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We proposed a robust mean change-point estimation algorithm in linear regression with the assumption that the errors follow the
Laplace distribution. By representing the Laplace distribution as an appropriate scale mixture of normal distribution, we developed
the expectation maximization (EM) algorithm to estimate the position of mean change-point. We investigated the performance
of the algorithm through different simulations, finding that our methods is robust to the distributions of errors and is effective to
estimate the position of mean change-point. Finally, we applied our method to the classical Holbert data and detected a change-
point.

1. Introduction

Change-point analysis has been an active research area since
the early 1950s. During the following period of sixty-some
years, numerous articles have been published in various jour-
nals and proceedings. Chen and Gupta [1] summed up the
main methods and applications on change-point detection
and estimation. Ever since the change-point hypothesis was
introduced into statistical analyses, the study of switching
regressionmodels has taken place in regression analysis.This
made some previously poorly fitted regression models better
fitted to some datasets after the change-point has been located
in the regression models.

The Schwarz information criterion (SIC) proposed by
Schwarz [2] has been applied to change-point analysis for
different underlyingmodels bymany authors in the literature.
Chen [3] was the first to use the SIC model selection method
to study the mean change-point problem in normal linear
regression model, and later Chen and Gupta [4] used the
samemethod to detect bothmean and variance change-point
in normal model. Chen and Wang [5] developed a statistical
change-point model approach for the detection of DNA copy
number variations in array CGH data using the SIC method
and assuming the error follows the normal distribution.

However, in practice, we donot know the real distribution
of the data, and it is difficult to determine the real distribution
especially when some change-point is present in the data. So,
the normal assumption is not always suitable, for a lot of real
data usually shows heavy tail and skewness. In such cases,
some robust change-point detecting model with heavy-tailed
distribution might be better than the normal model. Osorio
and Galea [6] developed a mean change-point linear regres-
sion model with independent errors distributed according to
the Student t-distribution and located the change-point using
the SIC method. Lin et al. [7] studied the variance change-
points in the Student 𝑡 regression model under Bayesian
framework and analyzed the U.S. stock market data.

The symmetric Laplace distribution, also known as the
double exponential distribution or the first law of Laplace, is
another heavy-tailed error distribution besides the Student t-
distribution. It is less sensitive to the outlier and more robust
than the normal distribution. Kotz et al. [8] gave a systematic
overview of the Laplace distribution, in their book, and the
authors were devoted to presenting properties, generaliza-
tions of the Laplace distribution, and their applications in
communications, economics, engineering, and finance.

In recent years, statistical models based on Laplace distri-
bution have developed rapidly both in theory and application.
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Purdom and Holmes [9] found that the error distribution for
gene expression data from microarray experiments can be
better fitted by Laplace distribution than normal distribution.
Pop [10] identified a Laplace distribution in the change in
daily sunspot number, and later Noble and Wheatland [11]
showed the physical origin of Laplace distribution and its
use in daily sunspot numbers. van Sanden and Burzykowski
[12] considered the analysis of microarray data by using
ANOVAmodels under the assumption of Laplace-distributed
error terms. Phillips [13] developed the expectation max-
imization (EM) algorithm for the least absolute deviation
regression, which is also known as the Laplace regression
or median regression. Park and Casella [14] interpreted the
Lasso estimate for linear regression parameters as a Bayesian
posterior mode estimate when the regression parameters
have independent Laplace priors. Song et al. [15] proposed
a robust estimation procedure for mixture linear regression
models assuming that the error terms follow the Laplace
distribution.

In this paper, we study the single mean change-point
problem in linear regression model assuming that the error
follows the Laplace distribution via EM algorithm and use
the SIC model selection method to estimate the position of
the mean change-point. Then, we investigate the robustness
of the algorithm through simulations under different error
distributions. Finally, we apply our method to some stock
market data set.

2. Laplace Linear Regression Model with
Mean Change-Point

2.1. Laplace Distribution as Scale Mixture of the Normal Dis-
tribution. The symmetric Laplace distribution is commonly
denoted by 𝐿(𝜇, 𝜎), where 𝜇 ∈ (−∞,∞) is the location
parameter and 𝜎 > 0 is the scale parameter. The density
function is given by

𝑓 (𝑥) =
1

2𝜎
exp(−


𝑥 − 𝜇



𝜎
) , 𝑥 ∈ R, (1)

with mean 𝜇 and variance 2𝜎
2. The Laplace distribution

is more peaked in the center and more heavy-tailed com-
pared to the normal distribution, and, for a given samples
𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
from 𝐿(𝜇, 𝜎), the maximum likelihood esti-

mate of 𝜇 is the median of the samples, which is robust to
the outliers.

Andrews and Mallows [16] presented necessary and
sufficient conditions under which a random variable 𝑋 may
be generated as the ratio𝑍/𝑉, where𝑍 and𝑉 are independent
and 𝑍 has a standard normal distribution. Random variable
𝑋 is referred to as a normal variancemixture distribution or a
scale mixture of Gaussian distribution. It was established that
when𝑉

2
/2 is exponential,𝑋 is double exponential, so Laplace

is some kind of scale mixture of Gaussian distribution,
where the mixing distribution is exponential distribution.

The statement above can be described by the following
proposition.

Proposition 1 (representation of Laplace distribution). Sup-
pose random variable 𝜖 ∼ 𝐿(𝜇, 𝜎), and then there exists a ran-
dom variable 𝜔 ∼ Γ(1, 1/2), such that 𝜖 | 𝜔 ∼ 𝑁(𝜇, 𝜔𝜎

2
),

where Γ(𝛼, 𝛽) denotes the Gamma distribution with parame-
ters 𝛼 and 𝛽.

2.2. Laplace Regression Model with Mean Change-Point. Let
(x
1
, 𝑦
1
) , . . . , (x

𝑛
, 𝑦
𝑛
) be a sequence of observations obtained

in a practical situation, where x
𝑖

= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑝
)
𝑇, 𝑖 =

1, 2, . . . , 𝑛, is a nonstochastic 𝑝 vector variable, and themodel
we are going to discuss is

𝑦
𝑖
= x𝑇
𝑖
𝛽 + 𝜖
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (2)

where 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
)
𝑇 is a 𝑝 unknown parameter vector

and 𝜖
𝑖
, 𝑖 = 1, . . . , 𝑛 are randomerrors, which are independent

and identically distributed as 𝐿(0, 𝜎), with 𝜎 unknown. We
can see that 𝑦

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are independently distributed

and, for 𝑖 = 1, 2, . . . , 𝑛, 𝑦
𝑖

∼ 𝐿(x𝑇
𝑖
𝛽, 𝜎). To develop EM

algorithm for the Laplace linear regression model, we utilize
a mixture representation of the Laplace regression, which is
given by Proposition 2, derived from Proposition 1.

Proposition 2 (representation of Laplace linear regression).
Suppose random variables 𝑦

𝑖
∼ 𝐿(x𝑇

𝑖
𝛽, 𝜎), 𝑖 = 1, . . . , 𝑛,

andthen there exist random latent variables 𝜔
𝑖
, 𝑖 = 1, . . . , 𝑛,

where 𝜔
𝑖
∼ Γ(1, 1/2), such that 𝑦

𝑖
| 𝜔
𝑖
∼ 𝑁(x𝑇

𝑖
𝛽, 𝜔
𝑖
𝜎
2
), for

𝑖 = 1, 2, . . . , 𝑛.

Proposition 2 represents the Laplace linear regression
model as a normal mixture model with mixture variables fol-
lowing the Gamma distribution. This kind of representation
is crucial to perform the EM algorithm in the followingmean
change-point model.

The single mean (regression coefficients) change-point
problem in a Laplacian linear regression model can be
formulated as to test the following null hypothesis:

𝐻
0
: 𝑦
𝑖
= x𝑇
𝑖
𝛽 + 𝜖
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (3)

versus the alternative

𝐻
1
: 𝑦
𝑖
= x𝑇
𝑖
𝛽
1
+ 𝜖
𝑖
, 𝑖 = 1, 2, . . . , 𝑘,

𝑦
𝑖
= x𝑇
𝑖
𝛽
2
+ 𝜖
𝑖
, 𝑖 = 𝑘 + 1, . . . , 𝑛,

(4)

where

𝛽
1
= (𝛽
0
, 𝛽
1
, . . . , 𝛽

𝑝−1
)
𝑇

, 𝛽
2
= (𝛽
∗

0
, 𝛽
∗

1
, . . . , 𝛽

∗

𝑝−1
)
𝑇

,

𝜖
𝑖
∼ 𝐿 (0, 𝜎) , 𝑖 = 1, 2, . . . , 𝑛.

(5)

That is, a change exists (in the regression coefficients) in an
unknown position 𝑘, denominated mean change-point. In
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the following section, we perform EM algorithm to estimate
the unknown parameters and use the SIC model selection
method to detect the position of change-point.

3. EM Algorithm and Schwarz
Information Criterion

3.1. EM Algorithm under 𝐻
0
. Denote X = (x

1
, . . . , x

𝑛
)
𝑇, y =

(𝑦
1
, . . . , 𝑦

𝑛
)
𝑇 and random latent vector𝜔 = (𝜔

1
, . . . , 𝜔

𝑛
)
𝑇.The

likelihood function of y under𝐻
0
is

𝐿 (𝛽, 𝜎 | y) =
𝑛

∏

𝑖=1

1

2𝜎
exp{−


𝑦
𝑖
− x𝑇
𝑖
𝛽


𝜎
} . (6)

From the stochastic representation in Section 2.2, the regres-
sion model under𝐻

0
becomes

𝑦
𝑖
| 𝜔
𝑖
∼ 𝑁(x𝑇

𝑖
𝛽, 𝜔
𝑖
𝜎
2
) ; 𝜔

𝑖
∼ Γ (1,

1

2
) ,

𝑖 = 1, 2, . . . , 𝑛.

(7)

So, the likelihood function of the complete data (y,𝜔) has the
following form:

𝐿 (𝛽, 𝜎 | y,𝜔) =
𝑛

∏

𝑖=1

1

√2𝜋𝜔
𝑖
𝜎

exp
{

{

{

−

(𝑦
𝑖
− x𝑇
𝑖
𝛽)
2

2𝜎
2
𝜔
𝑖

}

}

}

×
1

2
exp {−

1

2
𝜔
𝑖
} .

(8)

Consequently, the complete log-likelihood function is

𝑙 (𝛽, 𝜎 | y,𝜔) = −
𝑛

2
log𝜋 − 𝑛 log 2 −

𝑛

2
log𝜎2

−
1

2𝜎
2

𝑛

∑

𝑖=1

(𝑦
𝑖
− x𝑇
𝑖
𝛽)
2

𝜔
𝑖

−
1

2

𝑛

∑

𝑖=1

𝜔
𝑖
−

1

2

𝑛

∑

𝑖=1

log𝜔
𝑖
.

(9)

Given the initial values 𝛽(0), 𝜎
(0), we can obtain the

maximum likelihood estimate of 𝛽, 𝜎 based on EM algorithm
via the following two steps.

(i) E Step. Given the (𝑡 − 1)th iteration values of (𝛽(𝑡−1), 𝜎(𝑡−1))
and omitting the terms having no relation to (𝛽, 𝜎), the 𝑄

function of the (𝑡)th iteration is

𝑄(𝛽, 𝜎 | 𝑦,𝛽
(𝑡−1)

, 𝜎
(𝑡−1)

)

= 𝐸 [𝑙 (𝛽, 𝜎 | y,𝜔) | 𝑦,𝛽(𝑡−1), 𝜎(𝑡−1)]

= −
𝑛

2
ln𝜎
2
−

1

2𝜎
2

𝑛

∑

𝑖=1

𝛿
𝑖
(𝑦
𝑖
− x𝑇
𝑖
𝛽)
2

,

(10)

where 𝛿
𝑖
= 𝐸((1/𝜔

𝑖
) | 𝑦,𝛽(𝑡−1), 𝜎(𝑡−1)).

In order to obtain 𝛿
𝑖
, we firstly compute the conditional

probability density function (pdf) of 𝑓(𝜔
𝑖
| 𝑦
𝑖
,𝛽, 𝜎). Note

that the joint pdf of y and 𝜔 is

𝑓 (y,𝜔 | 𝛽, 𝜎) =
𝑛

∏

𝑖=1

1

√2𝜋𝜔
𝑖
𝜎

exp
{

{

{

−

(𝑦
𝑖
− x𝑇
𝑖
𝛽)
2

2𝜎
2
𝜔
𝑖

}

}

}

×
1

2
exp {−

1

2
𝜔
𝑖
} .

(11)

Then, we have

𝑓 (𝜔 | y,𝛽, 𝜎)

∝ 𝑓 (y,𝜔 | 𝛽, 𝜎)

∝

𝑛

∏

𝑖=1

𝜔
−1/2

𝑖
exp

{

{

{

−
1

2

[

[

1

𝜔
𝑖

(𝑦
𝑖
− x𝑇
𝑖
𝛽)
2

𝜎
2

+ 𝜔
𝑖
]

]

}

}

}

.

(12)

Due to the conditionally independent of 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
, given

y, we obtain the marginal conditional pdf of 𝜔
𝑖
given 𝑦

𝑖
as

𝑓 (𝜔
𝑖
| 𝑦
𝑖
,𝛽, 𝜎)

∝ 𝜔
(1/2)−1

𝑖
exp

{

{

{

−
1

2

[

[

1

𝜔
𝑖

(𝑦
𝑖
− x𝑇
𝑖
𝛽)
2

𝜎
2

+ 𝜔
𝑖
]

]

}

}

}

∼ GIG(
1

2
,

(𝑦
𝑖
− x𝑇
𝑖
𝛽)
2

𝜎
2

, 1) ,

(13)

where GIG(𝜆, 𝑎, 𝑏) is the generalized inverse Gaussian distri-
bution and its pdf is given by

𝑓 (𝑥 | 𝜆, 𝑎, 𝑏) =
(𝑏/𝑎)
𝜆/2

2𝐾
𝜆
(√𝑎𝑏)

𝑥
𝜆−1 exp {−

1

2
(𝑎𝑥
−1

+ 𝑏𝑥)} ,

(14)

where 𝐾
𝜆
(⋅) is the modified Bessel function of the third kind

in Barndorff-Nielsen and Shephard [17].
Therefore, we can obtain

𝛿
𝑖
= 𝐸(

1

𝜔
𝑖

| 𝑦,𝛽
(𝑡−1)

, 𝜎
(𝑡−1)

) =
𝜎
(𝑡−1)


𝑦
𝑖
− x𝑇
𝑖
𝛽(𝑡−1)



. (15)

(ii)𝑀 Step.wemaximize the𝑄 function in E stepwith respect
to 𝛽, 𝜎.

Denote Σ = diag(𝛿
1
, . . . , 𝛿

𝑛
), and we get

𝛽
(𝑡)

= (X𝑇ΣX)
−1

X𝑇Σy, (16)

𝜎
(𝑡)

= (
1

𝑛

𝑛

∑

𝑖=1

𝛿
𝑖
(𝑦
𝑖
− x𝑇
𝑖
𝛽
(𝑡)
)
2

)

−1/2

. (17)
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It can be seen from (15) and (16) that the updating formulae of
𝛽 is independent of the estimated value of 𝜎; in other words,
we need not to update 𝜎 at each EM iteration, and, after the
final estimate �̃� of 𝛽 is obtained, the estimate of 𝜎 can then
be gotten by maximizing the original log-likelihood function
which produces

�̃� =
1

𝑛

𝑛

∑

𝑖=1


𝑦
𝑖
− x𝑇
𝑖
�̃�

. (18)

Finally, the maximum of the log-likelihood function under
𝐻
0
, is obtained as

𝑙
0
(�̃�, �̃�) = − 𝑛 log 2 − 𝑛 log �̃� − 𝑛

= − 𝑛 log 2

𝑛
− 𝑛 log 𝑆 (𝛽) − 𝑛

(19)

with

𝑆 (�̃�) =

𝑛

∑

𝑖=1


𝑦
𝑖
− x𝑇
𝑖
�̃�

. (20)

3.2. EM Algorithm under 𝐻
1
. Denote X

1
= (x
1
, . . . , x

𝑘
)
𝑇,

y
1
= (𝑦
1
, . . . , 𝑦

𝑘
)
𝑇, X
2
= (x
𝑘+1

, . . . , x
𝑛
)
𝑇, y
2
= (𝑦
𝑘+1

, . . . , 𝑦
𝑛
)
𝑇,

and random latent vectors 𝜔
1

= (𝜔
1
, . . . , 𝜔

𝑘
)
𝑇, 𝜔
2

=

(𝜔
𝑘+1

, . . . , 𝜔
𝑛
)
𝑇.

The likelihood function of 𝑦 under𝐻
1
is

𝐿 (𝛽
1
,𝛽
2
, 𝜎 | y) =

𝑘

∏

𝑖=1

1

2𝜎
exp{−


𝑦
𝑖
− x𝑇
𝑖
𝛽
1



𝜎
}

×

𝑛

∏

𝑖=𝑘+1

1

2𝜎
exp{−


𝑦
𝑖
− x𝑇
𝑖
𝛽
2



𝜎
} .

(21)

From the stochastic representation in Section 2.2, the
regression model under𝐻

1
becomes

𝑦
𝑖
| 𝜔
𝑖
∼ 𝑁(x𝑇

𝑖
𝛽
1
, 𝜔
𝑖
𝜎
2
) , 𝑖 = 1, . . . , 𝑘,

𝑦
𝑖
| 𝜔
𝑖
∼ 𝑁(x𝑇

𝑖
𝛽
2
, 𝜔
𝑖
𝜎
2
) , 𝑖 = 𝑘 + 1, . . . , 𝑛,

𝜔
𝑖
∼ Γ (1,

1

2
) , 𝑖 = 1, 2, . . . , 𝑛,

(22)

where 𝜔
𝑖
, 𝑖 = 1, . . . , 𝑛 are independent.

So, the likelihood function of the complete data (y,𝜔)
under𝐻

1
has the following form:

𝐿 (𝛽
1
,𝛽
2
, 𝜎 | y,𝜔)

=

𝑘

∏

𝑖=1

1

√2𝜋𝜔
𝑖
𝜎

exp
{

{

{

−

(𝑦
𝑖
− x𝑇
𝑖
𝛽
1
)
2

2𝜎
2
𝜔
𝑖

}

}

}

×
1

2
exp {−

1

2
𝜔
𝑖
}

×

𝑛

∏

𝑖=𝑘+1

1

√2𝜋𝜔
𝑖
𝜎

exp
{

{

{

−

(𝑦
𝑖
− x𝑇
𝑖
𝛽
1
)
2

2𝜎
2
𝜔
𝑖

}

}

}

×
1

2
exp {−

1

2
𝜔
𝑖
} .

(23)

Consequently, the complete log-likelihood function is

𝑙 (𝛽
1
,𝛽
2
, 𝜎 | y,𝜔) = −

𝑛

2
log 2𝜋 − 𝑛 log 2

−
𝑛

2
log𝜎2 − 1

2

𝑛

∑

𝑖=1

𝜔
𝑖
−

1

2

𝑛

∑

𝑖=1

log𝜔
𝑖

−
1

2𝜎
2

[

[

𝑘

∑

𝑖=1

(𝑦
𝑖
− x𝑇
𝑖
𝛽
1
)
2

𝜔
𝑖

+

𝑛

∑

𝑖=𝑘+1

(𝑦
𝑖
− x𝑇
𝑖
𝛽
2
)
2

𝜔
𝑖

]

]

.

(24)

Given initial values 𝛽(0)
1
, 𝛽(0)
2
, and 𝜎

(0), we can obtain the
maximum likelihood estimate of 𝛽

1
, 𝛽
2
, and 𝜎 based on EM

algorithm via the following two steps.

(i) E Step. Given the (𝑡 − 1)th iteration values of (𝛽(𝑡−1), 𝜎(𝑡−1))
and omitting the terms having no relation to (𝛽, 𝜎), the 𝑄

function of the (𝑡)th iteration is

𝑄(𝛽
1
,𝛽
2
, 𝜎 | 𝑦,𝛽

(𝑡−1)

1
,𝛽
(𝑡−1)

2
, 𝜎
(𝑡−1)

)

= 𝐸 [𝑙 (𝛽
1
,𝛽
2
, 𝜎 | y,𝜔) | 𝑦,𝛽(𝑡−1)

1
,𝛽
(𝑡−1)

2
, 𝜎
(𝑡−1)

]

= −
𝑛

2
log𝜎2

−
1

2𝜎
2
[

𝑘
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𝑖=1

𝛾
𝑖
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𝑖
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+
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𝛾
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𝛽
2
)
2

] ,

(25)

where 𝛾
𝑖
= 𝐸((1/𝜔

𝑖
) | 𝑦,𝛽(𝑡−1)

1
,𝛽(𝑡−1)
2

, 𝜎
(𝑡−1)

).
The marginal conditional pdf of 𝜔

𝑖
given 𝑦

𝑖
is that, for 𝑖 =

1, . . . , 𝑘,

𝑓 (𝜔
𝑖
| 𝑦
𝑖
,𝛽
1
, 𝜎)

∝ 𝜔
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1
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𝜎
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}
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}
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1

2
,

(𝑦
𝑖
− x𝑇
𝑖
𝛽
1
)
2

𝜎
2

, 1) ,

(26)
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and, for 𝑖 = 𝑘 + 1, . . . , 𝑛,

𝑓 (𝜔
𝑖
| 𝑦
𝑖
,𝛽
2
, 𝜎)
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𝑖

(𝑦
𝑖
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𝑖
𝛽
2
)
2

𝜎
2

+ 𝜔
𝑖
]

]

}

}

}

∼ GIG(
1

2
,

(𝑦
𝑖
− x𝑇
𝑖
𝛽
2
)
2

𝜎
2

, 1) .

(27)

Therefore, for 𝑖 = 1, . . . , 𝑘,

𝛾
𝑖
= 𝐸(

1

𝜔
𝑖

| 𝑦,𝛽
(𝑡−1)

1
, 𝜎
(𝑡−1)

) =
𝜎
(𝑡−1)


𝑦
𝑖
− x𝑇
𝑖
𝛽(𝑡−1)
1



, (28)

and, for 𝑖 = 𝑘 + 1, . . . , 𝑛,

𝛾
𝑖
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1

𝜔
𝑖

| 𝑦,𝛽
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2
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2



. (29)

(ii)M Step.Wemaximize the𝑄 function in E stepwith respect
to 𝛽
1
, 𝛽
2
, and 𝜎.

Denote Σ
1
= diag(𝛾

1
, . . . , 𝛾

𝑘
), Σ
2
= diag(𝛾
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), and

we get
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])

−1/2

.

(30)

It can be seen from (28)–(30) that the updating formulae
of 𝛽
1
, 𝛽
2
is independent of the estimated value of 𝜎, so we

need not to update 𝜎 at each EM iteration. After the final
estimates �̂�

1
of 𝛽
1
and �̂�

2
of 𝛽
2
are obtained, the estimate of 𝜎

can then be gotten by maximizing the original log-likelihood
function, which produces

�̂� =
1

𝑛
(

𝑘

∑

𝑖=1


𝑦
𝑖
− x𝑇
𝑖
�̂�
1


+

𝑛

∑

𝑖=𝑘+1


𝑦
𝑖
− x𝑇
𝑖
�̂�
2


) . (31)

Finally, the maximum of the log-likelihood function under
𝐻
1
is obtained as

𝑙
𝑘
(�̂�
1
, �̂�
2
, �̂�) = − 𝑛 log 2 − 𝑛 log �̂� − 𝑛

= − 𝑛 log 2

𝑛
− 𝑛 log [𝑆 (�̂�

1
) + 𝑆 (�̂�

2
)] − 𝑛

(32)

with

𝑆 (�̂�
1
) =

𝑘

∑

𝑖=1


𝑦
𝑖
− x𝑇
𝑖
�̂�
1


, 𝑆 (�̂�

2
) =

𝑛

∑

𝑖=𝑘+1


𝑦
𝑖
− x𝑇
𝑖
�̂�
2


.

(33)

3.3. SIC Algorithm for Laplacian Regression Model. The work
by Chen [3] proposes transforming the process of hypothesis
testing in a procedure of model selection using the Schwarz
Information Criterion (SIC) defined by

SIC = −2𝑙 (𝜃) + 𝑠 log 𝑛, (34)

where 𝑙(𝜃) corresponds to the log-likelihood function evalu-
ated on the maximum likelihood estimate of the parameters
and 𝑠 is the number of model parameters and 𝑛 is the sample
size. Note that maximizing the log-likelihood function is
equivalent to minimizing the Schwarz information criterion.

In the Laplacian linear regression model, the Schwarz
information criterion under 𝐻

0
, denoted by SIC(𝑛), is given

by

SIC (𝑛) = − 2𝑙
0
(�̃�, �̃�) + (𝑝 + 1) log 𝑛

= 2𝑛 log 𝑆 (�̃�) + 2𝑛 log(2

𝑛
)

+ 2𝑛 + (𝑝 + 1) log 𝑛,

(35)

where 𝑙
0
(�̃�, �̃�) and 𝑆(�̃�) are given by (19) and (20). The

Schwarz information criterion under𝐻
1
, denoted by SIC(𝑘),

is given by

SIC (𝑘) = − 2𝑙
𝑘
(�̂�
1
, �̂�
2
, �̂�) + (2𝑝 + 1) log 𝑛

= 2𝑛 log [𝑆 (�̂�
1
) + 𝑆 (�̂�

2
)] + 2𝑛 log(2

𝑛
)

+ 2𝑛 + (2𝑝 + 1) log 𝑛

(36)

with 𝑙
𝑘
(�̂�
1
, �̂�
2
, �̂�), 𝑆(�̂�

1
), and 𝑆(�̂�

2
) given by (32) and (33).

The selection criteria are to choose amodelwith a change-
point in the 𝑘 position, if, for some 𝑘,

SIC (𝑛) > SIC (𝑘) . (37)

When the null hypothesis is rejected, the maximum likeli-
hood estimate of the change-point in the regression coeffi-
cients, denoted by �̂�, must satisfy

SIC (�̂�) = min {SIC (𝑘) : 𝑝 ≤ 𝑘 ≤ 𝑛 − 𝑝}

= max {𝑙
𝑘
(�̂�
1
, �̂�
2
, �̂�) : 𝑝 ≤ 𝑘 ≤ 𝑛 − 𝑝}

= min {𝑆 (�̂�
1
) + 𝑆 (�̂�

2
)} .

(38)

4. Simulation Studies

In this section, we investigate the performance of the pro-
posed approach to detect mean change-point through simu-
lations, andwe compare our procedurewith the change-point
detecting procedure proposed by Chen [3], who assumed
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that the errors follow the normal distribution. A data set of
𝑛 = 200 observations is generated from the model

𝑦
𝑖
= 𝛽
1
𝑥
1𝑖
+ 𝛽
2
𝑥
2𝑖
+ 𝛽
3
𝑥
3𝑖
+ 𝜖
𝑖
, 𝑖 = 1, . . . , 𝑘;

𝑦
𝑖
= 𝛽
∗

1
𝑥
1𝑖
+ 𝛽
∗

2
𝑥
2𝑖
+ 𝛽
∗

3
𝑥
3𝑖
+ 𝜖
𝑖
, 𝑖 = 𝑘 + 1, . . . , 𝑛,

(39)

where 𝛽
1
= (𝛽
1
, 𝛽
2
, 𝛽
3
)
𝑇

= (1, 1, 1)
𝑇, 𝛽
2
= (𝛽
∗

1
, 𝛽
∗

2
, 𝛽
∗

3
)
𝑇

=

(2, 3, 4)
𝑇, and 𝑥

𝑗𝑖
∼ 𝑈(−1, 1) for 𝑗 = 1, . . . , 3 and 𝑖 = 1, . . . , 𝑛.

For demonstrating the performances of the algorithm in
different cases, we choose 𝑘 = 40, 60, 80, 100, 120, 140, 160,
respectively, and consider the following six error distribu-
tions:

(i) Simulation 1: normal distribution: 𝜖
𝑖
∼ 𝑁(0, 1);

(ii) Simulation 2: Laplace distribution: 𝜖
𝑖
∼ 𝐿(0, 1);

(iii) Simulation 3: 𝑡 distribution with three degree of
freedom: 𝜖

𝑖
∼ 𝑡(3);

(iv) Simulation 4: 𝜒2 distribution with three degree of
freedom: 𝜖

𝑖
∼ 𝜒
2
(3);

(v) Simulation 5: log-normal distribution: 𝜖
𝑖
∼ 𝐿𝑁(0, 1);

(vi) Simulation 6: Cauchy distribution.

In order to evaluate the finite sample performance of
the proposed method, 500 replications are conducted for
different error distribution, respectively. In each replication,
the initial values of 𝛽 and 𝛽

1
, 𝛽
2
are set to be their ordinary

least squares estimates, and the EM procedure is stopped
when the absolute differences between two successive values
of maximum log-likelihood functions are less than a preas-
signed small number (e.g., 10−6). The final values of 𝛽 and
𝛽
1
, 𝛽
2
are taken as the median regression coefficient and the

estimate of 𝜎 is given by (31). The position 𝑘 of change-point
is estimated by the SIC method denoted as �̂�

(𝑖) in the 𝑖th
replication.

Finally, themean and standard difference of the estimated
change-point position 𝑘 are given by

�̂� =
1

500

500

∑

𝑖=1

�̂�
(𝑖)
, sd = √

1

499

500

∑

𝑖=1

(�̂�
(𝑖)

− �̂�)
2

. (40)

In order to compare the results of our proposed method
with those of the the normal method proposed in Chen [3],
the same simulations are conducted using normal method.
The results are presented in Tables 1 and 2, where 𝑘 is the
true value of change-point position in simulation, estimate.𝐿
and diff.𝐿 are the estimate of 𝑘 and the absolute difference
of the estimate and the true value of 𝑘, and finally, sd.𝐿
is the standard difference of the estimate. The result by
normal method is denoted as estimate.𝑁, diff.𝑁, and sd.𝑁,
respectively. We compare diff.𝐿with diff.𝑁 and sd.𝐿 with

sd.𝑁, and the smaller the better. From Tables 1 and 2, we have
the following findings.

(1) In the 𝑁(0, 1) and 𝐿(0, 1) cases, both the Laplace
method and normal method behave quite well with
small diff. Besides that, the normal method is better
than the Laplace method with smaller sd in the
normal error case, and the result is inverse in the
Laplace error case.

(2) In the skew 𝜒
2
(3) and heavy-tailed 𝑡(3), 𝐿𝑁(0, 1), and

Cauchy cases, the Laplace method is better than the
normal method with smaller diff. and smaller sd.

(3) In the 𝜒
2
(3) and 𝐿𝑁(0, 1) cases, when the true

position 𝑘 of change-point is in the middle of the
data (80, 100, 120), both of the two methods have
good performance, but when 𝑘 is in the lower part of
the data (40, 60) or upper part (140, 160), the normal
method can not detect the change-point effectively
with large diff and large sd.

(4) An interesting phenomenon appears in the case
of Cauchy distribution, where the normal method
simply uses integers around 100 to estimate the true
values of 𝑘 whenever 𝑘 is small or large; on the
contrary, the performance of the Laplace method is
better relatively.

Another simulations design with 𝛽
1
= (1, 1, 1)

𝑇 and 𝛽
2
=

(1, 2, 3)
𝑇 are conducted and the results are not presented in

our paper.The results also justify our former findings; that is,
our Laplace method is more robust than the normal method
to estimate the position of mean change-point when the
errors follow skew and heavy-tailed distributions, especially
when the true position of change-point is in the head part or
in the tail part of the data.

5. Application to Stock Market Data

Holbert [18] studied the switching simple linear regression
models with changes in the coefficients from a Bayesian
point of view. Later on, Chen [3] analyzed this data using
the SIC method to detect changes in the mean for normal
linear regression models, and Osorio and Galea [6] analyzed
the same data also using the SIC method to detect mean
change-point but assuming the errors that follow the Student
𝑡-distribution. In this section, we reanalyze the Holbert
data using the proposed Laplace linear regression model to
detect the mean change-point based on the SIC method. The
monthly dollar volume of sales (in millions) on the Boston
Stock Exchange (BSE) is considered as the response variable
𝑦, and the combined New York American Stock Exchange
(NYAMSE) is considered as the regressor 𝑥. There are 𝑛 = 35

observations corresponding to the period between January
1967 and November 1969. The model we consider is that

𝑦
𝑖
= 𝛽
0
+ 𝛽
1
𝑥
𝑖
+ 𝜖
𝑖
, 𝑖 = 1, . . . , 𝑘,

𝑦
𝑖
= 𝛽
∗

0
+ 𝛽
∗

1
𝑥
𝑖
+ 𝜖
𝑖
, 𝑖 = 𝑘 + 1, . . . , 𝑛,

(41)
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Table 1: Comparison of results for Laplace model and normal model based on 500 replications in Simulations 1–3.

Error distribution 𝑘 Estimate.𝐿 Estimate.𝑁 diff.𝐿 diff.𝑁 sd.𝐿 sd.𝑁

𝑁(0, 1)

40 40.07 40.11 0.07 0.11 1.92 1.77
60 59.85 59.81 0.14 0.18 1.83 1.93
80 79.92 79.91 0.07 0.08 1.88 1.85
100 99.92 99.90 0.07 0.10 1.78 1.74
120 120.00 119.97 0.00 0.02 1.78 1.74
140 139.87 139.90 0.12 0.09 1.64 1.53
160 159.92 159.85 0.08 0.14 1.86 1.77

𝐿(0, 1)

40 39.98 38.89 0.02 0.11 2.50 2.96
60 59.94 60.08 0.06 0.08 2.47 2.83
80 80.06 80.14 0.06 0.14 2.95 3.19
100 100.21 99.99 0.21 0.01 2.83 3.18
120 120.03 120.07 0.03 0.07 2.23 2.91
140 140.13 140.23 0.13 0.23 2.29 2.52
160 160.03 159.81 0.03 0.19 2.55 5.29

𝑡(3)

40 40.14 40.79 0.14 0.79 2.54 11.26
60 59.96 61.10 0.04 1.10 2.51 13.22
80 80.22 80.80 0.22 0.80 2.56 12.67
100 100.05 99.32 0.05 0.68 2.99 12.68
120 120.03 119.53 0.03 0.47 2.99 10.06
140 140.11 139.51 0.11 0.49 2.82 12.15
160 159.67 159.27 0.33 0.73 7.54 11.82

Table 2: Comparison of results for Laplace model and normal model based on 500 replications in Simulations 4–6.

Error distribution 𝑘 Estimate.𝐿 Estimate.𝑁 diff.𝐿 diff.𝑁 sd.𝐿 sd.𝑁

𝜒
2
(3)

40 42.00 46.42 2.00 6.42 16.74 28.94
60 60.67 61.58 0.67 1.58 9.62 19.85
80 80.37 81.44 0.37 1.44 7.76 17.26
100 99.18 99.03 0.82 0.97 8.76 14.99
120 119.82 120.36 0.18 0.36 11.13 16.98
140 139.26 137.25 0.74 2.75 10.98 22.95
160 158.21 152.70 1.79 7.30 15.74 30.94

𝐿𝑁(0, 1)

40 41.23 49.78 1.23 9.78 13.49 38.92
60 60.40 63.87 0.40 3.87 4.83 27.14
80 80.58 83.08 0.58 3.08 4.66 25.60
100 100.00 101.35 0.00 1.35 6.50 21.20
120 120.44 117.74 0.44 2.26 6.03 24.65
140 139.92 136.16 0.08 3.84 5.48 27.81
160 158.80 152.27 1.20 7.73 13.71 35.13

Cauchy

40 51.75 98.10 11.75 58.10 46.99 67.04
60 64.81 98.77 4.81 38.77 34.23 66.56
80 81.63 81.44 1.63 1.44 7.76 17.26
100 98.61 99.34 1.39 0.66 29.76 64.17
120 119.83 105.36 0.17 14.64 28.86 65.80
140 134.43 107.23 5.57 32.78 36.47 63.55
160 149.95 105.12 10.05 54.90 46.53 66.94
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Table 3: SIC calculated by Laplace method and normal method for Holbert data.

Time point Calendar month NYAMSE BSE SIC Laplace SIC normal
1 Jan. 1967 10581.6 78.8 — —
2 Feb. 1967 10234.3 69.1 364.2829 368.5739
3 Mar. 1967 13299.5 87.6 363.3368 367.8817
4 Apr. 1967 10746.5 72.8 363.3110 367.7757
5 May 1967 13310.7 79.4 361.7661 366.4980
6 Jun. 1967 12835.5 85.6 359.5049 365.7947
7 Jul. 1967 12194.2 75.0 357.4092 364.8795
8 Aug. 1967 12860.4 85.3 354.8215 363.9410
9 Sep. 1967 11955.6 86.9 353.8327 363.5574
10 Oct. 1967 13351.5 107.8 354.3397 363.5818
11 Nov. 1967 13285.9 128.7 357.2243 364.6607
12 Dec. 1967 13784.4 134.5 360.1891 365.4162
13 Jan. 1968 16336.7 148.7 361.0186 365.3077
14 Feb. 1968 11040.5 94.2 362.3622 365.5670
15 Mar. 1968 11525.3 128.1 363.4817 366.6527
16 Apr. 1968 16056.4 154.1 364.0982 366.8008
17 May 1968 18464.3 191.3 362.8076 366.9825
18 Jun. 1968 17092.2 191.9 360.4358 367.2177
19 Jul. 1968 15178.8 159.6 359.1133 367.3715
20 Aug. 1968 12774.8 185.5 359.5155 368.4097
21 Sep. 1968 12377.8 178.0 359.5954 368.3030
22 Oct. 1968 16856.3 271.8 356.8656 363.5156
23 Nov. 1968 14635.3 212.3 355.3476 358.1847
24 Dec. 1968 17436.9 139.4 357.0433 361.1139
25 Jan. 1969 16482.2 106.0 360.8022 364.8916
26 Feb. 1969 13905.4 112.1 360.8808 365.1567
27 Mar. 1969 11973.7 103.5 360.4217 365.0086
28 Apr. 1969 12573.6 92.5 360.9285 365.3012
29 May. 1969 16566.8 116.9 363.5041 367.3072
30 Jun. 1969 13558.7 78.9 364.3949 368.2468
31 Jul. 1969 11530.9 57.4 362.7110 368.2235
32 Aug. 1969 11278.0 75.9 360.3198 367.7685
33 Sep. 1969 11263.7 109.8 362.6290 368.1350
34 Oct. 1969 15649.5 129.2 — —
35 Nov. 1969 12197.1 115.1 358.0474 361.4956

where

𝜖
𝑖
∼ 𝐿 (0, 𝜎) , 𝑖 = 1, 2, . . . , 𝑛. (42)

The computed SIC values are listed in Table 3 along with the
original BSE and NYAMSE values given in Holbert [18]. The
SIC values calculated using the normal method by Chen [3]
are also listed in the last column.

The bold SIC value in Table 3 is the minimum SIC value,
which corresponds to time point 9, using the Laplace method
and time point 23 using the normal method in Chen [3]. So,
Chen [3] believed the regression model change starts at the
time point 24, which is December 1968. Osorio and Galea
[6] obtained the minimum values of SIC using the Student-t
model, which are at time point 9 for degree of freedom 1 and
23 for degree of freedom 4. Osorio and Galea [6] finally drew
the same conclusion as Chen [3] that the regression model

Table 4: Minimum SIC values in Holbert data based on different
models.

Method Laplace Normal 𝑡(4) 𝑡(1)
SIC(𝑛) 358.0474 361.4956 358.082 363.358
min SIC(𝑘) 353.8327 358.1847 355.035 357.416
�̂� 9 23 23 9

change starts at the time point 24.We list theminimumvalues
of SIC in different regression models in Table 4. Table 4 tells
us that the minimum SIC value is 353.8327 for time point 9 in
our Laplace model; hence, we draw the conclusion that the
regression model change starts at the time point 10, which
is October 1967. The median estimates for the parameters
are 𝛽
0

= 10.500, 𝛽
1

= 0.0058 for observations 1–9 and
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Figure 1: Scatter plot and regression lines of BSE versus NYAMSE.
The red points and line correspond to the first 9 observations; the
green points and line correspond to the 10–35 observations.

𝛽
∗

0
= −37.646, 𝛽∗

1
= 0.0119 for observations 10–35. Finally,

the predictive regression lines are plotted in Figure 1. The
scatter plot shows that there are outliers in the response
observations, so the median regression line estimated form
Laplace model is more robust than the ordinary least square
regression line estimated from the normal model.

6. Summary

In this paper, we proposed the Laplace linear regression
model with a mean change-point and developed the EM
algorithm with SIC model selection criterion to estimate the
position of mean change-point. We investigated the perfor-
mance of the algorithm for different simulations, finding that
the algorithm behaved quite well when the errors follow the
Laplace distribution. Besides that, our Laplace method is
more robust than the normalmethod to estimate the position
of mean change-point when the errors follow skew and
heavy-tailed distributions, especially when the true position
of change-point is in the head part or in the tail part of the
data. Finally, we applied our method to the Holbert data and
detected a mean change-point. Considering the difficulty in
estimating the unknown degree of freedom in the Student t-
distribution, we did not compare our Laplace model with the
Studen 𝑡model in Osorio and Galea [6], where the degree of
freedomwas predetermined by the authors. As to themultiple
mean change-points problem in Laplace linear regression, the
stepwise and dichotomy methods Vostrikova [19] may work
and further research is needed in the future.
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