 ⊆ 𝐻
1
and 𝑄 ⊆ 𝐻

2
be nonempty closed subsets. Let

𝐴 : 𝐻
1

→ 𝐻
2
be a bounded linear operator. Assume that

𝐹
1
: 𝐶 × 𝐶 → R and 𝐹

2
: 𝑄 × 𝑄 → R are the bifunctions

satisfying Assumption 7 and 𝐹
2
is upper semicontinuous in the

first argument. Let the sequences {𝑢
𝑛
} and {𝑥

𝑛
} be generated by

𝑢
𝑛
= 𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+ 𝛿𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐵)

1

𝑠
𝑛

∫

𝑠
𝑛

0

𝑇 (𝑠) 𝑢
𝑛
𝑑𝑠.

(78)

Suppose that the sequence {𝛼
𝑛
} satisfies the following condi-

tions: (a), (b), and (c) (the same in Theorem 14). Then the
sequences {𝑢

𝑛
} and {𝑥

𝑛
} converge strongly to 𝑥

∗
∈ Γ =

𝐹
𝑖𝑥
(𝑆)⋂Ω, where𝑥∗ = 𝑃

Γ
(𝐼− 𝜇𝐵+ 𝛾𝑓)𝑥

∗, which is the unique
solution of the variational inequality

⟨(𝛾𝑓 − 𝐵) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0, ∀ 𝑥 ∈ Γ. (79)

4. Application

In this section, we introduce an example of numerical test to
illustrate the algorithm given in Corollary 16.

Example 17. Let 𝐶,𝑄 = [0, +∞) ∈ 𝐻
1
= 𝐻
2
= 𝑅, the set of

all real numbers, with the inner product defined by ⟨𝑥, 𝑦⟩ =

𝑥𝑦, ∀𝑥, 𝑦 ∈ 𝑅, and induced usual norm ‖ ⋅ ‖. Assume that
𝐹
1
: 𝐶 × 𝐶 → 𝑅 and 𝐹

2
: 𝑄 × 𝑄 → 𝑅 are defined by

𝐹
1
(𝑥, 𝑦) = (𝑥 − 4)(𝑦 − 𝑥), ∀𝑥, 𝑦 ∈ 𝐶, and 𝐹

2
(𝑢, V) = (𝑢 +

2)(V − 𝑢), ∀𝑢, V ∈ 𝑄. It is easy to claim that the bifunctions
𝐹
1
and 𝐹
2
satisfy Assumption 7 and the bifunction𝐹

2
is upper

semicontinuous. Next, we can find the formula of𝑇𝐹1
𝑟
𝑛

𝑥. From
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Figure 1: Convergence of iterative sequence {𝑥
𝑛
}.

Lemma 8, we can claim that𝑇𝐹1
𝑟
𝑛

𝑥 is single-valued; for any 𝑦 ∈

𝐶, 𝑟 > 0,

𝐹
1
(𝑥, 𝑦) +

1

𝑟
⟨𝑥 − 𝑧, 𝑦 − 𝑥⟩ ≥ 0

⇐⇒ − (𝑟 + 1) 𝑥
2
+ (𝑟𝑥 + 𝑥 − 4𝑟 − 𝑧) 𝑦 + (4𝑟 + 𝑧) 𝑥 ≥ 0.

(80)

Letting𝐻(𝑦) = −(𝑟 + 1)𝑥
2
+ (𝑟𝑥 + 𝑥 − 4𝑟 − 𝑧)𝑦 + (4𝑟 + 𝑧)𝑥,

we obtain that

𝑧 = (𝑟 + 1) 𝑥 − 4𝑟, (81)

and so

𝑇
𝐹
1

𝑟
𝑛

𝑥 = (𝑟
𝑛
+ 1) 𝑥 − 4𝑟

𝑛
. (82)

Similarly, we can also obtain that

𝑇
𝐹
2

𝑟
𝑛

𝑢 = (𝑟
𝑛
+ 1) 𝑢 + 2𝑟

𝑛
. (83)

For all 𝑥 ∈ 𝑅, we can define mapping 𝑓(𝑥) = (1/4)𝑥,
𝐴(𝑥) = −(1/2)𝑥, 𝐵(𝑥) = 2𝑥, and the nonexpansive mapping
𝑇 is satisfied as 𝑇𝑥 = 𝑥 ∀𝑥 ∈ 𝐶. It is claimed that the
mapping 𝑓 is contraction with constant 𝛽 = 1/2, 𝐴 is a
bounded linear operator on 𝑅 with adjoint operator 𝐴∗ and
‖𝐴‖ = ‖𝐴

∗
‖ = 1/2, and𝐵 is a strongly positive bounded linear

self-adjoint operator with constant 𝛾 = 1 on 𝑅. On the other
hand, we can take 𝛾 = 2 which satisfies 0 < 𝛾 < 𝛾/𝛼 <

𝛾 + 1/𝛼. Hence, it is easy to observe that 𝐹
𝑖𝑥
(𝑇) = (0,∞),

EP(𝐹
1
) = {4}, and EP(𝐹

2
) = {−2}. Furthermore, we can

obtain that Ω = {𝑝 ∈ EP(𝐹
1
) : 𝐴𝑝 ∈ EP(𝐹

2
)} = {−2}.

Consequently, Γ = 𝐹
𝑖𝑥
(𝑆)⋂Ω = {−2}. Therefore, all the

assumptions in Corollary 16 are satisfied. We can obtain the
following numerical algorithm:

𝑢
𝑛
= 𝑇
𝐹
1

𝑟
𝑛

(𝑥
𝑛
+
1

8
𝐴
∗
(𝑇
𝐹
2

𝑟
𝑛

− 𝐼)𝐴𝑥
𝑛
) ,

𝑥
𝑛+1

=
2

𝑛 + 1
(
1

4
𝑥
𝑛
) + (1 −

2

𝑛 + 1
) 𝑢
𝑛
,

(84)

where 𝛼
𝑛
= 1/(𝑛 + 1) and 𝑟

𝑛
= 1. Then, by Corollary 16,

the sequence {𝑥
𝑛
} converges to a solution of Example 17. For

a number 𝜀 = 10
−5, using the MATLAB, we generated a

sequence {𝑥
𝑛
} as in Figure 1.
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