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The sampled-data synchronization problem for complex networks with random coupling strengths, probabilistic time-varying
coupling delay, and distributed delay (mixed delays) is investigated. The sampling period is assumed to be time varying and
bounded. By using the properties of random variables and input delay approach, new synchronization error dynamics are
constructed. Based on the delay decomposition method and reciprocally convex approach, a delay-dependent mean square
synchronization condition is established in terms of linear matrix inequalities (LMIs). According to the proposed condition, an
explicit expression for a set of desired sampled-data controllers can be achieved by solving LMIs. Numerical examples are given to
demonstrate the effectiveness of the theoretical results.

1. Introduction

It is well known that many large-scale systems, such as the
Internet, World Wide Web, metabolic pathways, food webs,
electric power grids, and social networks, can be modeled by
complex networks [1, 2]. A real-world network often consists
of a large number of interconnected nodes, in which each
node represents an element with certain dynamical system
and edge represents the interactions among them. Synchro-
nization, as a typical collective behavior, is an important
topic in complex networks. In the past few decades, much
effort has been devoted to the study of synchronization in
complex networks [3–12]. The main reason for this is that
network synchronization can not only explain many natural
phenomena but also has many potential applications, such as
secure communication, synchronous information exchange
over the Internet, and the synchronous transfer of digital
signals in communication networks.

With the rapid development of modern microprocessor,
sampled-data control system has been investigated exten-
sively by various researchers [13–16]. In the sampled-data
control system, the control signals are allowed to change only

at discrete sampling instants, which can drastically reduce
the amount of information transmitted and increase the
efficiency of bandwidth usage.The input delay approach [13],
which is based on modeling the sampled-data system as a
continuous-time system with a time-varying sawtooth delay
in the control input, is an important approach in the study
of sampled control system. Furthermore, by constructing a
time-dependent Lyapunov functional, a refined input delay
approach [14] was proposed. Based on the input delay and
refined input delay approach, the sampled-data synchroniza-
tion problems in Lur’e system or delayed neural networks
were studied [17–19]. Recently, in the framework of the input
delay approach, the authors in [20] investigated the sampled-
data synchronization problem for a class of general complex
networks with time-varying coupling delays. By considering
the neglected terms in the derivative of Lyapunov functional
in [20], some improved sampled-data synchronization cri-
terion was derived in [21], and the desired sampled-data
feedback controllers were designed in terms of the solution
to certain linear matrix inequalities (LMIs). In [22], by using
the refined input delay approach and convex combination
technique, the sampled-data exponential synchronization for
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complex dynamical networks with time-varying coupling
delay and uncertain sampling has been considered.

Time delay is ubiquitous in many physical systems. In
order to give a more precise description of dynamical net-
work, time delay should be given more attention inevitably.
Therefore, the synchronization for a complex network with
coupling delays has been investigated bymany researchers. In
general, coupling delay of complex networks is deterministic.
However, as illustrated in [23], coupling delay often exists in
a random form; that is to say, some values of the delay are
very large, but the probability of the delay taking such large
values is very small. This may lead to a more conservative
result if only the information of variation range of the delay
is considered. It is worth mentioning that time delays can be
generally categorized as discrete ones and distributed ones.
Moreover, it has been observed that they usually have a
spatial nature due to the presence of a number of parallel
pathways of a variety of axon sizes and lengths in a network.
Therefore, it is interesting and meaningful to investigate the
synchronization in a dynamical network with probabilistic
time-varying coupling delay as well as distributed delay
(mixed delays).

On the other hand, because of the effects of environment
and artificial factor, the coupling strength of complex network
may randomly vary around some constants [23, 24]. Thus,
random phenomena in coupling strength should be taken
into account when dealing with the synchronization of
complex networks. If only the upper or lower bound of the
random coupling strength is considered, some conservative
result will be derived. Furthermore, the normal distribution
characteristic of random variables can be easily obtained by
statistical methods. Therefore, it is interesting to investigate
the synchronization of complex networks with random cou-
pling strength described by normal distribution. To the best
of our knowledge, the synchronization problem of complex
networks with mixed coupling delays and random coupling
strengths based on sampled-data control has not been studied
in the literature. This is the motivation of our paper.

Motivated by the aforementioned discussion, in this
paper, the problem of sampled-data synchronization is inves-
tigated for complex network with random coupling strengths
and mixed probabilistic time-varying coupling delays. The
sampling period is assumed to be time varying but bounded
by a known positive constant. On the basis of the properties
of random variables and the input delay approach, new
error dynamics is obtained. By using the delay decompo-
sition method and reciprocally convex approach, a mean
square synchronization condition is derived in terms of
LMIs. Based on the proposed condition, the corresponding
desired sampled-data controllers are designed, which can be
solved effectively by using MATLAB LMI Toolbox. Finally,
numerical examples are given to illustrate the effectiveness of
the obtained results.

Notations. Throughout this paper, 𝑅
𝑛 and 𝑅

𝑚×𝑛 denote the
𝑛-dimensional Euclidean space and the set of all 𝑚 × 𝑛 real
matrices, respectively. 𝑃 > 0 or 𝑃 < 0 means that 𝑃

is symmetric and positive or negative definite. The super-
script “𝑇” represents the transpose, and “𝐼” and “0” denote

the identity and zero matrices with appropriate dimensions.
diag{𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
} stands for a block diagonal matrix. ‖ ⋅ ‖

denotes the Euclidean norm of a vector.The symmetric terms
in a symmetric matrix are denoted by ∗. 𝜆min(𝐴) is the
minimum eigenvalue of symmetric matrix 𝐴. The notation
𝐴 ⊗ 𝐵 represents the Kronecker product of matrices 𝐴 and 𝐵.

2. Preliminaries and Model Description

Consider a hybrid coupled complex network consisting of 𝑁

identical coupled nodes as follows:

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1
(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑥
𝑗
(𝑡)

+ 𝑐
2

(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ 𝑐
3

(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐵 ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠 + 𝑢

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖

= (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑛

) ∈ 𝑅
𝑛 and 𝑢

𝑖
(𝑡) ∈ 𝑅

𝑛 are,
respectively, the state variable and the control input of the
node 𝑖. 𝑓 : 𝑅

𝑛

→ 𝑅
𝑛 is a continuous vector-valued

function. 𝜏(𝑡) ∈ [0, ℎ
2
] and 𝑟(𝑡) ∈ [0, 𝑟] denote the

time-varying coupling delay and distributed coupling delay,
respectively. 𝑐

𝑘
(𝑡), 𝑘 = 1, 2, 3 are mutually independent

random variables, which denote the coupling strengths of
no-delayed coupling, time-delayed coupling, and distributed
coupling, respectively. 𝐷, 𝐴, 𝐵 ∈ 𝑅

𝑛×𝑛 are the inner-coupling
matrices. The coupling configuration matrix 𝐺 = (𝐺

𝑖𝑗
)
𝑁×𝑁

is
defined as follows: if there is a connection between node 𝑖 and
node 𝑗 (𝑖 ̸= 𝑗), then 𝐺

𝑖𝑗
= 𝐺
𝑗𝑖

= 1; otherwise, 𝐺
𝑖𝑗

= 𝐺
𝑗𝑖

= 0,
and the diagonal elements of matrix 𝐺 are defined by 𝐺

𝑖𝑖
=

− ∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝐺
𝑖𝑗

= − ∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝐺
𝑗𝑖
, 𝑖 = 1, 2, . . . , 𝑁.

Throughout this paper, the following assumptions are
made.

Assumption 1. The time-varying coupling delay 𝜏(𝑡) satisfies
0 ≤ ℎ
1

≤ 𝜏(𝑡) ≤ ℎ
2
. Furthermore, the probability distribution

of 𝜏(𝑡) taking values in [0, ℎ
1
) and [ℎ

1
, ℎ
2
] is known a priori.

Under Assumption 1, the probability distribution of 𝜏(𝑡)

is assumed to be Prob{𝜏(𝑡) ∈ [0, ℎ
1
)} = 𝛽

0
, and Prob{𝜏(𝑡) ∈

[ℎ
1
, ℎ
2
]} = 1 − 𝛽

0
, where 0 ≤ 𝛽

0
≤ 1 is a constant. Therefore,

a stochastic Bernoulli variable can be defined as

𝛽 (𝑡) = {
1, 𝜏 (𝑡) ∈ [0, ℎ

1
) ,

0, 𝜏 (𝑡) ∈ [ℎ
1
, ℎ
2
] .

(2)

It can be derived from (2) that

Prob {𝛽 (𝑡) = 1} = 𝐸 {𝛽 (𝑡)} = 𝛽
0
,

Prob {𝛽 (𝑡) = 0} = 1 − 𝐸 {𝛽 (𝑡)} = 1 − 𝛽
0
.

(3)
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Furthermore, from the definition of 𝛽(𝑡), it is easy to check
that

𝐸 {𝛽
0

− 𝛽 (𝑡)} = 0,

𝐸 {(𝛽
0

− 𝛽 (𝑡))
2

} = 𝛽
0

(1 − 𝛽
0
) .

(4)

Now, we introduce two time-varying delays 𝜏
1
(𝑡) and 𝜏

2
(𝑡)

such that

𝜏 (𝑡) = {
𝜏
1

(𝑡) , 𝜏 (𝑡) ∈ [0, ℎ
1
) ,

𝜏
2

(𝑡) , 𝜏 (𝑡) ∈ [ℎ
1
, ℎ
2
] .

(5)

Assumption 2. There exist constants 𝜇
1
and 𝜇

2
such that

̇𝜏
1
(𝑡) ≤ 𝜇

1
< ∞ and ̇𝜏

2
(𝑡) ≤ 𝜇

2
< ∞.

By using the new functions 𝜏
1
(𝑡), 𝜏
2
(𝑡), and 𝛽(𝑡), system

(1) can be rewritten as

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1
(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑥
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
2

(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏
1

(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
2

(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏
2

(𝑡))

+ 𝑐
3

(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐵 ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠 + 𝑢

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁.

(6)

For the random coupling strengths 𝑐
𝑘
(𝑡), 𝑘 = 1, 2, 3,

similar to [23, 24], we assume that almost all the values of
them are taken on some nonnegative intervals; that is, 𝑐

𝑘
(𝑡) ∈

(𝜎
𝑘
, 𝜌
𝑘
), where 𝜎

𝑘
and 𝜌
𝑘
are nonnegative constants. It should

be pointed out that almost all the values of 𝑐
𝑘
(𝑡) satisfying

𝑐
𝑘
(𝑡) ∈ (𝜎

𝑘
, 𝜌
𝑘
) just imply that Prob{𝑐

𝑘
(𝑡) ∈ (𝜎

𝑘
, 𝜌
𝑘
)} = 1,

Prob{𝑐
𝑘
(𝑡) < 𝜎

𝑘
} = 0, and Prob{𝑐

𝑘
(𝑡) > 𝜌

𝑘
} = 0. It does not

mean that the minimum and maximum allowable coupling
strength bounds of 𝑐

𝑘
(𝑡) are 𝜎

𝑘
and 𝜌

𝑘
, respectively. Thus,

the actual lower bound and upper bound of 𝑐
𝑘
(𝑡) may be

very small and be very large, respectively. Clearly, it is very
different from the constant coupling strength.

Assumption 3. The mathematical exception and variance of
𝑐
𝑘
(𝑡) are 𝐸{𝑐

𝑘
(𝑡)} = 𝑐

𝑘0
and 𝐸{(𝑐

𝑘
(𝑡) − 𝑐

𝑘0
)
2

} = 𝛿
2

𝑘
, respectively,

where 𝑐
𝑘0
and 𝛿
𝑘
are nonnegative constants.

Based on the property of variables 𝑐
𝑘
(𝑡), system (6) can be

further expressed by

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

10

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑥
𝑗
(𝑡)

+ (𝑐
1

(𝑡) − 𝑐
10

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑥
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
20

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏
1

(𝑡))

+ 𝛽 (𝑡) (𝑐
2

(𝑡) − 𝑐
20

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏
1

(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
20

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏
2

(𝑡))

+ (1 − 𝛽 (𝑡)) (𝑐
2

(𝑡) − 𝑐
20

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏
2

(𝑡))

+ 𝑐
30

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐵 ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠

+ (𝑐
3

(𝑡) − 𝑐
30

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐵 ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠

+ 𝑢
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(7)

Remark 4. The network model considered here is more
general. It is worth noting that when 𝛽(𝑡) = 1, 𝑐

1
(𝑡) = 𝑐

10
,

𝑐
2
(𝑡) = 𝑐

20
, and the distributed coupling is missing, system (7)

includes the models considered in [20, 21] as a special case.

Assumption 5. Thenonlinear continuous vector-valued func-
tion f is assumed to satisfy the following sector-bounded
condition:

[𝑓 (𝑥) − 𝑓 (𝑦) − 𝑈 (𝑥 − 𝑦)]
𝑇

[𝑓 (𝑥) − 𝑓 (𝑦) − 𝑉 (𝑥 − 𝑦)]≤0

(8)

for all 𝑥, 𝑦 ∈ 𝑅
𝑛, where 𝑈 and 𝑉 are constant matrices of

appropriate dimensions.

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡)−𝑠(𝑡) be the synchronization error, where

𝑠(𝑡) ∈ 𝑅
𝑛 is the state trajectory of the unforced isolate node

̇𝑠(𝑡) = 𝑓(𝑥(𝑡)). Then, the error dynamics can be obtained as
follows:

̇𝑒
𝑖
= 𝑔 (𝑒

𝑖
(𝑡)) + 𝑐

10

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑒
𝑗
(𝑡)

+ (𝑐
1

(𝑡) − 𝑐
10

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑒
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
20

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏
1

(𝑡))

+ 𝛽 (𝑡) (𝑐
2

(𝑡) − 𝑐
20

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏
1

(𝑡))
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+ (1 − 𝛽 (𝑡)) 𝑐
20

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏
2

(𝑡))

+ (1 − 𝛽 (𝑡)) (𝑐
2

(𝑡) − 𝑐
20

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏
2

(𝑡))

+ 𝑐
30

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐵 ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑗
(𝑠) 𝑑𝑠

+ (𝑐
3

(𝑡) − 𝑐
30

)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐵 ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑗
(𝑠) 𝑑𝑠

+ 𝑢
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(9)

where 𝑔(𝑒
𝑖
(𝑡)) = [𝑓

1
(𝑒
𝑖1

(𝑡)) 𝑓
2
(𝑒
𝑖2

(𝑡)) ⋅ ⋅ ⋅ 𝑓
𝑛
(𝑒
𝑖𝑛

(𝑡))]
𝑇,

𝑓
𝑗
(𝑒
𝑖𝑗
(𝑡)) = 𝑓

𝑗
(𝑥
𝑖𝑗
(𝑡)) − 𝑓

𝑗
(𝑠
𝑗
(𝑡)).

The control signal is assumed to be generalized by using
a zero-order hold (ZOH) function with a sequence of hold
times 0 = 𝑡

0
< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ . Therefore, the state
feedback controller takes the following form:

𝑢
𝑖
= 𝐾
𝑖
𝑒
𝑖
(𝑡
𝑘
) , 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
, 𝑖 = 1, 2, . . . , 𝑁, (10)

where 𝐾
𝑖
is the feedback gain matrix to be designed, 𝑒

𝑖
(𝑡
𝑘
) is

the discrete measurement of 𝑒
𝑖
(𝑡) at sampling instant 𝑡

𝑘
, and

lim
𝑘→+∞

𝑡
𝑘

= +∞. In this paper, the sampling is not required
to be periodic, and the only assumption is that the distance
between any two consecutive sampling instants is less than a
given bound. It is assumed that 𝑡

𝑘+1
− 𝑡
𝑘

= ℎ
𝑘

≤ 𝑝 for any
integer 𝑘 ≥ 0, where 𝑝 > 0 represents the largest sampling
interval.

By using the input delay approach and the Kronecker
product, error dynamics (9) can be rewritten in the following
compact form:

̇𝑒 (𝑡) = 𝑔 (𝑒 (𝑡)) + 𝑐
10

(𝐺 ⊗ 𝐷) 𝑒 (𝑡)

+ (𝑐
1

(𝑡) − 𝑐
10

) (𝐺 ⊗ 𝐷) 𝑒 (𝑡)

+ 𝛽 (𝑡) 𝑐
20

(𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏
1

(𝑡))

+ 𝛽 (𝑡) (𝑐
2

(𝑡) − 𝑐
20

) (𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏
1

(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
20

(𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏
2

(𝑡))

+ (1 − 𝛽 (𝑡)) (𝑐
2

(𝑡) − 𝑐
20

) (𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏
2

(𝑡))

+ 𝑐
30

(𝐺 ⊗ 𝐵) ∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝑠) 𝑑𝑠

+ (𝑐
3

(𝑡) − 𝑐
30

) (𝐺 ⊗ 𝐵) ∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝑠) 𝑑𝑠

+ 𝐾𝑒 (𝑡 − 𝑑 (𝑡)) ,

(11)

where 𝑒(𝑡) = col{𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)}, 𝑔(𝑒(𝑡)) =

[𝑔
𝑇

(𝑒
1
(𝑡)) 𝑔

𝑇

(𝑒
2
(𝑡)) ⋅ ⋅ ⋅ 𝑔

𝑇

(𝑒
𝑛
(𝑡))]
𝑇

, 𝐾 = diag{𝐾
1
, 𝐾
2
, . . . ,

𝐾
𝑁

}, 𝑑(𝑡) = 𝑡 − 𝑡
𝑘
.

The purpose of this paper is focusing on designing a
set of sampled-data controllers (10) with sampling period
as big as possible to ensure synchronizing the delayed
complex network (6) in mean square sense. Obviously, the
synchronization problem has been converted into the mean
square asymptotical stability problem of error system (11).
Therefore, there are two main issues to be considered in this
paper: one is to find some sufficient conditions for the error
system (11) to be globally stable in mean square for given 𝐾

𝑖
,

and the other is to derive the design method of sampled-
data controllers. To obtain the main results, the following
definition and lemmas will be needed.

Definition 6. The coupled complex network (6) is said
to be globally synchronized in mean square sense if
lim
𝑡→∞

𝐸{‖𝑒
𝑖
(𝑡)‖
2

} = 0, 𝑖 = 1, 2, . . . , 𝑁 holds for any initial
values.

Lemma 7 (see [25] (Jensen’s inequality)). For any positive
symmetric constant matrix 𝑍 = 𝑍

𝑇

> 0, scalar ℎ
1

< ℎ
2
and

vector function 𝜔 : [ℎ
1
, ℎ
2
] → 𝑅

𝑛 such that the integrations
concerned are well defined; then

− (ℎ
2

− ℎ
1
) ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜔
𝑇

(𝑠) 𝑍𝜔 (𝑠) 𝑑𝑠

≤ − ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜔
𝑇

(𝑠) 𝑑𝑠 𝑍 ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜔 (𝑠) 𝑑𝑠.

(12)

Lemma 8 (see [26] (reciprocally convex approach)). Let
𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
: 𝑅
𝑚

󳨃→ 𝑅 have positive values in an open subset
𝐷 of 𝑅

𝑚. Then, the reciprocally convex combination of 𝑓
𝑖
over

𝐷 satisfies

min
{𝛼
𝑖
|𝛼
𝑖
>0,∑
𝑖
𝛼
𝑖
=1}

∑

𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) + max
𝑔
𝑖,𝑗
(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗

(𝑡) (13)

subject to

{𝑔
𝑖,𝑗

: 𝑅
𝑚

󳨃󳨀→ 𝑅, 𝑔
𝑗,𝑖

(𝑡) ≜ 𝑔
𝑖,𝑗

(𝑡) , [
𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑗,𝑖

(𝑡) 𝑓
𝑗
(𝑡)

] ≥ 0} .

(14)

3. Main Results

In this section, we will first give a sufficient condition, which
can guarantee the error system (11) to be globally stable in
mean square sense.Then, based on the given synchronization
condition, we propose an explicit expression of the sampled-
data controllers. Before presenting the main results, for the
sake of presentation simplicity, we denote

𝑈 =
(𝐼
𝑁

⊗ 𝑈)
𝑇

(𝐼
𝑁

⊗ 𝑉)

2
+

(𝐼
𝑁

⊗ 𝑉)
𝑇

(𝐼
𝑁

⊗ 𝑈)

2

𝑉 = −
(𝐼
𝑁

⊗ 𝑈)
𝑇

+ (𝐼
𝑁

⊗ 𝑉)
𝑇

2
.

(15)
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Theorem 9. Suppose that Assumptions 1, 2, 3, and 5 hold.
For given controller gain matrices 𝐾

𝑖
, the error system (11) is

globally asymptotically stable inmean square sense if there exist
matrices 𝑃 > 0, [

𝑄
1
𝑄
2

∗ 𝑄
3

] > 0, 𝑄
𝑖

> 0 (𝑖 = 4, . . . , 7), 𝑍
𝑖

>

0 (𝑖 = 1, . . . , 5), 𝑆
𝑖

(𝑖 = 1, . . . , 4) of appropriate dimensions
and a scalar 𝜀 > 0 such that the following LMIs hold:

[
𝑍
𝑘

𝑆
𝑘

∗ 𝑍
𝑘

] ≥ 0, 𝑘 = 1, . . . , 4, (16)

[
Φ
𝑖

Γ

∗ Ψ
] < 0, 𝑖 = 1, 2, (17)

where

Φ
1

= Σ − Δ
𝑇

1
𝑍
1
Δ
1

− Δ
𝑇

2
𝑍
1
Δ
2

− Δ
𝑇

1
𝑆
1
Δ
2

− Δ
𝑇

2
𝑆
𝑡

1
Δ
1

− Δ
𝑇

5
𝑆
3
Δ
6

− Δ
𝑇

6
𝑆
𝑇

3
Δ
5

− Δ
𝑇

7
𝑆
4
Δ
8

− Δ
𝑇

8
𝑆
𝑇

4
Δ
7

− Δ
𝑇

9
𝑍
2
Δ
9
,

Φ
2

= Σ − Δ
𝑇

3
𝑍
2
Δ
3

− Δ
𝑇

4
𝑍
2
Δ
4

− Δ
𝑇

3
𝑆
2
Δ
4

− Δ
𝑇

4
𝑆
𝑇

2
Δ
3

− Δ
𝑇

5
𝑆
3
Δ
6

− Δ
𝑇

6
𝑆
𝑇

3
Δ
5

− Δ
𝑇

7
𝑆
4
Δ
8

− Δ
𝑇

8
𝑆
𝑇

3
Δ
7

− Δ
𝑇

10
𝑍
1
Δ
10

,

Σ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11

𝑃𝐾 𝑄
2

0 Σ
15

Σ
16

0 0 Σ
19

Σ
110

∗ 0 0 0 0 0 0 0 0 0

∗ ∗ Σ
33

−𝑄
2

0 0 0 0 0 0

∗ ∗ ∗ −𝑄
3

0 0 0 0 0 0

∗ ∗ ∗ ∗ Σ
55

0 𝑍
3

0 0 0

∗ ∗ ∗ ∗ ∗ Σ
66

𝑍
4

𝑍
4

0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
77

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
4

− 𝑍
4

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑍
5

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Σ
11

= 𝑐
10

𝑃 (𝐺 ⊗ 𝐷) + 𝑐
10

(𝐺 ⊗ 𝐷)
𝑇

𝑃 + 𝑄
1

+ 𝑄
4

+ 𝑄
6

+ 𝑄
7

+ 𝑟
2

𝑍
5

− 𝜀𝑈 − 𝑍
3
,

Σ
15

= 𝛽
0
𝑐
20

𝑃 (𝐺 ⊗ 𝐴) + 𝑍
3
, Σ

16
= (1 − 𝛽

0
) 𝑐
20

𝑃 (𝐺 ⊗ 𝐴) , Σ
33

= −𝑄
1

+ 𝑄
3
,

Σ
19

= 𝑃 − 𝜀𝑉, Σ
110

= 𝑐
30

𝑃 (𝐺 ⊗ 𝐵) , Σ
55

= − (1 − 𝜇
1
) 𝑄
5

− 2𝑍
3
,

Σ
66

= − (1 − 𝜇
2
) 𝑄
6

− 2𝑍
4
, Σ

77
= −𝑄
3

+ 𝑄
4

− 𝑍
3

− 𝑍
4
,

Γ = [√𝛽
0
Ω
𝑇

1
√1 − 𝛽

0
Ω
𝑇

2
𝛿
1
Ω
𝑇

3
√𝛽
0
𝛿
2
Ω
𝑇

4
√1 − 𝛽

0
𝛿
2
Ω
𝑇

5
𝛿
3
Ω
𝑇

6
] ,

Ψ = diag {−𝑍, −𝑍, −𝑍, −𝑍, −𝑍, −𝑍} ,

𝑍 =
1

4
𝑝
2

(𝑍
1

+ 𝑍
2
) + ℎ
2

1
𝑍
3

+ (ℎ
2

− ℎ
1
)
2

𝑍
4
,

Δ
1

= [𝐼 −𝐼 0 0 0 0 0 0 0 0] ,

Δ
2

= [0 𝐼 −𝐼 0 0 0 0 0 0 0] ,

Δ
3

= [0 −𝐼 𝐼 0 0 0 0 0 0 0] ,

Δ
4

= [0 𝐼 0 −𝐼 0 0 0 0 0 0] ,

Δ
5

= [𝐼 0 0 0 −𝐼 0 0 0 0 0] ,

Δ
6

= [0 0 0 0 𝐼 0 −𝐼 0 0 0] ,

Δ
7

= [0 0 0 0 0 −𝐼 𝐼 0 0 0] ,

Δ
8

= [0 0 0 0 0 𝐼 0 −𝐼 0 0] ,

Δ
9

= [0 0 𝐼 𝐼 0 0 0 0 0 0] ,

Δ
10

= [𝐼 0 𝐼 0 0 0 0 0 0 0] ,
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Ω
1

= [𝑐
10

𝑍 (𝐺 ⊗ 𝐷) 𝑍𝐾 0 0 𝑐
20

𝑍 (𝐺 ⊗ 𝐴) 0 0 0 𝑍 𝑐
30

𝑍 (𝐺 ⊗ 𝐵)] ,

Ω
2

= [𝑐
10

𝑍 (𝐺 ⊗ 𝐷) 𝑍𝐾 0 0 0 𝑐
20

𝑍 (𝐺 ⊗ 𝐴) 0 0 𝑍 𝑐
30

𝑍 (𝐺 ⊗ 𝐵)] ,

Ω
3

= [𝑍 (𝐺 ⊗ 𝐷) 0 0 0 0 0 0 0 0 0] ,

Ω
4

= [0 0 0 0 𝑍 (𝐺 ⊗ 𝐴) 0 0 0 0 0] ,

Ω
5

= [0 0 0 0 0 𝑍 (𝐺 ⊗ 𝐴) 0 0 0 0] ,

Ω
6

= [0 0 0 0 0 0 0 0 0 𝑍 (𝐺 ⊗ 𝐵)] .

(18)

Proof. Consider the following Lyapunov-Krasovskii (LK)
functional:

𝑉 (𝑡) = 𝑉
1

(𝑡) + 𝑉
2

(𝑡) , (19)

where

𝑉
1

(𝑡) = 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) + ∫

𝑡

𝑡−(1/2)𝑝

𝜁
𝑇

(𝑠) [
𝑄
1

𝑄
2

∗ 𝑄
3

] 𝜁 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ
1

𝑒
𝑇

(𝑠) 𝑄
4
𝑒 (𝑠) 𝑑𝑠 + ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑒
𝑇

(𝑠) 𝑄
5
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
1(𝑡)

𝑒
𝑇

(𝑠) 𝑄
6
𝑒 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏
2(𝑡)

𝑒
𝑇

(𝑠) 𝑄
7
𝑒 (𝑠) 𝑑𝑠,

𝑉
2

(𝑡) =
1

2
𝑝 ∫

0

−(1/2)𝑝

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃

+
1

2
𝑝 ∫

−(1/2)𝑝

−𝑝

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃

+ ℎ
1

∫

0

−ℎ
1

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
3

̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃

+ (ℎ
2

− ℎ
1
) ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
4

̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑟 ∫

0

−𝑟

∫

𝑡

𝑡+𝜃

𝑒
𝑇

(𝑠) 𝑍
5
𝑒 (𝑠) 𝑑𝑠 𝑑𝜃,

𝜁 (𝑠) = col {𝑒 (𝑠) , 𝑒 (𝑠 −
1

2
𝑝)} .

(20)

We use 𝐿𝑉(𝑡) to denote the infinitesimal operator of 𝑉(𝑡),
which is defined as

𝐿𝑉 (𝑡) = lim
Δ→0+

Δ
−1

[𝐸 {𝑉 (𝑡 + Δ) | 𝑒 (𝑡)} − 𝑉 (𝑡)] . (21)

It follows from (19) and (21) that

𝐿𝑉 (𝑡) = 𝐿𝑉
1

(𝑡) + 𝐿𝑉
2

(𝑡) . (22)

Now, taking the derivative of (22) along the solution of system
(11) yields

𝐿𝑉
1

(𝑡)

≤ 2𝑒
𝑇

(𝑡) 𝑃 [𝑔 (𝑒 (𝑡)) + 𝑐
10

(𝐺 ⊗ 𝐷) 𝑒 (𝑡)

+ 𝛽
0
𝑐
20

(𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏
1

(𝑡))

+ (1 − 𝛽
0
) 𝑐
20

(𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏
2

(𝑡))

+ 𝑐
30

(𝐺 ⊗ 𝐵) ∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝑠) 𝑑𝑠 + 𝐾𝑒 (𝑡 − 𝑑 (𝑡))]

+ 𝜁
𝑇

(𝑡) [
𝑄
1

𝑄
2

∗ 𝑄
3

] 𝜁 (𝑡)

− 𝜁
𝑇

(𝑡 −
1

2
𝑝) [

𝑄
1

𝑄
2

∗ 𝑄
3

] 𝜁 (𝑡 −
1

2
𝑝)

+ 𝑒
𝑇

(𝑡) 𝑄
4
𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − ℎ
1
) 𝑄
4
𝑒 (𝑡 − ℎ

1
)

+ 𝑒
𝑇

(𝑡 − ℎ
1
) 𝑄
5
𝑒 (𝑡 − ℎ

1
)

− 𝑒
𝑇

(𝑡 − ℎ
2
) 𝑄
5
𝑒 (𝑡 − ℎ

2
) + 𝑒
𝑇

(𝑡) 𝑄
6
𝑒 (𝑡)

− (1 − 𝜇
1
) 𝑒
𝑇

(𝑡 − 𝜏
1

(𝑡)) 𝑄
6
𝑒 (𝑡 − 𝜏

1
(𝑡)) + 𝑒

𝑇

(𝑡) 𝑄
7
𝑒 (𝑡)

− (1 − 𝜇
2
) 𝑒
𝑇

(𝑡 − 𝜏
2

(𝑡)) 𝑄
7
𝑒 (𝑡 − 𝜏

2
(𝑡)) ,

(23)

𝐿𝑉
2

(𝑡)

= ̇𝑒
𝑇

(𝑡) 𝑍 ̇𝑒 (𝑡) + 𝑟
2

𝑒
𝑇

(𝑡) 𝑍
4
𝑒 (𝑡)

−
1

2
𝑝 ∫

𝑡

𝑡−(1/2)𝑝

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠

−
1

2
𝑝 ∫

𝑡−(1/2)𝑝

𝑡−𝑝

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠

− ℎ
1

∫

𝑡

𝑡−ℎ
1

̇𝑒
𝑇

(𝑠) 𝑍
3

̇𝑒 (𝑠) 𝑑𝑠
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− (ℎ
2

− ℎ
1
) ∫

𝑡−ℎ
1

𝑡−ℎ
2

̇𝑒
𝑇

(𝑠) 𝑍
4

̇𝑒 (𝑠) 𝑑𝑠

− 𝑟 ∫

𝑡

𝑡−𝑟

𝑒
𝑇

(𝑠) 𝑍
5
𝑒 (𝑠) 𝑑𝑠.

(24)

According to Lemma 7, we have

− 𝑟 ∫

𝑡

𝑡−𝑟

𝑒
𝑇

(𝑠) 𝑍
5
𝑒 (𝑠) 𝑑𝑠

≤ −𝑟 (𝑡) ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑇

(𝑠) 𝑍
5
𝑒 (𝑠) 𝑑𝑠

≤ − ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑇

(𝑠) 𝑑𝑠 𝑍
5

∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝑠) 𝑑𝑠.

(25)

Denote 𝜂
1
(𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑒(𝑠)𝑑𝑠, 𝜂
2
(𝑡) = ∫

𝑡−𝑑(𝑡)

𝑡−(1/2)𝑝

̇𝑒(𝑠)𝑑𝑠, 𝜂
3
(𝑡) =

∫
𝑡−(1/2)𝑝

𝑡−𝑑(𝑡)

̇𝑒(𝑠)𝑑𝑠, 𝜂
4
(𝑡) = ∫

𝑡−𝑑(𝑡)

𝑡−𝑝

̇𝑒(𝑠)𝑑𝑠, V
1
(𝑡) = ∫

𝑡

𝑡−𝜏
1
(𝑡)

̇𝑒(𝑠)𝑑𝑠,

V
2
(𝑡) = ∫

𝑡−𝜏
1
(𝑡)

𝑡−ℎ
1

̇𝑒(𝑠)𝑑𝑠, V
3
(𝑡) = ∫

𝑡−ℎ
1

𝑡−𝜏
2
(𝑡)

̇𝑒(𝑠)𝑑𝑠, and V
4
(𝑡) =

∫
𝑡−𝜏
2
(𝑡)

𝑡−ℎ
2

̇𝑒(𝑠)𝑑𝑠. According to Lemma 8, if (16) holds, we have

− ℎ
1

∫

𝑡

𝑡−ℎ
1

̇𝑒
𝑇

(𝑠) 𝑈
1

̇𝑒 (𝑠) 𝑑𝑠

≤ −[
V
1

(𝑡)

V
2

(𝑡)
]

𝑇

[
𝑍
3

𝑆
3

∗ 𝑍
3

] [
V
1

(𝑡)

V
2

(𝑡)
] ,

− (ℎ
2

− ℎ
1
) ∫

𝑡−ℎ
1

𝑡−ℎ
2

̇𝑒
𝑇

(𝑠) 𝑈
2

̇𝑒 (𝑠) 𝑑𝑠

≤ −[
V
3

(𝑡)

V
4

(𝑡)
]

𝑇

[
𝑍
4

𝑆
4

∗ 𝑍
4

] [
V
3

(𝑡)

V
4

(𝑡)
] .

(26)

Depending on whether the delay 𝑑(𝑡) belongs to the interval
0 ≤ 𝑑(𝑡) ≤ (1/2)𝑝 or (1/2)𝑝 ≤ 𝑑(𝑡) ≤ 𝑝, we will prove the
result in two cases.

Case 1 (0 ≤ 𝑑(𝑡) ≤ (1/2)𝑝). Using Lemmas 7 and 8, one can
obtain

−
1

2
𝑝 ∫

𝑡

𝑡−(1/2)𝑝

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠

≤ −[
𝜂
1

(𝑡)

𝜂
2

(𝑡)
]

𝑇

[
𝑍
1

𝑆
1

∗ 𝑍
1

] [
𝜂
1

(𝑡)

𝜂
2

(𝑡)
] ,

−
1

2
𝑝 ∫

𝑡−(1/2)𝑝

𝑡−𝑝

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠

≤ −
[
[

[

𝑒 (𝑡 −
1

2
𝑝)

𝑒 (𝑡 −
1

2
𝑝)

]
]

]

𝑇

[
𝑍
2

𝑍
2

∗ 𝑍
2

]
[
[

[

𝑒 (𝑡 −
1

2
𝑝)

𝑒 (𝑡 −
1

2
𝑝)

]
]

]

.

(27)

Denote 𝜉(𝑡) = col{𝑒(𝑡), 𝑒(𝑡 − 𝑑(𝑡)), 𝑒(𝑡 − (1/2)𝑝), 𝑒(𝑡 − 𝑝), 𝑒(𝑡 −

𝜏
1
(𝑡)), 𝑒(𝑡 − 𝜏

2
(𝑡)), 𝑒(𝑡 − ℎ

1
), 𝑒(𝑡 − ℎ

2
), 𝑔(𝑒(𝑡)), ∫

𝑡

𝑡−𝑟(𝑡)

𝑒(𝑠)𝑑𝑠},

Ω = 𝛽(𝑡)Ω
10

+ (1 − 𝛽(𝑡))Ω
20

+ (𝑐
1
(𝑡) − 𝑐

10
)Ω
30

+ 𝛽(𝑡)(𝑐
2
(𝑡) −

𝑐
20

)Ω
40

+ (1 − 𝛽(𝑡))(𝑐
2
(𝑡) − 𝑐

20
)Ω
50

+ (𝑐
3
(𝑡) − 𝑐

30
)Ω
60
, Ω
10

=

[𝑐
10

(𝐺⊗𝐷) 𝐾 0 0 𝑐
20

(𝐺⊗𝐴) 0 0 0 𝐼 𝑐
30

(𝐺⊗𝐵)],Ω
20

=

[𝑐
10

(𝐺⊗𝐷) 𝐾 0 0 𝑐
20

(𝐺⊗𝐴) 0 0 0 𝐼 𝑐
30

(𝐺⊗𝐵)],Ω
30

=

[(𝐺 ⊗ 𝐷) 0 0 0 0 0 0 0 0 0], Ω
40

= [0 0 0 0 (𝐺 ⊗

𝐴) 0 0 0 0 0], Ω
50

= [0 0 0 0 0 (𝐺 ⊗ 𝐴) 0 0 0 0],
Ω
60

= [0 0 0 0 0 0 0 0 0 (𝐺 ⊗ 𝐵)]. Because 𝛽(𝑡) and
𝑐
𝑘
(𝑡) are mutually independent variables, it can be obtained

that

𝐸 { ̇𝑒
𝑇

(𝑡) 𝑍 ̇𝑒 (𝑡)} = 𝐸 {𝜉
𝑇

(𝑡) Ω
𝑇

𝑍Ω𝜉 (𝑡)}

= 𝜉
𝑇

(𝑡) Ω𝜉 (𝑡) ,

(28)

where Ω = 𝛽
0
Ω
𝑇

10
𝑍Ω
10

+ (1 − 𝛽
0
)Ω
𝑇

20
𝑍Ω
20

+ 𝛿
2

1
Ω
𝑇

30
𝑍Ω
30

+

𝛽
0
𝛿
2

2
Ω
𝑇

40
𝑍Ω
40

+ (1 − 𝛽
0
)𝛿
2

2
Ω
𝑇

50
𝑍Ω
50

+ 𝛿
2

3
Ω
𝑇

60
𝑍Ω
60
.

In addition, based on Assumption 5, for any scalar 𝜀 > 0,
we have

𝑦 (𝑡) = 𝜀[
𝑒 (𝑡)

𝑔 (𝑒 (𝑡))
]

𝑇

[
𝑈 𝑉

∗ 𝐼
] [

𝑒 (𝑡)

𝑔 (𝑒 (𝑡))
] ≤ 0. (29)

Combining (23)–(29) and takingmathematical exceptions on
both sides of (22) give

𝐸 {𝐿𝑉 (𝑡)} ≤ 𝜉
𝑇

(𝑡) [Φ
1

+ Ω] 𝜉 (𝑡) . (30)

Case 2 ((1/2)𝑝 ≤ 𝑑(𝑡) ≤ 𝑝). Using Lemmas 7 and 8, one can
obtain

−
1

2
𝑝 ∫

𝑡−(1/2)𝑝

𝑡−(1/2)𝑝

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠

≤ −[
𝜂
3

(𝑡)

𝜂
4

(𝑡)
]

𝑇

[
𝑍
2

𝑆
2

∗ 𝑍
2

] [
𝜂
3

(𝑡)

𝜂
4

(𝑡)
] ,

−
1

2
𝑝 ∫

𝑡

𝑡−𝑝

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠

≤ −[

[

𝑒 (𝑡)

𝑒 (𝑡 −
1

2
𝑝)

]

]

𝑇

[
𝑍
1

−𝑍
1

∗ 𝑍
1

] [

[

𝑒 (𝑡)

𝑒 (𝑡 −
1

2
𝑝)

]

]

.

(31)

Similar to the above process, we also can obtain

𝐸 {𝐿𝑉 (𝑡)} ≤ 𝜉
𝑇

(𝑡) [Φ
2

+ Ω] 𝜉 (𝑡) . (32)

By the Schur complement, it is easy to derive that (17) is
equivalent to Φ

𝑖
+ Ω < 0. Let 𝜆 = min{𝜆min(−(Φ

𝑖
+ Ω))}.

It follows from (30) and (32) that

𝐸 {𝐿𝑉 (𝑡)} ≤ −𝜆𝐸 {
󵄩󵄩󵄩󵄩𝜉 (𝑡)

󵄩󵄩󵄩󵄩

2

} ≤ −𝜆𝐸 {‖𝑒 (𝑡)‖
2

} . (33)

Then, by the generalized Itô formula, we have

𝐸 {𝑉 (𝑡)} − 𝐸 {𝑉 (0)} = 𝐸 {∫

𝑡

0

𝐿𝑉 (𝑠) 𝑑𝑠}

≤ −𝜆 ∫

𝑡

0

𝐸 {‖𝑒 (𝑠)‖
2

} 𝑑𝑠.

(34)

Therefore, by virtue of (34), the discussion in [27], and
Definition 6, system (11) is globally asymptotically stable in
mean-square sense. This completes the proof.
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Remark 10. It is well known that delay decomposition
method is helpful in the reduction of conservatism for the
stability of delayed systems. In this paper, for the sake of
obtaining some less conservative sufficient conditions and
saving time consumed, a new LKF of form (19) is constructed,
where the interval [−𝑝, 0] is divided into two divisions:
[−𝑝, −(1/2)𝑝] and [−(1/2)𝑝, 0]. It is obvious that the LKF (19)
canmake gooduse of the information of additional error state
𝑒(𝑡 − (1/2)𝑝) sufficiently. Therefore, such an LKF is expected
to be effective in the reduction of conservatism.

Remark 11. In the previous paper [21], by setting 𝛼 =

𝑑(𝑡)/𝑝 and 𝛽 = 𝜏(𝑡)/ℎ, based on Jensen’s inequal-
ity technique, the integral terms −𝑝 ∫

𝑡

𝑡−𝑝

̇𝑒
𝑇

(𝑠)𝑍
1

̇𝑒(𝑠)𝑑𝑠 and

−ℎ ∫
𝑡

𝑡−ℎ

̇𝑒
𝑇

(𝑠)𝑍
2

̇𝑒(𝑠)𝑑𝑠 were upper-bounded by

− 𝑝 ∫

𝑡

𝑡−𝑝

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠

≤ − (2 − 𝛼) [𝑒 (𝑡) − 𝑒 (𝑡 − 𝑑 (𝑡))]
𝑇

× 𝑍
1

[𝑒 (𝑡) − 𝑒 (𝑡 − 𝑑 (𝑡))]

− (1 + 𝛼) [𝑒 (𝑡 − 𝑑 (𝑡)) − 𝑒 (𝑡 − 𝑝)]
𝑇

× 𝑍
1

[𝑒 (𝑡 − 𝑑 (𝑡)) − 𝑒 (𝑡 − 𝑝)] ,

− ℎ ∫

𝑡

𝑡−ℎ

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠

≤ − (2 − 𝛽) [𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡))]
𝑇

× 𝑍
2

[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡))]

− (1 + 𝛽) [𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − ℎ)]
𝑇

× 𝑍
2

[𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − ℎ)] ,

(35)

which result in a convex combination on𝛼 and𝛽, respectively.
As discussed in [26], reciprocally convex approach is an
effective approach in handling the double integral terms of
the LK functional for delayed systems, which can achieve
performance behavior identical to the approaches based on
the integral inequality lemma but with much less decision
variables, comparable to those based on the Jensen inequal-
ity lemma. By utilizing the result of Lemma 8, Theorem 9
directly handles convex combination of quadratic terms of
some integral terms, which leads to a less conservative result
than [21].

In the following, wewill explore how to design the desired
sampled-data controllers to guarantee the complex network
(6) synchronizing inmean square sense. Based onTheorem 9,
we can easily derive the following theorem.

Theorem 12. Suppose that Assumptions 1, 2, 3, and 5 hold.The
complex network (6) is globally asymptotically synchronized in
mean square sense by the sampled-data controllers of form (10)
if there exist matrices 𝑃 = diag{𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑁
} > 0, [

𝑄
1
𝑄
2

∗ 𝑄
3

] >

0, 𝑄
𝑖

> 0 (𝑖 = 4, . . . , 7), 𝑍
𝑖

> 0 (𝑖 = 1, . . . , 4), 𝑆
𝑖

(𝑖 =

1, 2, 3), 𝑋 = diag{𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
} of appropriate dimensions

and a scalar 𝜀 > 0 such that (16) and the following LMIs
hold:

[
Φ̂
𝑖

Γ̂

∗ Ψ̂
] < 0, 𝑖 = 1, 2, (36)

where

Φ̂
1

= Σ̂ − Δ
𝑇

1
𝑍
1
Δ
1

− Δ
𝑇

2
𝑍
1
Δ
2

− Δ
𝑇

1
𝑆
1
Δ
2

− Δ
𝑇

2
𝑆
1
Δ
1

− Δ
𝑇

5
𝑆
3
Δ
6

− Δ
𝑇

6
𝑆
3
Δ
5

− Δ
𝑇

7
𝑆
4
Δ
8

− Δ
𝑇

8
𝑆
4
Δ
7

− Δ
𝑇

9
𝑍
2
Δ
9
,

Φ̂
2

= Σ̂ − Δ
𝑇

3
𝑍
2
Δ
3

− Δ
𝑇

4
𝑍
2
Δ
4

− Δ
𝑇

3
𝑆
2
Δ
4

− Δ
𝑇

4
𝑆
2
Δ
3

− Δ
𝑇

5
𝑆
3
Δ
6

− Δ
𝑇

6
𝑆
3
Δ
5

− Δ
𝑇

7
𝑆
4
Δ
8

− Δ
𝑇

8
𝑆
4
Δ
7

− Δ
𝑇

10
𝑍
1
Δ
10

,

Σ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11

𝑋 0 0 Σ
15

Σ
16

0 0 Σ
19

Σ
110

∗ 0 0 0 0 0 0 0 0 0

∗ ∗ Σ
22

0 0 0 0 0 0 0

∗ ∗ ∗ −𝑄
2

0 0 0 0 0 0

∗ ∗ ∗ ∗ Σ
55

0 𝑍
3

0 0 0

∗ ∗ ∗ ∗ ∗ Σ
66

𝑍
4

𝑍
4

0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
77

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
4

− 𝑍
4

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑍
5

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Γ̂ = [√𝛽
0
Υ
𝑇

1
√1 − 𝛽

0
Υ
𝑇

2
𝛿
1
Υ
𝑇

3
√𝛽
0
𝛿
2
Υ
𝑇

4
√1 − 𝛽

0
𝛿
2
Υ
𝑇

5
𝛿
3
Υ
𝑇

6
] ,

Ψ̂ = diag {−2𝑃 + 𝑍, −2𝑃 + 𝑍, −2𝑃 + 𝑍, −2𝑃 + 𝑍, −2𝑃 + 𝑍, −2𝑃 + 𝑍} ,
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Υ
1

= [𝑐
10

𝑃 (𝐺 ⊗ 𝐷) 𝑋 0 0 𝑐
20

𝑃 (𝐺 ⊗ 𝐴) 0 0 0 𝑃 𝑐
30

𝑃 (𝐺 ⊗ 𝐵)] ,

Υ
2

= [𝑐
10

𝑃 (𝐺 ⊗ 𝐷) 𝑋 0 0 0 𝑐
20

𝑃 (𝐺 ⊗ 𝐴) 0 0 𝑃 𝑐
30

𝑃 (𝐺 ⊗ 𝐵)] ,

Υ
3

= [𝑃 (𝐺 ⊗ 𝐷) 0 0 0 0 0 0 0 0 0] ,

Υ
4

= [0 0 0 0 𝑃 (𝐺 ⊗ 𝐴) 0 0 0 0 0] ,

Υ
5

= [0 0 0 0 0 𝑃 (𝐺 ⊗ 𝐴) 0 0 0 0] ,

Υ
6

= [0 0 0 0 0 0 0 0 0 𝑃 (𝐺 ⊗ 𝐵)]

(37)

and the other terms follow the same definitions as those in
Theorem 9. Moreover, the desired controllers gain matrices are
given by

𝐾
𝑖
= 𝑃
−1

𝑖
𝑋
𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (38)

Proof. Define matrices 𝐽 = diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑃𝑍
−1

,

𝑃𝑍
−1

, 𝑃𝑍
−1

, 𝑃𝑍
−1

, 𝑃𝑍
−1

, 𝑃𝑍
−1

} and 𝑋 = 𝑃𝐾. Note that
−𝑃𝑍
−1

𝑃 ≤ −2𝑃 + 𝑍 is true for 𝑍 > 0. Then, performing a
congruence transformation of 𝐽 to (17), and considering the
relation 𝑋 = 𝑃𝐾, we can obtain that if LMIs (36) is satisfied,
then LMIs (17) holds. This completes the proof.

Remark 13. According to Theorem 12, though mixed proba-
bilistic time-varying delays and random coupling strengths
coexist in the considered complex network, the desired
sampled-data controllers have been designed in terms of
the solution to LMIs that can be solved effectively by using
available software. In the next section, the effectiveness of
the proposed method will be verified by some numerical
examples.

4. Numerical Examples

In this section, two numerical examples are given to illustrate
the effectiveness of the results proposed above.

Example 1. Consider complex network (6) with three nodes.
We assume that the coupling strengths are some constants,
time-varying coupling delay is deterministic, and the dis-
tributed coupling term vanishes. That is to say, 𝛽(𝑡) = 1,
𝑐
1
(𝑡) = 𝑐

10
, 𝑐
2
(𝑡) = 𝑐

20
, and 𝐵 = 0. The coupling configuration

matrix is assumed to be

𝐺 = [

[

−1 0 1

0 −1 1

1 1 −2

]

]

. (39)

The nonlinear function 𝑓 is taken as

𝑓 (𝑥
𝑖
(𝑡)) = [

−0.5𝑥
𝑖1

+ tanh (0.2𝑥
𝑖2

) + 0.2𝑥
𝑖2

0.95𝑥
𝑖2

− tanh (0.75𝑥
𝑖2

)
] . (40)

Table 1: Maximum sampling interval p for different 𝑐
20
.

Methods 0.5 0.75
[20] 0.5409 0.1653
[21] 0.5573 0.2277
Theorem 12 0.5891 0.2809

It can be verified that 𝑓 satisfies (8) with

𝑈 = [
−0.5 0.2

0 0.95
] , 𝑉 = [

−0.3 0.2

0 0.2
] . (41)

The time-varying coupling delay is chosen as 𝜏(𝑡) = 0.2 +

0.05 sin(10𝑡). A straightforward calculation gives ℎ = 0.25

and 𝜇 = 0.5. The inner-coupling matrices are given as 𝐷 = 0

and𝐴 = [
1 0

0 1
].Thus, we only need to consider the effect of 𝑐

20
.

For different coupling strength 𝑐
20
, Table 1 lists the maximum

sampling interval 𝑝 obtained by Theorem 12 and [20, 21].
From Table 1, we can see that our result is less conservative
than the existing ones.

Example 2. The isolated node of the dynamical networks
and the coupling configuration matrix 𝐺 are the same
as Example 1. Let 𝑐

1
(𝑡), 𝑐
2
(𝑡), and 𝑐

3
(𝑡) are two mutually

independent random variables satisfying normal distribution
with 𝑐

10
= 5, 𝑐

20
= 2, 𝑐

20
= 1, 𝛿

1
= 0.25, 𝛿

2
= 0.2, and

𝛿
3

= 0.1. According to the property of normal distribution,
almost all the values of 𝑐

𝑘
(𝑡), 𝑘 = 1, 2, 3, satisfy 𝑐

𝑖
(𝑡) ∈ (𝑐

𝑖0
−

3𝛿
𝑖
, 𝑐
𝑖0

+ 3𝛿
𝑖
); that is, 𝑐

1
(𝑡) ∈ (4.25, 5.75), 𝑐

2
(𝑡) ∈ (1.4, 2.6),

and 𝑐
3
(𝑡) ∈ (0.7, 1.3). Figures 1, 2, and 3 depict the random

coupling strengths 𝑐
1
(𝑡), 𝑐
2
(𝑡), and 𝑐

3
(𝑡), respectively. Take

𝛽
0

= 0.9, 𝜏
1
(𝑡) = 0.2+0.1 sin(𝑡), and 𝜏

2
(𝑡) = 0.55+0.24 sin(𝑡).

It followed that ℎ
1

= 0.3, ℎ
2

= 0.79, 𝜇
1

= 0.1, and 𝜇
2

= 0.24.
Figure 4 shows the random coupling delay. The distributed
coupling delay is chosen as 𝑟(𝑡) = 0.5sin2(𝑡), so we have
𝑟 = 0.5.

The inner-coupling matrices are given as

𝐷 = 𝐴 = [
0.1 0

0 0.1
] , 𝐵 = [

0.4 0

0 0.4
] . (42)
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Figure 1: Random coupling strength 𝑐
1
(𝑡).
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Figure 2: Random coupling strength 𝑐
2
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Figure 3: Random coupling strength 𝑐
3
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Figure 4: Random coupling delay 𝜏(𝑡).
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Figure 5: Synchronization error states.

Based onTheorem 12, themaximumvalue of sampling period
is 𝑝 = 0.4623. Moreover, the gain matrices of the desired
controllers can be obtained as follows:

𝐾
1

= [
−0.0647 −0.1537

−0.0048 −1.1621
] , 𝐾

2
= [

−0.0647 −0.1537

−0.0048 −1.1621
] ,

𝐾
3

= [
0.1637 −0.1603

−0.0067 −0.8554
] .

(43)

In the numerical simulation, the initial values are given by
𝑥
1
(0) = [−2 4]

𝑇, 𝑥
2
(0) = [4 −2]

𝑇, 𝑥
3
(0) = [−2 3]

𝑇, and
𝑠(0) = [3 2]

𝑇. The state trajectories of the synchronization
error and the control inputs 𝑢

𝑖
(𝑡) are given in Figures 5 and 6,
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Figure 6: Sampled-data control inputs.

respectively. Clearly, the synchronization errors are globally
asymptotically stable in mean square under the proposed
sampled-data scheme.

5. Conclusions

In this paper, the sampled-data synchronization problem has
been studied for complex networks with random coupling
strengths and mixed probabilistic time-varying coupling
delays. Based on random variables and the input delay
approach, synchronization error dynamics are obtained. By
using the delay decomposition method and reciprocally
convex approach, a mean square synchronization criterion
is derived, and the corresponding sampled-data controllers
are designed in terms of the solution to LMIs. Numerical
examples have shown the validity of the presented results.The
LK functional considered here neglects the characteristic of
sampled-data system, so it inevitably leads to some conser-
vatism.Designing a less conservative sampled-data controller
via taking the characteristic of sampled-data system into
account constitutes a future research direction.
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[3] J. H. Lü and G. R. Chen, “A time-varying complex dynamical
network model and its controlled synchronization criteria,”
IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841–
846, 2005.

[4] J. Q. Lu, D. W. C. Ho, and J. D. Cao, “A unified synchronization
criterion for impulsive dynamical networks,” Automatica, vol.
46, no. 7, pp. 1215–1221, 2010.

[5] Z. Li and J.-J. Lee, “New eigenvalue based approach to synchro-
nization in asymmetrically coupled networks,” Chaos, vol. 17,
no. 4, Article ID 043117, 2007.

[6] Y.-W. Wang, J.-W. Xiao, C. Y. Wen, and Z.-H. Guan, “Synchro-
nization of continuous dynamical networks with discrete-time
communications,” IEEE Transactions on Neural Networks, vol.
22, no. 12, pp. 1979–1986, 2011.

[7] X. Y. Guo and J. M. Li, “Stochastic adaptive synchronization
for time-varying complex delayed dynamical networks with
heterogeneous nodes,” Applied Mathematics and Computation,
vol. 222, pp. 381–390, 2013.

[8] P. Checco, M. Righero, M. Biey, and L. Kocarev, “Synchroniza-
tion in networks of Hindmarsh-Rose neurons,” IEEE Transac-
tions on Circuits Systems II: Express Briefs, vol. 55, no. 12, pp.
1274–1278, 2008.

[9] J.W. Feng, Z. Tang, Y. Zhao, andC.Xu, “Cluster synchronisation
of non-linearly coupled Lur’e networks with identical and non-
identical nodes and an asymmetrical coupling matrix,” IET
Control Theory & Applications, vol. 7, no. 18, pp. 2117–2127, 2013.

[10] Y. Liang, X. Y. Wang, and J. Eustace, “Adaptive synchronization
in complex networks with non-delay and variable delay cou-
plings via pinning control,” Neurocomputing, vol. 123, pp. 292–
298, 2014.

[11] J. Yu, C. Hu, H. J. Jiang, and Z. D. Teng, “Synchronization
of nonlinear systems with delays via periodically nonlinear
intermittent control,”Communications in Nonlinear Science and
Numerical Simulation, vol. 17, no. 7, pp. 2978–2989, 2012.

[12] X. S. Yang, S. Ai, T. T. Su, and A. C. Chang, “Synchronization of
general complex networks with hybrid couplings and unknown
perturbations,” Abstract and Applied Analysis, vol. 2013, Article
ID 625372, 14 pages, 2013.

[13] E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-
data stabilization of linear systems: an input delay approach,”
Automatica, vol. 40, no. 8, pp. 1441–1446, 2004.

[14] E. Fridman, “A refined input delay approach to sampled-data
control,” Automatica, vol. 46, no. 2, pp. 421–427, 2010.

[15] A. Seuret, “A novel stability analysis of linear systems under
asynchronous samplings,” Automatica, vol. 48, no. 1, pp. 177–
182, 2012.

[16] B. Shen, Z. D. Wang, and X. H. Liu, “A stochastic sampled-data
approach to distributed 𝐻

∞
filtering in sensor networks,” IEEE

Transactions on Circuits and Systems. I: Regular Papers, vol. 58,
no. 9, pp. 2237–2246, 2011.

[17] J.-G. Lu and D. J. Hill, “Global asymptotical synchronization
of chaotic Lur’e systems using sampled data: a linear matrix
inequality approach,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 55, no. 6, pp. 586–590, 2008.



12 Abstract and Applied Analysis

[18] Z.-G. Wu, P. Shi, H. Y. Su, and J. Chu, “Exponential synchro-
nization of neural networks with discrete and distributed delays
under time-varying sampling,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, pp. 1368–1376, 2012.

[19] C.-K. Zhang, L. Jiang, Y. He, Q. H. Wu, andM.Wu, “Asymptot-
ical synchronization for chaotic Lur’e systems using sampled-
data control,”Communications inNonlinear Science andNumer-
ical Simulation, vol. 18, no. 10, pp. 2743–2751, 2013.

[20] N. Li, Y. L. Zhang, J. W. Hu, and Z. Y. Nie, “Synchronization
for general complex dynamical networks with sampled-data,”
Neurocomputing, vol. 74, no. 5, pp. 805–811, 2011.

[21] Z.-G. Wu, J. H. Park, H. Y. Su, B. Song, and J. Chu, “Expo-
nential synchronization for complex dynamical networks with
sampled-data,” Journal of the Franklin Institute, vol. 349, no. 9,
pp. 2735–2749, 2012.

[22] Z.-G. Wu, P. Shi, H. Y. Su, and J. Chu, “Sampled-data exponen-
tial synchronization of complex dynamical networks with time-
varying coupling delay,” IEEE Transactions on Neural Networks
and Learn Systems, vol. 24, no. 8, pp. 1177–1187, 2013.

[23] X. S. Yang, J. D. Cao, and J. Q. Lu, “Synchronization of
coupled neural networks with random coupling strengths and
mixed probabilistic time-varying delays,” International Journal
of Robust and Nonlinear Control, vol. 23, no. 18, pp. 2060–2081,
2013.

[24] X. S. Yang and J. D. Cao, “Synchronization of Markovian
coupled neural networks with nonidentical mode-delays and
random coupling strengths,” IEEE Transactions on Neural Net-
works and Learn Systems, vol. 23, no. 1, pp. 60–71, 2012.

[25] H. Shao, “New delay-dependent stability criteria for systems
with interval delay,” Automatica, vol. 45, no. 3, pp. 744–749,
2009.

[26] P. Park, J.W.Ko, andC. Jeong, “Reciprocally convex approach to
stability of systems with time-varying delays,” Automatica, vol.
47, no. 1, pp. 235–238, 2011.

[27] L. Arnold, Stochastic Differential Equations: Theory and Appli-
cations, John Wiley & Sons, New York, NY, USA, 1974.


