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Attribute reduction is one of the most important problems in rough set theory. However, from the granular computing point
of view, the classical rough set theory is based on a single granulation. It is necessary to study the issue of attribute reduction
based on multigranulations rough set. To acquire brief decision rules from information systems, this paper firstly investigates
attribute reductions by combining the multigranulations rough set together with evidence theory. Concepts of belief and
plausibility consistent set are proposed, and some important properties are addressed by the view of the optimistic and pessimistic
multigranulations rough set. What is more, the multigranulations method of the belief and plausibility reductions is constructed
in the paper. It is proved that a set is an optimistic (pessimistic) belief reduction if and only if it is an optimistic (pessimistic) lower
approximation reduction, and a set is an optimistic (pessimistic) plausibility reduction if and only if it is an optimistic (pessimistic)
upper approximation reduction.

1. Introduction

Rough set theory, originated by Pawlak in the early 1980s
[1, 2], is an extension of the classical set theory and can be
regarded as a soft computing tool to handle imprecision,
vagueness, and uncertainty in date analysis. The theory has
been found successful in applications, especially in the field
of pattern recognition [3], medical diagnosis [4], data mining
[5, 6], conflict analysis [7], algebra [8, 9], and other fields
[10, 11]. Recently, the theory has generated a great deal of
interest among more and more researchers.

Recently, several extensions of the rough set model have
been proposed in terms of various requirements, such as the
variable precision rough set (VPRS) model [12], the Bayesian
rough set model [13], the fuzzy rough set model, and the
rough fuzzy set model [14–16]. Equivalence relation is a basic
notion in Pawlak’s rough set model. The equivalence classes
are employed to construct the lower and upper approxima-
tions of an arbitrary subset of the universe of discourse. How-
ever, the equivalence relation is a very restrictive condition
that may limit applications of rough set. Hence, a variety of
extensions of Pawlak’s rough set were proposed by employing

a more general mathematical concept, for example, arbitrary
binary relations [17–19], neighborhood systems and Boolean
algebras [20, 21], and partitions and coverings of the universe
of discourse [22, 23]. In the view of granular computing
(proposed by Zadeh [24]), a general concept described by
a set is always characterized via the so-called lower and
upper approximations under a single granulation; that is,
the concept is depicted by known knowledge induced from
a single relation (such as equivalence relation, tolerance
relation, and reflexive relation) on the universe.

Since each set of the information granules can be con-
sidered as a granulation space, then one can call two or
more than two information granules as multigranulations
space. To make it more widely to apply the rough set theory
in practical applications, Qian and Liang extended Pawlak’s
single-granulation rough set model to a multigranulations
rough set model [25]. Multigranulations rough set was
initially proposed by Qian and Liang [25], and later many
researchers have extended the multigranulations rough set
to the generalized multigranulations rough set. Xu et al.
developed a variable multigranulations rough set model [26],
a fuzzymultigranulations rough set model [27], a generalized
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multigranulations rough set approach [28], and amultigranu-
lations rough set model in ordered information systems [29].
Yang et al. proposed the hierarchical structure properties of
the multigranulations rough set [30–33] and multigranula-
tions rough set in incomplete information system [34]. Lin et
al. presented a neighborhood-basedmultigranulations rough
set [35]. Qian et al. discussed the decision-theoretic rough
set theory based on Bayesian decision procedure into the
multigranulations [36]. She and He explored the topological
structures and the properties of multigranulations rough set
[37] and many others [38, 39].

Another important method used to deal with uncertainty
in information systems is the Dempster-Shafer theory of
evidence. It was originated by Dempster’s concept of lower
and upper probabilities [40] and extended by Shafer as a
theory [41].The basic representational structure in the theory
is a belief structure, which can derive dual pairs of belief and
plausibility functions. Subsequently, Zadeh generalized the
Dempster-Shafer theory to the fuzzy environment based on
his work on the concepts of information granularity [42] and
the theory of possibility [43]. So as to evaluate the degrees
of belief in fuzzy events, many authors have enriched the
Dempster-Shafer theory in different ways. Interested read-
ers can refer to [44] for a summary of some of these generali-
zations.

There are strong connections between rough set theory
and Dempster-Shafer theory of evidence. It has been demon-
strated that various belief structures are associated with vari-
ous rough approximation spaces such that the different dual
pairs of lower and upper approximation operators induced
by rough approximation spaces may be used to interpret the
corresponding dual pairs of belief and plausibility functions
induced by belief structures [45–48].

It is well known that attribute reduction is one of the hot
research topics of rough set theory.There are many attributes
in information system in general. But some attributes are not
always needed based on the various reasons. Several kinds
of attribute reductions such as upper approximation reduc-
tions, lower approximation reductions, and positive region
reductions were discussed in a decision system according
to different requirements [49–51]. By now much study on
this area had been reported and many useful results were
obtained [50, 52–55]. While in our real life, we may face
some problems in which the existing reductions cannot
be disposed, on this situation, some new reductions are
needed. In this paper, we attempt to investigate attribute
reduction in multigranulations rough set based on evi-
dence theory and its strong relations with existing reduc-
tions.

The organization of the rest of this paper is as follows.
In Section 2, we give some basic concepts of information
systems and Pawlak’s rough set, multigranulations rough
set, and evidence theory. In Section 3, evidence theory
in optimistic multigranulations rough set and pessimistic
multigranulations rough set has been constructed, and some
important properties are discussed. In Section 4, we intro-
duce the optimistic and pessimistic multigranulations rough
set method of belief and plausibility reductions; then we
also combine the belief structure with the lower and upper

approximations. And in Section 5, we conclude the paper
with a summary and outlook for further research.

2. Preliminaries

Throughout this paper, we assume that the universe is a
nonempty finite set.

An information system is an order triple 𝑆 = (𝑈,AT, 𝑓),
where𝑈 = {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
} is a nonempty finite set of objects,

AT = {𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑚
} is a nonempty finite set of conditional

attributes, and for any 𝑎
𝑖
∈ AT, 𝑓

𝑎𝑖
: 𝑈 → 𝑉

𝑎𝑖
is a map,

where 𝑉
𝑎𝑖
is the domain of the attribute 𝑎

𝑖
. In particular, a

target information system is given by 𝑆 = (𝑈,AT, 𝑓, 𝐷, 𝑔),
where𝐷 = {𝑑

1
, 𝑑

2
, . . . , 𝑑

𝑝
} is a nonempty finite set of decision

attributes, and for any 𝑑
𝑗
∈ 𝐷, 𝑔

𝑑𝑗
: 𝑈 → 𝑉

𝑑𝑗
is a

map, where 𝑉
𝑑𝑗
is the domain of the attribute 𝑑

𝑗
. In general,

a target information system is consistent, if the partitions
induced from the set of condition attributes AT are finer than
the partitions induced from the set of decision attributes 𝐷.
Otherwise, it is inconsistent.

For an information system, any attribute domain 𝑉
𝑎
may

contain special symbol “∗” to represent that the value of an
attribute is unknown. Here, we assume that an object 𝑥 ∈ 𝑈
possesses only one value for an attribute 𝑎, 𝑎 ∈ AT. Thus, if
the value of an attribute 𝑎 is missing, then the attribute value
is the symbol “∗”, and the real value of the attribute must be
from the set𝑉

𝑎
\{∗}. Any domain value different from “∗” will

be called regular. A system in which values of all attributes
for all objects from𝑈 are regular (known) is called complete;
otherwise it is called incomplete [56, 57].

Throughout this paper, we assume that the information
system is the complete information system.

Suppose that 𝑆 = (𝑈,AT, 𝑓) is an information system,
𝑅

𝐴
= {(𝑥, 𝑦) | 𝑓

𝑎𝑖
(𝑥) = 𝑓

𝑎𝑖
(𝑦), ∀𝑎

𝑖
∈ 𝐴}; let 𝑈/𝑅

𝐴
be a

partition of 𝑈 induced by the attribute subset 𝐴 ⊆ AT. For
any 𝑥 ∈ 𝑈, [𝑥]

𝐴
= {𝑦 | (𝑥, 𝑦) ∈ 𝑅

𝐴
}; more information can

be found in [58–60].
In themultigranulations rough setmodel, unlike Pawlak’s

rough set theory, the target concept is approximated via
multiple partitions induced bymultiple equivalence relations.
Suppose that 𝑆 = (𝑈,AT, 𝑓) is an information system,
𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑠
(𝑠 ≤ 2

|AT|) are attribute subsets, and 𝑋 ⊆ 𝑈.
Then the optimistic multigranulations lower approximation
and upper approximation of𝑋 related to𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑠
in𝑈

are defined as follows:

OM
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑥 | ∨ ([𝑥]𝐴𝑖

⊆ 𝑋)} ,

OM
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑥 | ∧ ([𝑥]𝐴𝑖

∩ 𝑋 ̸= 0)} .

(1)

And the pessimistic multigranulations lower approxima-
tion and upper approximation of𝑋 related to 𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑠

in 𝑈 are defined as follows:

PM
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑥 | ∧ ([𝑥]𝐴𝑖

⊆ 𝑋)} ,

PM
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑥 | ∨ ([𝑥]𝐴𝑖

∩ 𝑋 ̸= 0)} .

(2)

More detailed introductions can be seen in [58, 59, 61, 62].



Journal of Applied Mathematics 3

In evidence theory [40, 41], a mass function of a universe
𝑈 can be defined by a map𝑚 : 𝑃(𝑈) → [0, 1], and this mass
function satisfies two axioms:

(𝑀1) 𝑚 (0) = 0,

(𝑀2) ∑

𝑋⊆𝑈

𝑚(𝑋) = 1.
(3)

The value 𝑚(𝑋) represents the degree of belief that a
specific element of𝑈 belongs to set𝑋 but not to any particular
subset of𝑋.

If 𝑚(𝑋) > 0, then 𝑋 is called a focal element. The family
of all focal elements of 𝑚 are denoted by 𝑀. Then the pair
(𝑀,𝑚) is called a belief structure.

In information systems, each belief structure can derive
a pair of belief and plausibility functions based on classical
equivalence relation.

Definition 1 (see [40, 41]). Let (𝑀,𝑚) be a belief structure.
A set function Bel : 𝑃(𝑈) → [0, 1] is referred to as a belief
function on 𝑈, if for any𝑋 ∈ 𝑃(𝑈),

Bel (𝑋) = ∑

𝑌⊆𝑋

𝑚(𝑌) . (4)

A set function Pl : 𝑃(𝑈) → [0, 1] is referred to as a
plausibility function on 𝑈, if for any𝑋 ∈ 𝑃(𝑈),

Pl (𝑋) = ∑

𝑌∩𝑋 ̸= 0

𝑚(𝑌) . (5)

Remark 2. The above definition about belief and plausibility
functions can also be defined as follows.

A set function Bel : 𝑃(𝑈) → [0, 1] is referred to as a
belief function on 𝑈, if it satisfies the following three axioms
[48]:

(1) Bel(0) = 0,
(2) Bel(𝑈) = 1,
(3) for any positive integer 𝑛 and every collection

𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑛
⊆ 𝑈,

Bel(
𝑛

⋃

𝑖=1

𝑋
𝑖
) ≥ ∑

0 ̸= 𝐽⊆{1,2,...,𝑛}

(−1)
|𝐽|+1Bel(⋂

𝑖∈𝐽

𝑋
𝑖
) . (6)

A set function Pl : 𝑃(𝑈) → [0, 1] is referred to as a
plausibility function on 𝑈, if it satisfies the following three
axioms [48]:

(1) Pl(0) = 0,
(2) Pl(𝑈) = 1,
(3) for any positive integer 𝑛 and every collection

𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑛
⊆ 𝑈,

Pl(
𝑛

⋂

𝑖=1

𝑋
𝑖
) ≤ ∑

0 ̸= 𝐽⊆{1,2,...,𝑛}

(−1)
|𝐽|+1Pl(⋃

𝑖∈𝐽

𝑋
𝑖
) . (7)

From the definition and remark above, one can test and
verify belief and plausibility functions by validating the three
axioms above, respectively.

3. Evidence Theory in
Multigranulations Rough Set

In this section, we will introduce the evidence theory in
the optimistic multigranulations rough set and pessimistic
multigranulations rough set and discuss some important
properties of evidence theory in information system.

Definition 3. Let 𝑆 = (𝑈,AT, 𝑓) be an information system,
𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑠
⊆ AT (𝑠 ≤ 2|AT|), and let𝑅

𝑖
be the equivalence

relation associated with 𝐴
𝑖
. For any 𝑋 ∈ 𝑈/𝑅

𝑖
, a mass

function 𝑚
𝑖
of 𝑆 can be defined as 𝑚

𝑖
(𝑋) = |𝑋|/|𝑈|, where

|𝑋| denotes the cardinality of a set𝑋.
By the above definition, we can easily find that a mass

function of information system satisfies two basic axioms.
That is to say, for any 𝑋 ∈ 𝑈/𝑅

𝑖
in information system, the

following two axioms hold directly:

(𝑀1) 𝑚
𝑖
(0) = 0,

(𝑀2) ∑

𝑋⊆𝑈/𝑅𝑖

𝑚
𝑖
(𝑋) = 1.

(8)

Similarly, the family of all focal elements of 𝑚 is denoted
by 𝑀 in optimistic multigranulations rough set. The pair
(𝑀,𝑚) is called a belief structure of the optimistic multi-
granulations rough set in information system; a pair of belief
and plausibility function in the optimistic multigranulations
rough set can be derived immediately.

Definition 4. Let 𝑆 = (𝑈,AT, 𝑓) be an information system
and (𝑀,𝑚) a belief structure.

(1) A set function Bel : 𝑃(𝑈) → [0, 1] is referred to as an
optimistic belief function on 𝑈, if for any𝑋 ∈ 𝑃(𝑈),

Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = ∑

𝑌⊆𝑋,𝑌∈𝑈/𝑅𝐴𝑖
(∃𝐴𝑖⊆AT)

𝑚
𝑖
(𝑌) . (9)

A set function Pl : 𝑃(𝑈) → [0, 1] is referred to as an
optimistic plausibility function on 𝑈, if for any𝑋 ∈ 𝑃(𝑈),

Pl𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = ∑

𝑌∩𝑋 ̸= 0,𝑌∈𝑈/𝑅𝐴𝑖
(∀𝐴𝑖⊆AT)

𝑚
𝑖
(𝑌) . (10)

(2) A set function Bel : 𝑃(𝑈) → [0, 1] is referred to as a
pessimistic belief function on 𝑈, if for any𝑋 ∈ 𝑃(𝑈),

Bel𝑃
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = ∑

𝑌⊆𝑋,𝑌∈𝑈/𝑅𝐴𝑖
(∀𝐴𝑖⊆AT)

𝑚
𝑖
(𝑌) . (11)

A set function Pl : 𝑃(𝑈) → [0, 1] is referred to as a pessi-
mistic plausibility function on 𝑈, if for any𝑋 ∈ 𝑃(𝑈),

Pl𝑃
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = ∑

𝑌∩𝑋 ̸= 0,𝑌∈𝑈/𝑅𝐴𝑖
(∃𝐴𝑖⊆AT)

𝑚
𝑖
(𝑌) . (12)
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Theorem 5. Let 𝑆 = (𝑈, 𝐴𝑇, 𝑓) be an information system, for
any 𝑋 ⊆ 𝑈, 𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑠
⊆ 𝐴𝑇 (𝑠 ≤ 2|𝐴𝑇|), denoted by

𝐵𝑒𝑙
𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) =


𝑂𝑀

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)



|𝑈|
,

𝑃𝑙
𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) =


𝑂𝑀

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)



|𝑈|
,

𝐵𝑒𝑙
𝑃

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) =


𝑃𝑀

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)



|𝑈|
,

𝑃𝑙
𝑃

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) =


𝑃𝑀

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)



|𝑈|
.

(13)

Then

𝐵𝑒𝑙
𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is the optimistic belief function and

𝑃𝑙
𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is the optimistic plausibility function of 𝑈;

𝐵𝑒𝑙
𝑃

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is the pessimistic belief function and

𝑃𝑙
𝑃

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is the pessimistic plausibility function of𝑈.

Proof. We only prove Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is the optimistic belief

function of 𝑈; then analogously we can prove Pl𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is

the optimistic plausibility function of 𝑈. Consider

(1) Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(0) = |OM

∑
𝑠

𝑖=1
𝐴𝑖
(0)|/|𝑈| = 0/|𝑈| = 0,

(2) Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑈) = |OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑈)|/|𝑈| = |𝑈|/|𝑈| = 1,

(3) for any positive integer 𝑛 and every collection
𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑛
⊆ 𝑈, we have

Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

1
∪ 𝑋

2
∪ ⋅ ⋅ ⋅ ∪ 𝑋

𝑛
)

=


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

1
∪ 𝑋

2
∪ ⋅ ⋅ ⋅ ∪ 𝑋

𝑛
)



|𝑈|

≥


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

1
) ∪OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

2
) ∪ ⋅ ⋅ ⋅ ∪OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑛
)



|𝑈|

=

𝑛

∑

𝑗=1


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑗
)



|𝑈|

− ∑

𝑘<𝑗


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑘
) ∩OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑗
)



|𝑈|
+ ⋅ ⋅ ⋅ + (−1)

𝑛+1

×


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

1
) ∩OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

2
) ∩ ⋅ ⋅ ⋅ ∩OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑛
)



|𝑈|

≥

𝑛

∑

𝑗=1


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑗
)



|𝑈|
− ∑

𝑘<𝑗


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑘
∩ 𝑋

𝑗
)



|𝑈|

+ ⋅ ⋅ ⋅ + (−1)
𝑛+1


OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

1
∩ 𝑋

2
⋅ ⋅ ⋅ ∩ 𝑋

𝑛
)



|𝑈|

=

𝑛

∑

𝑗=1

Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑗
) − ∑

𝑘<𝑗

Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

𝑘
∩ 𝑋

𝑗
)

+ ⋅ ⋅ ⋅ + (−1)
𝑛+1Bel𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋

1
∩ 𝑋

2
∩ ⋅ ⋅ ⋅ ∩ 𝑋

𝑛
) .

(14)

Similarly we can prove that Bel𝑃
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is the pessimistic

belief function and Pl𝑃
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) is the pessimistic plausibility

function of 𝑈.
Thus, the theorem is proved.

From the theorem above, one can get the following
properties of the belief function and plausibility function in
the optimistic and pessimistic multigranulations rough set.

Theorem 6. Belief function and plausibility function based on
the same belief structure are connected by the dual property in
the optimistic multigranulations rough set and the pessimistic
multigranulations rough set, respectively,

(1) 𝐵𝑒𝑙𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 1 − 𝑃𝑙

𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋),

(2) 𝐵𝑒𝑙𝑃
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 1 − 𝑃𝑙

𝑃

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋).

Proof. (1) It is clear that OM
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) =∼ OM

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋), so

|OM
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)| = |𝑈| − |OM

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋)|.

Then

OM

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)



|𝑈|
=

|𝑈| −

OM

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋)



|𝑈|

= 1 −


OM

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋)



|𝑈|
.

(15)

That is to say

Bel𝑜
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 1 − Pl𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋) . (16)

(2) One can prove Bel𝑃
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 1 − Pl𝑃

∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋) to be

similar.

Corollary 7. Let 𝑆 = (𝑈, 𝐴𝑇, 𝑓) be an information system, for
any 𝑋 ⊆ 𝑈, 𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑠
⊆ 𝐴𝑇 (𝑠 ≤ 2|𝐴𝑇|); then

(1) 𝐵𝑒𝑙𝑜
𝐴𝑖
(𝑋) ≤ 𝐵𝑒𝑙

𝑜

∑
𝑖 ̸= 𝑗

1≤𝑗≤𝑠
𝐴𝑖

(𝑋) ≤ 𝐵𝑒𝑙
𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≤

|𝑋|/|𝑈| ≤ 𝑃𝑙
𝑜

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≤ 𝑃𝑙

𝑜

∑
𝑖 ̸= 𝑗

1≤𝑗≤𝑠
𝐴𝑖

(𝑋) ≤ 𝑃𝑙
𝑜

𝐴𝑖
(𝑋),

(2) 𝐵𝑒𝑙𝑃
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≤ 𝐵𝑒𝑙

𝑃

∑
𝑖 ̸= 𝑗

1≤𝑗≤𝑠
𝐴𝑖

(𝑋) ≤ 𝐵𝑒𝑙
𝑃

𝐴𝑖
(𝑋) ≤

|𝑋|/|𝑈| ≤ 𝑃𝑙
𝑃

𝐴𝑖
(𝑋) ≤ 𝑃𝑙

𝑃

∑
𝑖 ̸= 𝑗

1≤𝑗≤𝑠
𝐴𝑖

(𝑋) ≤ 𝑃𝑙
𝑃

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋).
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Proof. It can be obtained directly by combining the properties
of the optimistic multigranulations rough set, pessimistic
multigranulations rough set, andTheorem 5.

The difference between (1) and (2) in Corollary 7 is
mainly because of the difference between the definition of the
optimistic and pessimistic multigranulations rough set lower
and upper approximations.

Example 8. Table 1 depicts a target information system
containing some information about an emporium invest-
ment project. Locus, Investment, and Population density
are the conditional attributes of the system, and 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛

is the decision attribute. (In the sequel, 𝐿, 𝐼, 𝑃, and
𝐷 will stand for 𝐿𝑜𝑐𝑢𝑠, Investment, Population density,
and Decision, resp.) The attribute domains are as follows:
𝑉

𝐿
= {Good,Common,Bad}, 𝑉

𝐼
= {High, Low}, 𝑉

𝑃
=

{Big, Small,Medium}, and 𝑉
𝐷
= {Yes,No}.

Let𝑋 = {𝑥
1
, 𝑥

2
, 𝑥

6
, 𝑥

8
}; we have gotten

OM
𝐿
(𝑋) = 𝑅

𝐿
(𝑋) = {𝑥

8
} ,

PM
𝐿
(𝑋) = 𝑅

𝐿
(𝑋) = {𝑥

8
} ,

OM
𝐿
(𝑋) = 𝑅

𝐿
(𝑋) = {𝑥

1
, 𝑥

2
, . . . , 𝑥

8
} ,

PM
𝐿
(𝑋) = 𝑅

𝐿
(𝑋) = {𝑥

1
, 𝑥

2
, . . . , 𝑥

8
} ,

OM
𝐿+𝑃

(𝑋) = {𝑥
1
, 𝑥

2
, 𝑥

8
} , PM

𝐿+𝑃
(𝑋) = 0,

OM
𝐿+𝑃

(𝑋) = {𝑥
1
, 𝑥

2
, 𝑥

6
, 𝑥

7
, 𝑥

8
} ,

PM
𝐿+𝑃

(𝑋) = {𝑥
1
, 𝑥

2
, . . . , 𝑥

8
} ,

OM
𝐿+𝐼+𝑃

(𝑋) = {𝑥
1
, 𝑥

2
, 𝑥

8
} , PM

𝐿+𝐼+𝑃
(𝑋) = 0,

OM
𝐿+𝐼+𝑃

(𝑋) = {𝑥
1
, 𝑥

2
, 𝑥

6
, 𝑥

7
, 𝑥

8
} ,

PM
𝐿+𝐼+𝑃

(𝑋) = {𝑥
1
, 𝑥

2
, . . . , 𝑥

8
} .

(17)

So, we can calculate

Bel𝑜
𝐿
(𝑋) =


OM

𝐿
(𝑋)



|𝑈|
=
1

8
,

Bel𝑃
𝐿
(𝑋) =


PM

𝐿
(𝑋)



|𝑈|
=
1

8
,

Pl𝑜
𝐿
(𝑋) =


OM

𝐿
(𝑋)



|𝑈|
= 1,

Pl𝑃
𝐿
(𝑋) =


PM

𝐿
(𝑋)



|𝑈|
= 1,

Bel𝑜
𝐿+𝑃

(𝑋) =


OM

𝐿+𝑃
(𝑋)



|𝑈|
=
3

8
,

Bel𝑃
𝐿+𝑃

(𝑋) =


PM

𝐿+𝑃
(𝑋)



|𝑈|
= 0,

Pl𝑜
𝐿+𝑃

(𝑋) =


OM

𝐿+𝑃
(𝑋)



|𝑈|
=
5

8
,

Pl𝑃
𝐿+𝑃

(𝑋) =


PM

𝐿+𝑃
(𝑋)



|𝑈|
= 1,

Bel𝑜
𝐿+𝐼+𝑃

(𝑋) =


OM

𝐿+𝐼+𝑃
(𝑋)



|𝑈|
=
3

8
,

Bel𝑃
𝐿+𝐼+𝑃

(𝑋) =


PM

𝐿+𝐼+𝑃
(𝑋)



|𝑈|
= 0,

Pl𝑜
𝐿+𝐼+𝑃

(𝑋) =


𝑂𝑀

𝐿+𝐼+𝑃
(𝑋)



|𝑈|
=
5

8
,

Pl𝑃
𝐿+𝐼+𝑃

(𝑋) =


PM

𝐿+𝐼+𝑃
(𝑋)



|𝑈|
= 1.

(18)

Hence, the following is obvious:

Bel𝑜
𝐿
(𝑋) ≤ Bel𝑜

𝐿+𝑃
(𝑋) ≤ Bel𝑜

𝐿+𝐼+𝑃
(𝑋)

≤
|𝑋|

|𝑈|
≤ Pl𝑜

𝐿+𝐼+𝑃
(𝑋) ≤ Pl𝑜

𝐿+𝑃
(𝑋) ≤ Pl𝑜

𝐿
(𝑋) ,

Bel𝑃
𝐿+𝐼+𝑃

(𝑋) ≤ Bel𝑃
𝐿+𝑃

(𝑋) ≤ Bel𝑃
𝐿
(𝑋)

≤
|𝑋|

|𝑈|
≤ Pl𝑃

𝐿
(𝑋) ≤ Pl𝑃

𝐿+𝑃
(𝑋) ≤ Pl𝑃

𝐿+𝐼+𝑃
(𝑋) .

(19)

4. Attribute Reduction Based on
Evidence Theory

In this section, we consider the optimistic multiple granula-
tion rough set and the pessimistic multigranulations rough
set method of the attribute reductions by introducing the
concepts of belief and plausibility reductions in information
system and compare them with the existing reductions.

Let 𝑆 = (𝑈,AT, 𝑓, 𝐷, 𝑔) be a decision information system,
𝐴 ⊆ AT, and let 𝑅

𝐴
and 𝑅

𝐷
be the equivalence relations of𝑈,

which are induced by the conditional attribute set 𝐴 and the
decision attribute set𝐷 = {𝑑}, respectively; we denote

𝑈

𝑅
𝐴

= {[𝑥
𝑖
]
𝐴
| 𝑥

𝑖
∈ 𝑈} ,

𝑈

𝑅
𝐷

= {𝐷
1
, 𝐷

2
, . . . , 𝐷

𝑟
} ,

𝜂
𝑜

𝐴
= (OM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

1
) ,OM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

2
) ,

. . . , OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑟
)) ,
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Table 1: A target information system about emporium investment project.

Project Locus Investment Population density Decision
𝑥

1
Common High Big Yes

𝑥
2

Bad High Big Yes
𝑥

3
Bad Low Small No

𝑥
4

Bad Low Small No
𝑥

5
Bad Low Small No

𝑥
6

Bad High Medium Yes
𝑥

7
Common High Medium No

𝑥
8

Good High Medium Yes

𝜂
𝑜

𝐴
= (OM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

1
) ,OM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

2
) ,

. . . , OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑟
)) ,

𝜂
𝑃

𝐴
= (PM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

1
) ,PM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

2
) ,

. . . , PM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑟
)) ,

𝜂
𝑃

𝐴
= (PM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

1
) ,PM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

2
) ,

. . . , PM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑟
)) ,

(20)

where [𝑥
𝑖
]
𝐴
= {𝑦 ∈ 𝑈 | (𝑥

𝑖
, 𝑦) ∈ 𝑅

𝐴
}.

Definition 9 (see [58]). Let 𝑆 = (𝑈,AT, 𝑓, 𝐷, 𝑔) be a decision
information system in which 𝐴 ⊆ AT.

(1) If 𝜂𝑜

𝐴
= 𝜂

𝑜

AT, then 𝐴 is referred to as an optimistic
upper approximation consistent set of 𝑆 with respect
to the equivalence relation 𝑅

𝐴
; if 𝐴 is an optimistic

upper approximation consistent set of 𝑆 and for any
𝐴


⊆ 𝐴, 𝐴 is not the optimistic upper approximation

consistent set of 𝑆, then 𝐴 is referred to as an
optimistic upper approximation reduction of 𝑆 with
respect to the equivalence relation 𝑅

𝐴
.

(2) If 𝜂𝑜

𝐴
= 𝜂

𝑜

AT
, then 𝐴 is referred to as an optimistic

lower approximation consistent set of 𝑆 with respect
to the equivalence relation 𝑅

𝐴
; if 𝐴 is an optimistic

lower approximation consistent set of 𝑆 and for any
𝐴


⊆ 𝐴, 𝐴 is not the optimistic lower approximation

consistent set of 𝑆, then 𝐴 is referred to as an
optimistic lower approximation reduction of 𝑆 with
respect to the equivalence relation 𝑅

𝐴
.

(3) If 𝜂𝑃

𝐴
= 𝜂

𝑃

AT, then 𝐴 is referred to as a pessimistic
upper approximation consistent set of 𝑆 with respect
to the equivalence relation 𝑅

𝐴
; if 𝐴 is a pessimistic

upper approximation consistent set of 𝑆 and for any
𝐴


⊆ 𝐴,𝐴 is not the pessimistic upper approximation

consistent set of 𝑆, then𝐴 is referred to as a pessimistic
upper approximation reduction of 𝑆 with respect to
the equivalence relation 𝑅

𝐴
.

(4) If 𝜂𝑃

𝐴
= 𝜂

𝑃

AT
, then 𝐴 is referred to as a pessimistic

lower approximation consistent set of 𝑆 with respect
to the equivalence relation 𝑅

𝐴
; if 𝐴 is a pessimistic

lower approximation consistent set of 𝑆 and for any
𝐴


⊆ 𝐴,𝐴 is not the pessimistic lower approximation

consistent set of 𝑆, then𝐴 is referred to as a pessimistic
lower approximation reduction of 𝑆 with respect to
the equivalence relation 𝑅

𝐴
. From the definitions

above, one can get the following theorem directly.

Theorem 10. Let 𝑆 = (𝑈, 𝐴𝑇, 𝑓,𝐷, 𝑔) be a decision informa-
tion system in which 𝐴 ⊆ 𝐴𝑇; then

(1) 𝐴 is an optimistic upper approximation consistent set of
𝑆 if and only if, for any𝐷

𝑗
∈ 𝑈/𝑅

𝐷
, 𝑂𝑀

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) =

𝑅
𝐴𝑇
(𝐷

𝑗
) holds;

(2) 𝐴 is an optimistic lower approximation consistent set of
𝑆 if and only if, for any𝐷

𝑗
∈ 𝑈/𝑅

𝐷
, 𝑂𝑀

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) =

𝑅
𝐴𝑇
(𝐷

𝑗
) holds;

(3) 𝐴 is a pessimistic upper approximation consistent set of
𝑆 if and only if, for any 𝐷

𝑗
∈ 𝑈/𝑅

𝐷
, 𝑃𝑀

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) =

𝑅
𝐴𝑇
(𝐷

𝑗
) holds;

(4) 𝐴 is a pessimistic lower approximation consistent set of
𝑆 if and only if, for any 𝐷

𝑗
∈ 𝑈/𝑅

𝐷
, 𝑃𝑀

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) =

𝑅
𝐴𝑇
(𝐷

𝑗
) holds.

Proof. It can be derived easily from the definition of the
optimistic upper and lower approximation reduction and the
pessimistic upper and lower approximation reduction.

Definition 11. Let 𝑆 = (𝑈,AT, 𝑓, 𝐷, 𝑔) be a decision informa-
tion system in which 𝐴 ⊆ AT.

(1) If for any𝑋 ∈ 𝑈/𝑅AT, Bel
𝑜

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) = Bel𝑜AT(𝑋), then

𝐴 is referred to as an optimistic belief consistent set of
𝑆; if𝐴 is an optimistic belief consistent set of 𝑆 and for
any 𝐴

⊆ 𝐴, 𝐴 is not the optimistic belief consistent
set of 𝑆, then 𝐴 is referred to as an optimistic belief
reduction of 𝑆.

(2) If for any 𝑋 ∈ 𝑈/𝑅AT, Pl
𝑜

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) = Pl𝑜AT(𝑋), then

𝐴 is referred to as an optimistic plausibility consistent
set of 𝑆; if 𝐴 is an optimistic plausibility consistent
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set of 𝑆 and for any 𝐴
⊆ 𝐴, 𝐴 is not the optimistic

plausibility consistent set of 𝑆, then 𝐴 is referred to as
an optimistic plausibility reduction of 𝑆.

(3) If for any𝑋 ∈ 𝑈/𝑅AT, Bel
𝑃

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) = Bel𝑃AT(𝑋), then

𝐴 is referred to as a pessimistic belief consistent set of
𝑆; if𝐴 is a pessimistic belief consistent set of 𝑆 and for
any 𝐴

⊆ 𝐴, 𝐴 is not the pessimistic belief consistent
set of 𝑆, then 𝐴 is referred to as a pessimistic belief
reduction of 𝑆.

(4) If for any 𝑋 ∈ 𝑈/𝑅AT, Pl
𝑃

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) = Pl𝑃AT(𝑋), then

𝐴 is referred to as a pessimistic plausibility consistent
set of 𝑆; if 𝐴 is a pessimistic plausibility consistent set
of 𝑆 and for any 𝐴

⊆ 𝐴, 𝐴 is not the pessimistic
plausibility consistent set of 𝑆, then 𝐴 is referred to
as a pessimistic plausibility reduction of 𝑆.

Theorem 12. Let 𝑆 = (𝑈, 𝐴𝑇, 𝑓,𝐷, 𝑔) be a decision informa-
tion system in which 𝐴 ⊆ 𝐴𝑇; then

(1) 𝐴 is an optimistic belief consistent set of 𝑆 if and only
if𝐴 is an optimistic lower approximation consistent set
of 𝑆;

(2) 𝐴 is an optimistic plausibility consistent set of 𝑆 if
and only if 𝐴 is an optimistic upper approximation
consistent set of 𝑆;

(3) 𝐴 is a pessimistic belief consistent set of 𝑆 if and only if
𝐴 is a pessimistic lower approximation consistent set of
𝑆;

(4) 𝐴 is a pessimistic plausibility consistent set of 𝑆 if
and only if 𝐴 is a pessimistic upper approximation
consistent set of 𝑆.

Proof. (1) Assume that 𝐴 is an optimistic belief consistent
set of 𝑆; for any 𝑋 ∈ 𝑈/𝑅AT, we have Bel𝑜

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) =

Bel𝑜AT(𝑋). That is to say, |OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋)| = |𝑅AT(𝑋)|. Then

by the definition of the optimistic lower approximation we
have [𝑥]AT ⊆ [𝑥]

𝐴𝑖
; then OM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) ⊆ 𝑅AT(𝑋). So

OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) = 𝑅AT(𝑋). By Theorem 10, we obtain 𝐴 is an

optimistic lower approximation consistent set of 𝑆.
Conversely, if 𝐴 is an optimistic lower approxima-

tion consistent set of 𝑆, for any 𝐷
𝑗

∈ 𝑈/𝑅
𝐷
, we have

OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) = 𝑅AT(𝐷𝑗

). Then |OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
)|/|𝑈| =

|𝑅AT(𝐷𝑗
)|/|𝑈|. That is to say, Bel𝑜

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) = Bel𝑜AT(𝐷𝑗

).
Thus 𝐴 is an optimistic belief consistent set of 𝑆.

(2) Assume that 𝐴 is an optimistic plausibility consistent
set of 𝑆; for any𝑋 ∈ 𝑈/𝑅AT, we have Pl

𝑜

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) = Pl𝑜AT(𝑋).

That is to say, |OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋)| = |𝑅AT(𝑋)|. By the definition

of the optimistic upper approximation we have, [𝑥]AT ⊆

[𝑥]
𝐴𝑖
. Then OM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) ⊇ 𝑅AT(𝑋). So OM

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝑋) =

𝑅AT(𝑋). By Theorem 10, we obtain 𝐴 is an optimistic upper
approximation consistent set of 𝑆.

Conversely, if 𝐴 is an optimistic upper approxima-
tion consistent set of 𝑆, for any 𝐷

𝑗
∈ 𝑈/𝑅

𝐷
, we have

Table 2: A system about emporium investment project.

Project Decision
𝑥

1
Yes

𝑥
2

Yes
𝑥

3
No

𝑥
4

No
𝑥

5
No

𝑥
6

Yes
𝑥

7
No

𝑥
8

Yes

OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) = 𝑅AT(𝐷𝑗

). Then |OM
∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
)|/|𝑈| =

|𝑅AT(𝐷𝑗
)|/|𝑈|. That is to say, Pl𝑜

∑
𝐴𝑖∈𝐴

𝐴𝑖
(𝐷

𝑗
) = Pl𝑜AT(𝐷𝑗

). Thus
𝐴 is an optimistic plausibility consistent set of 𝑆.

(3) It is straightforward by (1).
(4) It is straightforward by (2).
Hence, the proof is completed.

Corollary 13. Let 𝑆 = (𝑈, 𝐴𝑇, 𝑓,𝐷, 𝑔) be a decision informa-
tion system in which 𝐴 ⊆ 𝐴𝑇; then

(1) 𝐴 is an optimistic belief reduction of 𝑆 if and only if 𝐴
is an optimistic lower approximation reduction of 𝑆;

(2) 𝐴 is an optimistic plausibility reduction of 𝑆 if and only
if 𝐴 is an optimistic upper approximation reduction of
𝑆;

(3) 𝐴 is a pessimistic belief reduction of 𝑆 if and only if𝐴 is
a pessimistic lower approximation reduction of 𝑆;

(4) 𝐴 is a pessimistic plausibility reduction of 𝑆 if and only
if 𝐴 is a pessimistic upper approximation reduction of
𝑆.

We have shown that the belief and plausibility reduction are
the same with lower and upper approximation reduction. One
may deal with some issue in which the lower and upper approx-
imation reduction cannot be explained, while the belief and
plausibility reduction can be well explained. Just like this, indef-
inite integral and definite integral are two basic problems in the
integral calculus. Indefinite integral is the inverse operation of
differentiation, while definite integral is the limit of a particular
type of the sum. There are both difference and connection
between them. The definite integral and the indefinite integral
can be connected in theory using Newton-leibniz formula,
while some functions still can be integrated, though they have
no antiderivative on closed interval. Under this circumstance,
indefinite integral cannot be evaluated by Newton-leibniz
formula. Next we use an example to illustrate this problem.

Example 14. Table 2 depicts a system containing some infor-
mation about an emporium investment project. All projects
are𝑈 = {𝑥

1
, 𝑥

2
, . . . , 𝑥

8
}, andDecision is the decision attribute.

(In the sequel,𝐷 will stand for Decision.)
In this example, there are no conditional attributes. So

we cannot use the lower and upper approximations to deal
with this system. Based on evidence theory, each object can
be given corresponding confidence degree according to the
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existing information. And this confidence degree after norm-
alization can be used as a new mass function. Then we can
apply the evidence theory to dispose this system. Until now,
we have not found a good method to evaluate the confidence
degree. This will be an important issue of our research in the
future.

5. Conclusions

It is well known that rough set theory has been regarded
as a generalization of the classical set theory in some cases.
In this paper, we have combined the rough set theory and
evidence theory, in order to study the problem of attribute
reductions. By introducingmass function based on themulti-
granulations rough set, we have considered the notions of the
multigranulations rough set method of belief and plausibility
reductions. What is more, we have found that a set is an
optimistic (pessimistic) belief reduction if and only if it is an
optimistic (pessimistic) lower approximation reduction, and
a set is an optimistic (pessimistic) plausibility reduction if and
only if it is an optimistic (pessimistic) upper approximation
reduction by optimistic and pessimistic frames, respectively.
And we will investigate the specific application of theories
obtained in our further study.
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