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In the current work, the Wiener-Hermite expansion (WHE) is used to solve the stochastic heat equation with nonlinear losses.
WHE is used to deduce the equivalent deterministic system up to third order accuracy.The solution of the equivalent deterministic
system is obtained using different techniques numerically and analytically.The finite-volumemethod (FVM) with Pickard iteration
is used to solve the equivalent system iteratively. The WHE with perturbation technique (WHEP) is applied to deduce more
simple and decoupled equivalent deterministic system that can be solved numerically without iterations.The system resulting from
WHEP technique is solved also analytically using the eigenfunction expansion technique. The Monte-Carlo simulations (MCS)
are performed to get the statistical properties of the stochastic solution and to verify other solution techniques. The results show
that higher-order solutions are essential especially in case of nonlinearities where non-Gaussian effects cannot be neglected. The
comparisons show the efficiency of the numerical WHE and WHEP techniques in solving stochastic nonlinear PDEs compared
with the analytical solution and MCS.

1. Introduction

The heat equation is of fundamental importance in diverse
scientific fields. In mathematics, it is the prototypical
parabolic partial differential equation. In probability theory,
the heat equation is connected with the study of Brownian
motion via the Fokker-Planck equation. In financial mathe-
matics it is used to solve the Black-Scholes partial differential
equation. The diffusion equation, a more general version of
the heat equation, arises in connection with the study of
chemical diffusion and other related processes [1].

The existence and uniqueness of stochastic PDEs (SPDEs)
were studied extensively in the literature; see, for example, [2–
6]. In [4, 6] the Green function is used to get a solution of
the one-dimensional heat equation with white-noise source.
The white noise was approximated and the authors showed
that the solutions converge weakly to the solution of the
original equation with white noise. Also in [6], the authors

studied the existence, uniqueness, and continuity of the
nonlinear diffusion equation in case the nonlinearity term
is of polynomial type. In [7] the long term behavior of the
solution of the stochastic heat equation with spatially colored
random force is considered. The conditions under which the
stochastic PDE admits a unique solution were outlined.More
generally, the existence of a martingale solution for parabolic
stochastic PDEs driven by Poissonian noise is shown in [8].

The solution of SPDEs using WHE has the advantage
of converting the problem into a system of equivalent
deterministic equations that can be solved efficiently using
the standard deterministic methods. The main statistics,
such as the mean, covariance, and higher-order statistical
moments, can be calculated by simple formulae involving
only the deterministic WHE coefficients [9]. The application
of the WHE aims at finding a truncated series solution to
the solution process of differential equations. The truncated
series is composed of twomajor parts; the first is theGaussian
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part which consists of the first two terms, while the rest of the
series constitute the non-Gaussian part. In nonlinear cases,
difficulties exist in solving the resultant set of deterministic
integrodifferential equations obtained from the applications
of a set of comprehensive averages on the stochastic inte-
grodifferential equation obtained after the direct application
of WHE. Many authors introduced different techniques to
solve these difficulties. Among them, the WHEP technique
was introduced in [9] using the perturbation technique to
simplify and decouple the WHE deterministic system. The
WHEP technique was automated and generalized for the
case of polynomial type nonlinearity in [10]. The equivalent
deterministic system can, using the automation, be obtained
for any order and any number of corrections. This enhance-
ment allows for deducing and hence getting higher-order
approximations.

TheWHEP technique was used to solve different stochas-
tic linear and nonlinear PDEs; see, for example, [11–14]. The
one-dimensional diffusion equation was solved numerically
in [13] using bothWHE andWHEP techniques. It was found
from the comparisons there that the WHE solution is the
limit of the WHEP solution as the number of corrections
approaches infinity. The numerical WHE solution can be
integrated with Grunwald-Letnikov numerical approxima-
tion of the fractional derivatives to solve stochastic PDEswith
fractional or variable order derivatives [12].

Other techniques can be used in solving the stochastic
PDEs with nonlinearities, such as the homotopy perturbation
(HPM) technique, homotopy analysis (HAM) technique, and
the Pickard’s iteration technique. Comparisons between these
techniques with the WHEP technique are done in [14]. The
WHEP technique was found to be the most efficient tech-
nique among other techniques. The stochastic heat equation
with nonlinear losses was solved with the HAM technique in
[15] and is compared with the WHEP solutions. It was found
also that the WHEP technique is simpler and more efficient
than HAM technique.

The stochastic heat equation is solved using WHEP
technique [11, 14, 15] up to first order only. The first order
solutions are suitable for linear problems but in case of
nonlinear problems, higher-order solutions are essential.The
non-Gaussian behavior of the solution can be detected only
with higher-order terms. Higher-order solutions are obtained
using automated WHEP technique for the oscillatory equa-
tion in [16].

The new contribution in this work is the higher-order
solutions of the stochastic heat equation with nonlinear
losses of polynomial type. The non-Gaussian part of the
solution is evaluated compared with the total solution to
highlight the effect of nonlinearities that cannot be neglected.
Additionally, the solution is verified using four different
techniques: the WHE with numerical Pickard’s iterations,
WHEP with numerical estimation, analytical eigenfunction
expansion solved using Mathematica, and the Monte-Carlo
simulations (MCS).

This paper is organized as follows: the problem is intro-
duced in Section 2. The WHE technique is explained in
Section 3 and the equivalent deterministic system is deduced.
The numerical Pickard’s iterations are explained also in this

section. In Section 4, the perturbation technique is added
to the WHE to deduce an extended set of deterministic
equations. Section 5 describes the analytical solutions and
how to evaluate it usingMathematica. Section 6 describes the
MCS of the original stochastic heat equation. Section 7 shows
the results and comparisons of the different techniques.

2. Problem Formulation

Consider the following heat equation with nonlinear losses
and zero boundary conditions in the form

𝜕𝑢

𝜕𝑡
− 𝛼

𝜕
2
𝑢

𝜕𝑥2
= −𝜆𝑢

𝑛
+ 𝑓 (𝑡)𝑁 (𝑥; 𝑤) ;

(𝑡, 𝑥) ∈ (0,∞) × (0, ℓ) ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, ℓ) = 0,

𝑢 (0, 𝑥) = 𝜑 (𝑥) ,

(1)

where 𝛼 is the thermal diffusivity and 𝜔 is the random
outcome of a triple probability space (Ω, 𝜒, 𝑃) in which Ω

is a sample space, 𝜒 is 𝜎-field associated with Ω, and 𝑃 is a
probability measure. The nonlinear losses term 𝑢

𝑛 is scaled
(strengthened) by a deterministic scalar 𝜆.The term𝑁(𝑥; 𝑤)

is a space white-noise excitation term that has the property
𝐸[𝑁(𝑥; 𝑤),𝑁(𝑥

1
; 𝑤)] = 𝛿(𝑥 − 𝑥

1
). The function 𝑓(𝑡) is a

deterministic envelope function. The initial condition 𝜑(𝑥)

will be assumed to be deterministic. The nonlinear losses
term𝑢

𝑛may account for the radiative heat losswhich depends
on the excess heat 𝑢 compared with the surroundings. At low
excess temperatures, the radiative loss may be approximated
linearly (proportional to 𝑢) while at high excess temperature,
the Stefan-Boltzmann law gives a net radiative heat loss
proportional to 𝑢4.

According to theorem 4.1 in [17], (1) has a unique finite
mean solution if the functions 𝜆𝑢

𝑛 and 𝑓(𝑡) are globally
Lipschitz and if the initial condition 𝜑(𝑥) ∈ 𝐶([0, ℓ]). In
[18], the authors provided the sufficient conditions to ensure
that the real valued mild solution of the SPDE (1) after
approximating the white-noise term converges in law to the
solution of the original white-noise driven equation in (1).

Define the linear operator 𝐿 as

𝐿 =
𝜕

𝜕𝑡
− 𝛼

𝜕
2

𝜕𝑥2
. (2)

In the current work and without loss of generality, a unit
thermal diffusivity (𝛼 = 1) and second degree nonlinear
losses (𝑛 = 2) are assumed. Now, (1) can be rewritten as

𝐿 [𝑢 (𝑡, 𝑥; 𝑤)] = −𝜆𝑢
2
+ 𝑓 (𝑡)𝑁 (𝑥; 𝑤) , (3)

with the initial and boundary conditions described in (1).
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3. Description of the WHE Technique

In the WHE technique, the stochastic response function
𝑢(𝑡, 𝑥; 𝑤) is expanded as [10]

𝑢 (𝑡, 𝑥; 𝑤) =

∞

∑

𝑘=0

∫
𝑅
𝑘

𝑢
(𝑘)

(𝑡, 𝑥; 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
)

× 𝐻
(𝑘)

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) 𝑑𝜏
𝑘
,

(4)

where 𝑢
(𝑘)
(𝑡, 𝑥; 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
) is the 𝑘th deterministic ker-

nel of 𝑢(𝑡, 𝑥; 𝑤), 𝑑𝜏
𝑘

= 𝑑𝑥
1
𝑑𝑥
2
⋅ ⋅ ⋅ 𝑑𝑥

𝑘
, and ∫

𝑅
𝑘

is
a 𝑘-dimensional integral over the disposable variables
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
. The functional 𝐻(𝑘)(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
) is the 𝑘th

order Wiener-Hermite functional. The WHE technique for
general nonlinear exponent (𝑛) and general order (𝑚) can
be summarized in the following steps [10]. For the sake
of brevity, the space and time variables (𝑡, 𝑥) and 𝜔 will
be omitted and only disposable variables 𝑥

1
, 𝑥
2
, 𝑥
3
, . . . are

written:
(1) truncate the expansion (4) to contain only 𝑚 + 1

kernels 𝑢(𝑗); 0 ≤ 𝑗 ≤ 𝑚; that is, 𝑢(𝑡, 𝑥; 𝑤) = 𝑢
(0)
(𝑡) +

∑
𝑚

𝑗=1
∫
𝑅
𝑗
𝑢
(𝑗)
𝐻
(𝑗)
𝑑𝜏
𝑗
,

(2) substitute the truncated expansion into (3),
(3) use themultinomial theorem to expand the nonlinear

term 𝑢
𝑛
; 𝑛 = 2,

(4) multiply by 𝐻
(𝑗)
; 0 ≤ 𝑗 ≤ 𝑚 and then apply the

ensemble average.
This will result in (𝑚 + 1) equations in the deterministic
kernels 𝑢(𝑗); 0 ≤ 𝑗 ≤ 𝑚 as

𝐿 (𝑢
(𝑗)
) = −

𝜆

𝑗!
∑

𝑔

𝑐
𝑔
∫
𝑅
𝑧

(

𝑚

∏

𝑖=0

[𝑢
(𝑖)
]
𝑘
𝑖

𝑔

)𝐸
𝑗

𝑔
𝑑𝜏
𝑧

+
𝛿
𝑗1

𝑗!
𝑓 (𝑡) 𝛿 (𝑥 − 𝑥

1
) ;

0 ≤ 𝑗 ≤ 𝑚.

(5)

The expectations 𝐸
𝑗

𝑔
are computed as 𝐸

𝑗

𝑔
=

⟨𝐻
(𝑗)
∏
𝑚

𝑖=0
(𝐻
(𝑖)
)
𝑘
𝑗

𝑔

⟩. It was explained in [10] how to get
𝐸
𝑗

𝑔
in terms of the Dirac delta functions and then use them

to reduce the order of integration. The Kronecker delta
function 𝛿

𝑗1
equals one when 𝑗 = 1 and zero otherwise. The

counter 𝑔 in the summation in the right-hand side of (5)
runs over all the ( 𝑛+𝑚

𝑛
) combinations of the positive integers

𝑘
0

𝑔
, 𝑘
1

𝑔
, . . . , 𝑘

𝑚

𝑔
such that ∑𝑚

𝑖=0
𝑘
𝑖

𝑔
= 𝑛. In case of 𝑚 = 1, the

Gaussian part of the solution is obtained. Larger values of 𝑚
will account for the non-Gaussian part of the solution.

After solving (5) for the kernels 𝑢(𝑗); 0 ≤ 𝑗 ≤ 𝑚, the
expectation and variance of the solution are obtained as [10]

𝐸 [𝑢 (𝑡, 𝑥; 𝑤)] = 𝑢
(0)
,

Var [𝑢 (𝑡, 𝑥; 𝑤)] =
𝑚

∑

𝑘=1

(𝑘!) ∫
𝑅
𝑘

[𝑢
(𝑘)
]
2

𝑑𝜏
𝑘
.

(6)

In case of quadratic nonlinearity (𝑛 = 2) and 3rd order
approximation (𝑚 = 3), (5) will expand to the following
deterministic system:

𝐿 (𝑢
(0)
) = −𝜆[𝑢

(0)
]
2

− 𝜆∫
𝑅

[𝑢
(1)

(𝑥
1
)]
2

𝑑𝑥
1

− 2𝜆∫
𝑅
2

[𝑢
(2)

(𝑥
1
, 𝑥
2
)]
2

𝑑𝑥
1
𝑑𝑥
2

− 6𝜆∫
𝑅
3

[𝑢
(3)

(𝑥
1
, 𝑥
2
, 𝑥
3
)]
2

𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3
,

𝐿 (𝑢
(1)
) = 𝑓 (𝑡) 𝛿 (𝑥 − 𝑥

1
) − 2𝜆𝑢

(0)
𝑢
(1)

(𝑥
1
)

− 4𝜆𝑢
(1)

(𝑥
2
) 𝑢
(2)

(𝑥
1
, 𝑥
2
) 𝑑𝑥
2

− 12𝜆∫
𝑅
2

𝑢
(2)

(𝑥
2
, 𝑥
3
) 𝑢
(3)

(𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑑𝑥
2
𝑑𝑥
3
,

𝐿 (𝑢
(2)
) = −2𝜆𝑢

(0)
𝑢
(2)

(𝑥
1
, 𝑥
2
) − 𝜆𝑢

(1)
(𝑥
1
) 𝑢
(1)

(𝑥
2
)

− 6𝜆∫
𝑅

𝑢
(1)

(𝑥
3
) 𝑢
(3)

(𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑑𝑥
3

− 4𝜆∫
𝑅

𝑢
(2)

(𝑥
1
, 𝑥
3
) 𝑢
(2)

(𝑥
2
, 𝑥
3
) 𝑑𝑥
3

− 18𝜆∫
𝑅
2

𝑢
(3)

(𝑥
1
, 𝑥
3
, 𝑥
4
) 𝑢
(3)

(𝑥
2
, 𝑥
3
, 𝑥
4
) 𝑑𝑥
3
𝑑𝑥
4
,

𝐿 (𝑢
(3)
) = −2𝜆𝑢

(0)
𝑢
(3)

(𝑥
1
, 𝑥
2
, 𝑥
3
) − 2𝜆𝑢

(1)
(𝑥
1
) 𝑢
(2)

(𝑥
2
, 𝑥
3
)

− 4𝜆∫
𝑅

𝑢
(2)

(𝑥
1
, 𝑥
4
) 𝑢
(3)

(𝑥
2
, 𝑥
3
, 𝑥
4
) 𝑑𝑥
4

− 4𝜆∫
𝑅

𝑢
(2)

(𝑥
2
, 𝑥
4
) 𝑢
(3)

(𝑥
1
, 𝑥
3
, 𝑥
4
) 𝑑𝑥
4

− 4𝜆∫
𝑅

𝑢
(2)

(𝑥
3
, 𝑥
4
) 𝑢
(3)

(𝑥
1
, 𝑥
2
, 𝑥
4
) 𝑑𝑥
4
.

(7)

The zero boundary condition is applied to all kernels in (7).
The initial condition in (1) will be applied only to 𝑢

(0) while
all other kernels will have zero initial conditions.

The equivalent deterministic system (7) is coupled and
nonlinear. The analytic solution of (7) is not easy to obtain
even with the available computer packages. The solution can
be obtained numerically using suitable numerical technique.
The FDM is not suitable in this case as there is a term with
Dirac delta function that requires an integral scheme such
as FEM or FVM. The nonlinearity can be manipulated with
Pickard’s iterations. The nonlinear terms are written in the
right-hand side and computed explicitly (from the previous
time iteration).The equivalent deterministic system in (7) can
be written in the following model form for any V = 𝑢

(𝑗)
; 0 ≤

𝑗 ≤ 𝑚:

𝐿 (V) = 𝐹 (V, 𝑢(0), . . . , 𝑢(𝑚)) ; V (0, 𝑥; 𝑥
1
, . . . , 𝑥

𝑗
) = V
0
.

(8)
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Pickard’s iteration takes the form

V𝑘+1 = 𝐿
−1
[𝐹 (V, 𝑢(0), . . . , 𝑢(𝑚))



𝑘

] , (9)

where 𝑘 is the time level. Other fixed-point iterations can
be also used, for example, Krasnoselski-Schaefer, Mann, and
Ishikawa [19], but in our cases, Pickard’s iteration was found
to converge faster than other iterations. This is due to the
contractive properties of the operator 𝐿

−1 in (9). If the
operator 𝐿−1 is not strictly contractive, the other fixed-point
techniques should be used because Pickard’s iterations will
not converge to a fixed point in this case.

There is a classical general existence theory of fixed points
for mappings satisfying compactness conditions associated
with the names of Brower, Schander, Leray, and so forth, as
well as an abundant literature of metrical fixed point theo-
rems, which establish the existence (and uniqueness) of fixed
points for maps satisfying a variety of contractive conditions
[19]. The first basic result is the classical Picard-Banach-
Caccioppoli principle which guarantees the convergence of
(9) to a fixed point if the right-hand side operator 𝐿

−1 is
a strict contraction or satisfies a certain generalized strong
contraction condition. In our case, the contraction condition
of 𝐿−1 depends on the used numerical scheme and the value
of the nonlinearity strength (𝜆).

We can apply the FVM with the semi-implicit Crank-
Nicolson scheme. Crank-Nicolson scheme has the advantage
that it is unconditionally stable [20], assuming that Δ𝑡 and
Δ𝑥 are the widths of the subdivisions in the time and space
directions, respectively. Applying this numerical scheme to
(9) will result in the following tridiagonal system:

− 0.5𝑟V𝑘+1
𝑖−1

+ (1 + 𝑟) V𝑘+1
𝑖

− 0.5𝑟V𝑘+1
𝑖+1

= 0.5𝑟V𝑘
𝑖−1

+ (1 − 𝑟) V𝑘
𝑖
− 0.5𝑟V𝑘

𝑖+1
+

Δ𝑡

Δ𝑥
𝐹
𝑘

𝑖
,

(10)

where V𝑘
𝑖
is the kernel V at time level 𝑘 and space subdivision

𝑖. The factor 𝑟 is defined as 𝑟 = Δ𝑡/(Δ𝑥)
2, and 𝐹𝑘

𝑖
is defined as

𝐹
𝑘

𝑖
= ∫

𝑥𝑖+Δ𝑥/2

𝑥𝑖−Δ𝑥/2

𝐹
𝑘
(V, 𝑢(0), . . . , 𝑢(𝑚)) 𝑑𝑥. (11)

The above described scheme in (10) has a truncation error of
𝑂(Δ𝑡
2
, Δ𝑥
2
) [20]. The computations are to be repeated until

the residual becomes below a specified stopping criterion. In
the current work, the residual is computed as

Residual =

𝑚

∑

𝑗=0


𝑢
(𝑗)

𝑘+1
− 𝑢
(𝑗)

𝑘


. (12)

4. The WHEP Technique

The perturbation technique can be applied to the coupled
integrodifferential system in (7) to produce simpler decou-
pled deterministic system [10]. It can be applied up to a
certain number of corrections𝑁𝐶. In the WHEP technique,
the following two steps will be added to the above 4 steps of
the WHE technique.

(5) For each kernel 𝑢
(𝑗)
; 0 ≤ 𝑗 ≤ 𝑚, apply the

perturbation technique up to𝑁𝐶 corrections; that is,
substitute 𝑢(𝑗) = ∑

𝑁𝐶

𝑖=0
𝜆
𝑖
𝑢
(𝑗)

𝑖
in (7).

(6) Compare the coefficients of 𝜆𝑘; 0 ≤ 𝑘 ≤ 𝑁𝐶 in both
sides to get𝑁𝐶+1 equations for each kernel 𝑢(𝑗); 0 ≤

𝑗 ≤ 𝑚.

This will result in (𝑚 + 1)(𝑁𝐶 + 1) deterministic equations.
The WHEP technique has the advantage of decoupling
the equivalent deterministic system resulting from WHE
technique. This means that the numerical solution can be
applied directly without iterations.

Applying the WHEP technique to the system in (7), the
final set of equivalent deterministic equations for 𝑁𝐶 = 2

will be

𝐿 (𝑢
(0)

0
) = 0,

𝐿 (𝑢
(1)

0
) = 𝑓 (𝑡) 𝛿 (𝑥 − 𝑥

1
) ,

𝐿 (𝑢
(2)

0
) = 0,

𝐿 (𝑢
(3)

0
) = 0,

𝐿 (𝑢
(0)

1
) = − [𝑢

(0)

0
]
2

− ∫
𝑅

[𝑢
(1)

0
(𝑥
1
)]
2

𝑑𝑥
1
,

𝐿 (𝑢
(1)

1
) = − 2𝑢

(0)

0
𝑢
(1)

0
(𝑥
1
) ,

𝐿 (𝑢
(2)

1
) = − 𝑢

(1)

0
(𝑥
1
) 𝑢
(1)

0
(𝑥
2
) ,

𝐿 (𝑢
(3)

1
) = 0,

𝐿 (𝑢
(0)

2
) = − 2𝑢

(0)

0
𝑢
(0)

1
− 2∫
𝑅

𝑢
(1)

0
(𝑥
1
) 𝑢
(1)

1
(𝑥
1
) 𝑑𝑥
1
,

𝐿 (𝑢
(1)

2
) = − 2𝑢

(0)

0
𝑢
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The zero boundary condition is applied to all kernels. The
initial condition in (1) will be applied only to 𝑢

(0)

0
while

all other kernels will have zero initial conditions. This will
result in some PDEs in (13) with zero initial and boundary
conditions in addition to zero forcing terms. These kernels
will be zeros. So, we will have

𝑢
(2)

0
= 𝑢
(3)

0
= 𝑢
(3)

1
= 0. (14)



Journal of Applied Mathematics 5

0
0 0.2 0.4 0.6 0.8 1

M
ea

n

WHE
WHEP Analytic

−0.0001

−0.0002

−0.0003

−0.0004

−0.0005

−0.0006

−0.0007

−0.0008

MCS 10
6

X-axis

(a)

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

0 0.2 0.4 0.6 0.8 1

Va
ria

nc
e

WHE
WHEP Analytic

MCS 10
6

x-axis

(b)

Figure 1: Steady-state mean (a) and variance (b) along 𝑥-axis for 𝜆 = 0.5 using the four different techniques.

The expectation and variance for the 𝑚th order 𝑁𝐶th
correction solution will be obtained as follows [10]:

𝐸 [𝑢 (𝑡, 𝑥)] =

𝑁𝐶

∑

𝑖=0

𝜆
𝑖
𝑢
(0)

𝑖
, (15)

Var [𝑢 (𝑡, 𝑥)] =
𝑚

∑

𝑗=1

(𝑗!) ∫
𝑅
𝑗

(

𝑁𝐶

∑

𝑖=0

𝜆
𝑖
𝑢
(𝑗)

𝑖
)

2

𝑑𝜏
𝑗
. (16)

The same numerical solution described above (FVM +
Crank-Nicolson) forWHE can be used to solve the determin-
istic system in (13) but, in this case, no iterations are required.
The equations in (13) are decoupled and the right-hand side
for each kernel 𝑢(𝑗)

𝑖
will be in terms of already (previously)

computed kernels. For example, when solving for the kernel
𝑢
(0)

2
, the right-hand side is in terms of the kernels 𝑢(0)

0
, 𝑢(0)
1
,

and 𝑢
(1)

1
which are already computed before.

5. The Analytical Solution

The deterministic system in (13) resulting from the WHEP
technique can be solved analytically. In the current work
Mathematica 8.0 will be used to solve analytically the WHEP
system (13) as described below.

Consider the following deterministic model equation for
any V = 𝑢

(𝑗)

𝑖
; 0 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑖 ≤ 𝑁𝐶:

𝐿 (V (𝑡, 𝑥)) = 𝑔 (𝑥) ; (𝑡, 𝑥) ∈ (0,∞) × (0, ℓ) ,

V (𝑡, 0) = V (𝑡, ℓ) = 0,

V (0, 𝑥) = 𝜑 (𝑥) .

(17)

Apply the eigenfunction expansion technique [21] to get the
following solution [11]:

V (𝑡, 𝑥) =
∞

∑

𝑘=0

𝑇
𝑘
𝑒
−(𝑘𝜋/ℓ)

2
𝑡 sin(𝑘𝜋

ℓ
)𝑥 +

∞

∑

𝑘=0

𝐼
𝑘
(𝑡) sin(𝑘𝜋

ℓ
)𝑥,

(18)

where

𝑇
𝑘
=
2

ℓ
∫

ℓ

0

𝜑 (𝑥) sin(𝑘𝜋
ℓ
)𝑥 𝑑𝑥,

𝐼
𝑘
(𝑡) = ∫

𝑡

0

𝑒
−(𝑘𝜋/ℓ)

2
(𝑡−𝜏)

𝐹
𝑘
(𝜏) 𝑑𝜏,

(19)

where

𝐹
𝑘
(𝑡) =

2

ℓ
∫

ℓ

0

𝑔 (𝑥) sin(𝑘𝜋
ℓ
)𝑥 𝑑𝑥. (20)

The two functions 𝜑(𝑥) and 𝑔(𝑥) for each kernel 𝑢(𝑗)
𝑖

areas are
given in (13).This model solution can be written directly into
Mathematica for each kernel. The expectation and variance
of the solution are obtained using the same formulae in (16).

The advantage in using the analytical solution is that there
are no restrictions on the solution convergence; that is, the
solution can be always obtained and there are no limitations
even on the values of the nonlinearity strength 𝜆.

6. Monte-Carlo Simulations (MCS)

Monte-Carlo simulations can be done by sampling the white-
noise term𝑁(𝑥;𝑤) and use the generated samples to solve the
heat equation for each sample, that is, solving

𝐿 [𝑢 (𝑡, 𝑥)] = −𝜆𝑢
2
+ 𝑓 (𝑡)𝑁

𝑖
(𝑥) , (21)
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Figure 2: Solution mean (a) and variance (b) for 𝜆 = 0.5.

where 𝑁
𝑖
(𝑥) is the 𝑖th sample of 𝑁(𝑥;𝑤). In the current

work, the samenumerical technique described above (FVM+
Crank-Nicolson scheme) will be used to solve (21). The non-
linear term in the right-hand side of (21) will be computed
explicitly. The expectation and variance are then obtained
from the resulting set of solutions.

An arbitrary sample 𝑁
𝑖
(𝑥) of the white noise 𝑁(𝑥;𝑤)

can be generatedwith thewell-known spectral representation
[12]:

𝑁
𝑖
(𝑥) =

𝑀𝜔

∑

𝑗=1

√4𝑆
0
Δ𝜔 cos (𝜔

𝑗
𝑥 + 𝜑
𝑗
) ; 1 ≤ 𝑖 ≤ 𝑛MC, (22)

where 𝑛MC is the number of Monte-Carlo samples, Δ𝜔 is
a constant step on the frequency axis, 𝜔

𝑗
are 𝑀

𝜔
equally

spaced frequencies, and 𝜑
𝑗
are𝑀

𝜔
random phases uniformly

distributed in the interval [0, 2𝜋]. In the current work, we will
use Δ𝜔 = 0.05 and𝑀

𝜔
= 500 to generate the samples.

7. Results and Comparisons

The initial solution is taken as 𝑢(0, 𝑥) = 𝑔(𝑥) = 𝑥(ℓ − 𝑥)

and the deterministic envelope function𝑓(𝑡)will be assumed
unity.

The four techniques described above are tested for dif-
ferent values of the nonlinearity strength parameter 𝜆. In
our case and with the other variables fixed, the parameter 𝜆
controls the convergence of the numerical algorithms (WHE,
WHEP, and MCS). This convergence condition represents
also the contraction property of the operator 𝐿−1 in (9).

In the current work, it was found numerically that the
maximum value of 𝜆 that results in convergent solution is
around 10.5. Higher values of 𝜆 will cause divergence. The
analytical solution does not suffer from this problem. It can be
used for any value of𝜆 but on the other hand it is not easy to be
computed and requires more time and memory storage and
sometimes may not be reachable at all specially for higher-
order solutions.

Figure 1 shows the steady-state solution along the 𝑥-
axis for 𝜆 = 0.5 using the four algorithms. The numerical
WHEP and numerical WHE give approximately the same

solution. The MCS requires around 106 samples to give
convergent solution. The analytic solution gives a decayed
solution compared with other solutions. As it is shown in
the figure, the steady-state mean solution converges to a
small negative value and not to zero due to the continuous
excitation noise term.

A 3D plot for the expectation and variance is given
in Figure 2 for 𝜆 = 0.5. As it is shown in the figure, the
mean solution decays with the time until it reaches a steady-
state value that depends on the nonlinearity strength 𝜆. The
variance starts from zero and increases with the time until it
reaches its steady-state value.

Figure 3 shows the evolution of the mean solution with
the time until steady state is reached at 𝑥 = 0.5 and 𝜆 =

0.5. The WHE mean solution converges to −0.00069 while
the mean obtained from 1000,000 Monte-Carlo simulations
converges to −0.0007 as shown in the figure. For the same
parameters, the steady-state variance from WHE converges
to 0.0189 while it converges to 0.0187 with Monte-Carlo
simulations.

The steady-state values of the mean and variance vary
with the number of Monte-Carlo samples. Figure 4 shows
the variation of the mean and variance steady states with
different number of Monte-Carlo simulations. As it is shown
in the figure, the steady-state variance converges rapidly
to approximately 0.018 with the number of Monte-Carlo
samples while the steady-state mean value oscillates around
−0.0007 with the number of Monte-Carlo samples.

Figure 5 shows the mean solution for different values of
the nonlinearity strength 𝜆. As we can notice from the figure,
increase in the nonlinearity strength 𝜆 will cause the steady-
state value of the mean solution to increase in the negative
direction.

The convergence rate depends on the value of the non-
linearity strength 𝜆. Figure 6 shows the convergence rates for
different values of 𝜆 using WHE technique. As it is shown
in the figure, the convergence rate slows down as 𝜆 increases.
As the value of𝜆 approaches 10, the convergence rate becomes
very slow and for 𝜆 > 10.5, the solution starts to diverge when
using Pickard’s iteration.

The advantage of higher-order solutions is to estimate
the non-Gaussian part of the solution especially in case
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Figure 3: Variation of the mean solution (a) and the variance (b) with the time using WHE and 106 MCS simulations at x = 0.5 and 𝜆 = 0.5.
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of existence of nonlinearities. Figure 7 shows comparison
between the total variance (Gaussian and non-Gaussian)
and the non-Gaussian variance of the solution at x = 0.5
for 𝜆 = 0.5. Figure 8 shows the percentage of the non-
Gaussian variance to the total variance as the nonlinearity
strength 𝜆 increases. For 𝜆 = 10.0, the non-Gaussian variance
is around 15% of the total variance. This means that, for
higher nonlinearity strengths, the non-Gaussian effect cannot
be neglected and hence higher-order WHE solutions are
necessary.

The numerical WHEP algorithm consumes 33 seconds
to get the solution while the numerical WHE requires 83
seconds to convergewith residual of 10−6.TheMCS consumes
11.3 seconds per 1000 samples in our case. This emphasizes
the fact that MCS is not an efficient algorithm and it can be
used only for validation of other algorithms. The analytical
solution is not efficient as well and it consumes around 900
seconds.

Numerical tests show that numerical WHE and WHEP
algorithms are more efficient compared with the analytical
solution and, of course, with the time-consuming MCS.
Numerical WHEP technique is faster than numerical WHE

algorithm because we do not have iterations in the WHEP
algorithm. On the other hand, WHEP algorithm is mem-
ory consuming as there is large number of kernels to be
computed. The WHEP has (𝑚 + 1)(𝑁𝐶 + 1) kernels while
WHE has only (𝑚 + 1) kernels. For higher orders and higher
corrections the WHEP algorithm will not be practical as it
may not fit in the computer memory. We can conclude from
these discussions that the numerical WHE algorithm is the
most practical algorithm among other algorithms to solve the
SPDEs with higher-order approximations.

8. Conclusions

In the current work, the stochastic heat equation with
nonlinearities is considered. The stochastic equation is con-
verted to an equivalent deterministic system by applying
the WHE technique. The resulting deterministic coupled
system is solved numerically using FVM and the Crack-
Nicolson scheme. The convergence condition of the solution
was discussed and estimated numerically. The perturbation
technique is applied to the coupled deterministic equivalent
system to decouple it. The same numerical scheme is used
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to solve the decoupled system. The solution is validated
by comparing with the analytical solution and the MCS of
the original stochastic equation. The comparisons show the
efficiency in using WHE in solving the stochastic PDEs.
The results also show the importance of higher-order WHE
solution especially in case of nonlinearities.TheGaussian and
non-Gaussian solutions are compared and it was concluded
that the non-Gaussian effects cannot be neglected and hence
there is a need for higher-order solutions.
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