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We construct a variational functional of a class of three-point boundary value problems with impulse. Using the critical points
theory, we study the existence of solutions to second-order three-point boundary value problems with impulse.

1. Introduction

In this paper, we study the following three-point boundary
value problems with impulse:

𝑥


= 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝑡
1
, 𝑡 ∈ [0, 1] ,

𝑥


(0) = 𝑎
11

𝑥 (0) + 𝑎
12

𝑥 (𝑡
1
) + 𝑎
13

𝑥 (1) ,

Δ𝑥

(𝑡
1
) = 𝑎
12

𝑥 (0) + 𝑎
22

𝑥 (𝑡
1
) + 𝑎
23

𝑥 (1) ,

𝑥


(1) = − 𝑎
13

𝑥 (0) − 𝑎
23

𝑥 (𝑡
1
) − 𝑎
33

𝑥 (1) ,

(1)

where 0 < 𝑡
1

< 1, 𝑓 : [0, 1] × 𝑅 → 𝑅, Δ𝑥

(𝑡
1
) = 𝑥


(𝑡
+

1
) −

𝑥

(𝑡
−

1
), and 𝑥


(𝑡
+

1
) (respectively, 𝑥


(𝑡
−

1
)) denote the right limit

(respectively, left limit) of 𝑥

(𝑡) at 𝑡

1
.

The existence of solutions for three-point boundary value
problems has been investigated by many authors. See, for
example, [1–11] and references cited therein. In [1], Bao et al.
studied a class of three-point boundary value problems

𝑦


(𝑡) + 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦


(𝑡)) = 0, 0 < 𝑡 < 1,

𝑦 (0) = 0, 𝑦 (1) = 𝛾𝑦 (𝜂) .

(2)

Using the method upper and lower solutions, some existence
results for positive solutions of problems (2) had been
obtained. By applying the fixed point theory, many authors
have studied the existence of positive solutions for three-
point boundary value problems (see [7–11]). In [12], the

authors studied Sturm-Liouville boundary value problem of
a class of second-order impulsive differential equations:

−𝑢


(𝑡) + 𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑝
} ,

−Δ𝑢 (𝑡
𝑗
) = 𝐴

𝑗
𝑢 (𝑡
−

𝑗
) , 𝑗 = 1, 2, . . . , 𝑝,

−Δ𝑢

(𝑡
𝑗
) = 𝐼
𝑗
(𝑢 (𝑡
−

𝑗
)) − 𝐴

𝑗
𝑢

(𝑡
+

𝑗
) , 𝑗 = 1, 2, . . . , 𝑝,

𝛼𝑢 (0) − 𝛽𝑢


(0) = 0, 𝛾𝑢 (𝑇) + 𝜎𝑢


(𝑇) = 0.

(3)

By establishing the corresponding variational principle of
problem (3), the existence for solutions of the problems had
been obtained. In papers [12–16], the variational methods
were applied to impulsive differential equations too. In this
paper, we will use the critical point theorem to study three-
point boundary value problems (1) with impulse.

The paper is organized as follows: in Section 2, we will
construct a variational functional of the boundary value
problem (1). In Section 3, using the critical point theory, we
will give some sufficient conditions in which problem (1) has
solutions. Throughout this paper, we always assume that the
following conditions hold.
(𝐴
1
) 𝑓(𝑡, 𝑥) is measurable in 𝑡 for each 𝑥 ∈ 𝑅, continuous
in 𝑥 for almost every 𝑡 ∈ [0, 1].

(𝐴
2
) for any 𝑘 > 0, there exists ℎ

𝑘
∈ 𝐿
1
(0, 1) such that





𝑓 (𝑡, 𝑥)






≤ ℎ
𝑘

(𝑡) (4)

for almost every 𝑡 ∈ [0, 1] and for all |𝑥| ≤ 𝑘.
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2. Variational Structure

Let 𝑊 be the space of absolutely continuous functions 𝑥 :

[0, 1] → 𝑅 with a weak derivative 𝑥


∈ 𝐿
2
(0, 1; 𝑅). We define

the operator 𝑃 on 𝑊 by

(𝑃𝑥) (𝑡) =

{
{
{

{
{
{

{

𝑥 (𝑡
1
) − 𝑥 (0)

𝑡
1

(𝑡 − 𝑡
1
) + 𝑥 (𝑡

1
) , 0 ≤ 𝑡 ≤ 𝑡

1
,

𝑥 (1) − 𝑥 (𝑡
1
)

1 − 𝑡
1

(𝑡 − 𝑡
1
) + 𝑥 (𝑡

1
) , 𝑡
1

< 𝑡 ≤ 1,

(5)
and set 𝑊

1
= 𝑃𝑊 and 𝑊

2
= (𝐼 − 𝑃)𝑊. The following

properties are easy consequence of the definition:
(𝐵
1
) dim𝑊

1
= 3.

(𝐵
2
) 𝑊 = 𝑊

1
⊕ 𝑊
2
.

(𝐵
3
) For each 𝑥 ∈ 𝑊

2
, 𝑥(0) = 𝑥(𝑡

1
) = 𝑥(1) = 0.

Now, we define the norm ‖ ⋅ ‖ over 𝑊 by

‖𝑥‖
2

= ∫

1

0

[((𝐼 − 𝑃) 𝑥)


(𝑡)]

2

𝑑𝑡 + 𝑥
2

(0) + 𝑥
2

(𝑡
1
) + 𝑥
2

(1) .

(6)
Then 𝑊 is a Hilbert space and the corresponding inner
product (𝑥, 𝑦) is

(𝑥, 𝑦) = ∫

1

0

[((𝐼 − 𝑃) 𝑥)


(𝑡) ⋅ ((𝐼 − 𝑃) 𝑦)


(𝑡)] 𝑑𝑡

+ 𝑥 (0) 𝑦 (0) + 𝑥 (𝑡
1
) 𝑦 (𝑡
1
) + 𝑥 (1) 𝑦 (1) .

(7)

For each 𝑥 ∈ 𝑊, it follows from (6) that

𝑥
2

(𝑡) = [𝑥 (0) + ∫

𝑡

0

𝑥


(𝑠) 𝑑𝑠]

2

= [𝑥 (1) + ∫

𝑡

0

((𝐼 − 𝑃) 𝑥)


(𝑠) 𝑑𝑠]

2

≤ 2𝑥
2

(1) + 2 ∫

1

0

[((𝐼 − 𝑃) 𝑥)


(𝑡)]

2

𝑑𝑡 ≤ 2‖𝑥‖
2
,

(8)

and so |𝑥(𝑡)| ≤ √2‖𝑥‖ on [0, 1].
In order to study problem (1), we define the functional 𝜙

on 𝑊 by

𝜙 (𝑥) =

1

2

‖(𝐼 − 𝑃) 𝑥‖
2

+ ∫

1

0

𝐹 (𝑡, 𝑥 (𝑡)) 𝑑𝑡

+

1

2

(𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴(𝑥 (0) , 𝑥 (𝑡

1
) , 𝑥 (1))

𝑇

,

(9)

where 𝐹(𝑡, 𝑥) = ∫

𝑥

0
𝑓(𝑡, 𝑢)𝑑𝑢 and

𝐴 =
(

(

(

𝑎
11

+

1

𝑡
1

𝑎
12

−

1

𝑡
1

𝑎
13

𝑎
12

−

1

𝑡
1

𝑎
22

+

1

𝑡
1

+

1

1 − 𝑡
1

𝑎
23

−

1

1 − 𝑡
1

𝑎
13

𝑎
23

−

1

1 − 𝑡
1

𝑎
33

+

1

1 − 𝑡
1

)

)

)

.

(10)

Under the conditions (𝐴
1
) and (𝐴

2
), 𝜙 is continuously

differentiable, weakly lower semicontinuous on 𝑊 and

(𝜙


(𝑥) , 𝑦) = ((𝐼 − 𝑃) 𝑥, (𝐼 − 𝑃) 𝑦)

+ ∫

1

0

𝑓 (𝑡, 𝑥 (𝑡)) 𝑦 (𝑡) 𝑑𝑡

+ (𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴 (𝑦 (0) , 𝑦 (𝑡

1
) , 𝑦 (1))

𝑇

(11)

for all 𝑦 ∈ 𝑊; see [17].
The following theorem is the main conclusion of this

paper.

Theorem 1. Assume that 𝑓 satisfies the conditions (𝐴
1
) and

(𝐴
2
). If 𝑥 is a critical point of the functional 𝜙 defined by (9),

then 𝑥(𝑡) is a solution of problem (1).

Proof. Let 𝑥 be a critical point of the functional 𝜙 defined by
(9). We prove this theorem in three steps.

Step 1. In this step, we prove that 𝑥(𝑡) satisfies the equation
𝑥


(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) except at 𝑡
1
.

We define 𝜔 ∈ 𝐶(0, 1; 𝑅) by

𝜔 (𝑡) = ∫

𝑡

𝑡
1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (12)

It follows from (11) that for all 𝑦 ∈ 𝑊,

((𝐼 − 𝑃) 𝑥, (𝐼 − 𝑃) 𝑦) + ∫

1

0

𝑓 (𝑡, 𝑥 (𝑡)) 𝑦 (𝑡) 𝑑𝑡

+ (𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴(𝑦 (0) , 𝑦 (𝑡

1
) , 𝑦 (1))

𝑇

= 0.

(13)

By the Fubini theorem and (13), we obtain

∫

1

0

[((𝐼 − 𝑃) 𝑥)


(𝑡) − 𝜔 (𝑡)] 𝑦


(𝑡) 𝑑𝑡

= ∫

1

0

((𝐼 − 𝑃) 𝑥)


(𝑡) [((𝐼 − 𝑃) 𝑦)


(𝑡) + (𝑃𝑦)


(𝑡)] 𝑑𝑡

− ∫

1

0

𝜔 (𝑡) 𝑦


(𝑡) 𝑑𝑡

= − ∫

1

0

𝑓 (𝑡, 𝑥 (𝑡)) 𝑦 (𝑡) 𝑑𝑡

− (𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴(𝑦 (0) , 𝑦 (𝑡

1
) , 𝑦 (1))

𝑇

− ∫

1

0

𝑦


(𝑡) ∫

𝑡

𝑡
1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 𝑑𝑡

= −𝑦 (0) ∫

𝑡
1

0

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 − 𝑦 (1) ∫

1

𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡

− (𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴(𝑦 (0) , 𝑦 (𝑡

1
) , 𝑦 (1))

𝑇

.

(14)
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In particular, we can choose

𝑦 (𝑡) =

{

{

{

sin 2𝑛𝜋𝑡

𝑡
1

0 ≤ 𝑡 ≤ 𝑡
1
,

0 𝑡
1

< 𝑡 ≤ 1,

𝑛 = 1, 2, . . . ,

𝑦 (𝑡) =

{

{

{

1 − cos 2𝑛𝜋𝑡

𝑡
1

0 ≤ 𝑡 ≤ 𝑡
1
,

0 𝑡
1

< 𝑡 ≤ 1,

𝑛 = 1, 2, . . . ,

(15)

so that

∫

𝑡
1

0

[((𝐼 − 𝑃) 𝑥)


(𝑡) − 𝜔 (𝑡)] sin 2𝑛𝜋𝑡

𝑡
1

𝑑𝑡

= ∫

𝑡
1

0

[((𝐼 − 𝑃) 𝑥)


(𝑡) − 𝜔 (𝑡)] cos 2𝑛𝜋𝑡

𝑡
1

𝑑𝑡 = 0,

𝑛 = 1, 2, . . . .

(16)

The theorem of Fourier series implies that

((𝐼 − 𝑃) 𝑥)


(𝑡) − 𝜔 (𝑡) = 𝐶 (17)

on [0, 𝑡
1
] for some 𝐶 ∈ 𝑅. Integrating (17) over [0, 𝑡

1
], we

obtain

𝐶𝑡
1

= − ∫

𝑡
1

0

𝜔 (𝑡) 𝑑𝑡 = ∫

𝑡
1

0

𝑡𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡, (18)

and hence

((𝐼 − 𝑃) 𝑥)


(𝑡) − 𝜔 (𝑡) = ∫

𝑡
1

0

𝑡

𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡. (19)

Similarly, setting

𝑦 (𝑡) =

{
{

{
{

{

0 0 ≤ 𝑡 ≤ 𝑡
1
,

sin
2𝑛𝜋 (𝑡 − 𝑡

1
)

1 − 𝑡
1

𝑡
1

< 𝑡 ≤ 1,

𝑛 = 1, 2, . . . ,

𝑦 (𝑡) =

{
{

{
{

{

0 0 ≤ 𝑡 ≤ 𝑡
1
,

1 − cos
2𝑛𝜋 (𝑡 − 𝑡

1
)

1 − 𝑡
1

𝑡
1

< 𝑡 ≤ 1,

𝑛 = 1, 2, . . . ,

(20)

in (14), we have

((𝐼 − 𝑃) 𝑥)


(𝑡) − 𝜔 (𝑡) = − ∫

1

𝑡
1

1 − 𝑡

1 − 𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 (21)

on [𝑡
1
, 1]. Thus, (19) and (21) imply that 𝑥(𝑡) satisfies the

equation 𝑥


(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) except at 𝑡
1
.

Step 2. In this step, we prove that 𝑥(𝑡) satisfies the boundary
value conditions 𝑥


(0) = 𝑎

11
𝑥(0) + 𝑎

12
𝑥(𝑡
1
) + 𝑎
13

𝑥(1) and
𝑥

(1) = −𝑎

13
𝑥(0) − 𝑎

23
𝑥(𝑡
1
) − 𝑎
33

𝑥(1).
Set

𝑦 (𝑡) =

{

{

{

𝑡

𝑡
1

− 1 0 ≤ 𝑡 ≤ 𝑡
1
,

0 𝑡
1

< 𝑡 ≤ 1.

(22)

Inserting (22) into (13), we have

∫

𝑡
1

0

(

𝑡

𝑡
1

− 1) 𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡

= (𝑎
11

+

1

𝑡
1

) 𝑥 (0) + (𝑎
12

−

1

𝑡
1

) 𝑥 (𝑡
1
) + 𝑎
13

𝑥 (1) .

(23)

It follows form (19) and (23) that

𝑥


(0) = ((𝐼 − 𝑃) 𝑥)


(0) + (𝑃𝑥)


(0)

= ∫

𝑡
1

0

(

𝑡

𝑡
1

− 1) 𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 +

𝑥 (𝑡
1
) − 𝑥 (0)

𝑡
1

= 𝑎
11

𝑥 (0) + 𝑎
12

𝑥 (𝑡
1
) + 𝑎
13

𝑥 (1) .

(24)

Similarly, setting

𝑦 (𝑡) =

{

{

{

0 0 ≤ 𝑡 ≤ 𝑡
1
,

𝑡 − 𝑡
1

1 − 𝑡
1

𝑡
1

< 𝑡 ≤ 1,

(25)

equality (13) becomes

∫

1

𝑡
1

𝑡 − 𝑡
1

1 − 𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 + 𝑎
13

𝑥 (0)

+ (𝑎
23

−

1

1 − 𝑡
1

) 𝑥 (𝑡
1
) + (𝑎

33
+

1

1 − 𝑡
1

) 𝑥 (1) = 0,

(26)

and hence

𝑥


(1) = ((𝐼 − 𝑃) 𝑥)


(1) + (𝑃𝑥)


(1)

= ∫

1

𝑡
1

𝑡 − 𝑡
1

1 − 𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 +

𝑥 (1) − 𝑥 (𝑡
1
)

1 − 𝑡
1

= −𝑎
13

𝑥 (0) − 𝑎
23

𝑥 (𝑡
1
) − 𝑎
33

𝑥 (1) .

(27)

Step 3. In this step, we prove that 𝑥(𝑡) satisfies the conditions
Δ𝑥

(𝑡
1
) = 𝑎
12

𝑥(0) + 𝑎
22

𝑥(𝑡
1
) + 𝑎
23

𝑥(1).
Inserting

𝑦 (𝑡) =

{
{
{

{
{
{

{

𝑡

𝑡
1

0 ≤ 𝑡 ≤ 𝑡
1
,

1 − 𝑡

1 − 𝑡
1

𝑡
1

< 𝑡 ≤ 1

(28)

into (13), we have

− ∫

𝑡
1

0

𝑡

𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 − ∫

1

𝑡
1

1 − 𝑡

1 − 𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡

= (𝑎
12

−

1

𝑡
1

) 𝑥 (0) + (𝑎
22

+

1

𝑡
1

+

1

1 − 𝑡
1

) 𝑥 (𝑡
1
)

+ (𝑎
23

−

1

1 − 𝑡
1

) 𝑥 (1) .

(29)
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It follows from (19) and (21) that

Δ𝑥

(𝑡
1
) = Δ((𝐼 − 𝑃) 𝑥)


(𝑡
1
) + Δ(𝑃𝑥)


(𝑡
1
)

= − ∫

𝑡
1

0

𝑡

𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 − ∫

1

𝑡
1

1 − 𝑡

1 − 𝑡
1

𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡

+

𝑥 (1) − 𝑥 (𝑡
1
)

1 − 𝑡
1

−

𝑥 (𝑡
1
) − 𝑥 (0)

𝑡
1

= 𝑎
12

𝑥 (0) + 𝑎
22

𝑥 (𝑡
1
) + 𝑎
23

𝑥 (1) .

(30)

This completes the proof of Theorem 1.

3. Solutions of Problem (1)
As applications of Theorem 1, we consider solutions of prob-
lem (1). Let 𝑘

1
and 𝑘

2
denote the minimum and maximum

eigenvalue of the matrix 𝐴 in (9). We have the following
theorems.

Theorem 2. Assume that 𝑓 satisfies (𝐴
1
) and (𝐴

2
). Assume

also that the following conditions hold:

(𝐴
3
) 𝑘
1

> 0.
(𝐴
4
) there is a positive constant 𝑙, with 𝑙 < 2, and a positive
function 𝑐 ∈ 𝐿

1
(0, 1) such that

𝐹 (𝑡, 𝑥) ≥ −𝑐 (𝑡) (1 + |𝑥|
𝑙
) (31)

for almost every 𝑡 ∈ [0, 1] and for all 𝑥 ∈ 𝑅.

Then, problem (1) has a solution.

Proof. (𝐴
3
) implies that for each 𝑥 ∈ 𝑊

(𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴(𝑥 (0) , 𝑥 (𝑡

1
) , 𝑥 (1))

𝑇

≥ 𝑘
1

(𝑥
2

(0) + 𝑥
2

(𝑡
1
) + 𝑥
2

(1)) .

(32)

By (9), (32), and (𝐴
4
),

𝜙 (𝑥) ≥

1

2

‖(𝐼 − 𝑃) 𝑥‖
2

− ∫

1

0

𝑐 (𝑡) (|𝑥 (𝑡)|
𝑙
+ 1) 𝑑𝑡

+

1

2

𝑘
1

(𝑥
2

(0) + 𝑥
2

(𝑡
1
) + 𝑥
2

(1))

≥

1

2

𝑘
3
‖𝑥‖
2

− ∫

1

0

𝑐 (𝑡) 𝑑𝑡 (2‖𝑥‖
𝑙
+ 1) ,

(33)

where 𝑘
3

= min{𝑘
1
, 1}. It follows that 𝜙(𝑥) → +∞ as ‖𝑥‖ →

∞.Thus, 𝜙 has a critical point and problem (1) has a solution.

Theorem 3. Assume that (𝐴
1
), (𝐴
2
), and (𝐴

3
) are satisfied.

Assume also that the following conditions hold:
(𝐴


4
) there is a positive function 𝑐 ∈ 𝐿

1
(0, 1) such that

𝐹 (𝑡, 𝑥) ≥ −𝑐 (𝑡) (1 + 𝑥
2
) (34)

for almost every 𝑡 ∈ [0, 1] and for all 𝑥 ∈ 𝑅.

(𝐴
5
) 4 ∫

1

0
𝑐(𝑡)𝑑𝑡 < 𝑘

3
, where 𝑘

3
is in the proof of Theorem 2.

Then, problem (1) has a solution.

Proof. This proof is similar to the proof of Theorem 2.

Theorem 4. Assume that (A
1
)–(A
4
) are satisfied. Assume also

that the following condition holds:

(𝐴
6
) there are two positive constants 𝑑

1
and 𝑑

2
with 𝑑

1
<

√6𝑑
2
such that

∫

1

0

𝐹 (𝑡, 𝑑
2
) 𝑑𝑡 < −

3𝑘
2

2

𝑑
2

2
,

∫

1

0

max
|𝑥|≤√𝑘4𝑑1

[−𝐹 (𝑡, 𝑥)] 𝑑𝑡 <

𝑘
1

4

𝑑
2

1
,

(35)

where 𝑘
4

= max{𝑘
1
, 1}.

Then, problem (1) has at least three solutions.

In order to prove this theorem, we need the following
theorem (see Theorem 2.1 of [18]).

Theorem A. Let 𝑋 be a reflexive real Banach space; let Φ :

𝑋 → 𝑅 be a sequentially weakly lower semicontinuous,
coercive, and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on
𝑋
∗; and let Ψ : 𝑋 → 𝑅 be a sequentially weakly

upper semicontinuous and continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact. Assume that
there exist 𝑟 ∈ 𝑅 and 𝑥

0
, 𝑥 ∈ 𝑋, with Φ(𝑥

0
) < 𝑟 < Φ(𝑥) and

Ψ(𝑥
0
) = 0, such that

(i) sup
Φ(𝑥)≤𝑟

Ψ(𝑥) < (𝑟 − Φ(𝑥
0
))(Ψ(𝑥)/(Φ(𝑥) − Φ(𝑥

0
)))

(ii) for each 𝜆 ∈ Λ
𝑟

:=](Φ(𝑥) − Φ(𝑥
0
))/Ψ(𝑥), (𝑟 −

Φ(𝑥
0
))/sup

Φ(𝑥)≤𝑟
Ψ(𝑥)[ the functional Φ − 𝜆Ψ is coer-

cive.

Then, for each 𝜆 ∈ Λ
𝑟
the functional Φ − 𝜆Ψ has at least three

distinct critical points in 𝑋.

Proof of Theorem 4. Let 𝑋 = 𝑊 and define

Φ (𝑥) =

1

2

‖(𝐼 − 𝑃)𝑥‖
2

+

1

2

(𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴 (𝑥 (0) , 𝑥 (𝑡

1
) , 𝑥 (1))

𝑇

(36)

for each 𝑥 ∈ 𝑋. Then, Φ is a sequentially weakly lower
semicontinuous and continuously differentiable functional
whose derivative is given by

(Φ


(𝑥) , 𝑦) = ((𝐼 − 𝑃) 𝑥, (𝐼 − 𝑃) 𝑦)

+ (𝑥 (0) , 𝑥 (𝑡
1
) , 𝑥 (1)) 𝐴(𝑦 (0) , 𝑦 (𝑡

1
) , 𝑦 (1))

𝑇

(37)
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for all 𝑦 ∈ 𝑋. It follows from (36) that for each 𝑥 ∈ 𝑊,

Φ (𝑥) ≥

1

2

‖(𝐼 − 𝑃) 𝑥‖
2

+

1

2

𝑘
1

[𝑥
2

(0) + 𝑥
2

(𝑡
1
) + 𝑥
2

(1)] ≥

1

2

𝑘
3
‖𝑥‖
2
,

(38)

so that Φ is coercive. Because 𝐼 − Φ
 is a compact operator,

Φ
 has the continuous inverse if and only if 0 is not the

eigenvalues of Φ
. If 0 is the eigenvalues of Φ

 and 𝛽(𝑡) is a
eigenvector of Φ

 associated with the eigenvalue 0, then (37)
implies that

0 = (Φ

(𝛽) , 𝛽)

=




(𝐼 − 𝑃) 𝛽






2

+ (𝛽 (0) , 𝛽 (𝑡
1
) , 𝛽 (1)) 𝐴(𝛽 (0) , 𝛽 (𝑡

1
) , 𝛽 (1))

𝑇

≥ 𝑘
3





𝛽






2

> 0.

(39)

This is a contradiction, and hence Φ
 has the continuous

inverse. Set Ψ(𝑥) = − ∫

1

0
𝐹(𝑡, 𝑥(𝑡))𝑑𝑡 for 𝑥 ∈ 𝑋. Then, Ψ is a

sequentially weakly upper semicontinuous and continuously
differentiable functional whose derivative is compact.

Setting 𝑥
0

= 0 and 𝑥 = 𝑑
2
for all 𝑡 ∈ [0, 1], then Φ(𝑥

0
) =

Ψ(𝑥
0
) = 0 and

3

2

𝑘
2
𝑑
2

2
≥ Φ (𝑥) =

1

2

(𝑑
2
, 𝑑
2
, 𝑑
2
) 𝐴(𝑑
2
, 𝑑
2
, 𝑑
2
)
𝑇

≥

3

2

𝑘
1
𝑑
2

2
,

(40)

since (𝐼 − 𝑃)𝑥 = 0. Setting 𝑟 = (1/4)𝑘
1
𝑑
2

1
, by 𝑑
1

< √6𝑑
2
and

(40), we obtain

Φ (𝑥
0
) = 0 < 𝑟 <

3

2

𝑘
1
𝑑
2

2
≤ Φ (𝑥) . (41)

By (38), Φ(𝑥) ≤ 𝑟 implies that |𝑥(𝑡)| ≤ √𝑘
4
𝑑
1
for every 𝑡 ∈

[0, 2𝜏] since 𝑘
1

= 𝑘
3
𝑘
4
. From (𝐴

6
) and (40), we have

sup
Φ(𝑥)≤𝑟

Ψ (𝑥) ≤ ∫

1

0

max
|𝑥|≤√𝑘4𝑑1

[−𝐹 (𝑡, 𝑥)] 𝑑𝑡

<

𝑘
1

4

𝑑
2

1
<

𝑘
1
𝑑
2

1
∫

1

0
[−𝐹 (𝑡, 𝑑

2
)] 𝑑𝑡

6𝑘
2
𝑑
2

2

≤ (𝑟 − Φ (0))

Ψ (𝑥)

Φ (𝑥) − Φ (0)

,

(42)

and (i) in Theorem A holds.
Since
Φ (𝑥) − Φ (𝑥

0
)

Ψ (𝑥)

≤

(3/2) 𝑘
2
𝑑
2

2

∫

1

0
[−𝐹 (𝑡, 𝑑

2
)] 𝑑𝑡

< 1

<

(1/4) 𝑘
1
𝑑
2

1

∫

1

0
max
|𝑥|≤√𝑘

4
𝑑
1

[−𝐹 (𝑡, 𝑥)] 𝑑𝑡

≤

𝑟 − Φ (𝑥
0
)

sup
Φ(𝑥)≤𝑟

Ψ (𝑥)

,

(43)

we can take 𝜆 = 1 inTheorem A.Therefore, it is easy to show
that

(Φ − Ψ) (𝑥) ≥

1

2

𝑘
3
‖𝑥‖
2

− ∫

1

0

𝑐 (𝑡) 𝑑𝑡 (2‖𝑥‖
𝑙
+ 1) , (44)

so that Φ − Ψ is coercive. Using Theorem A, problem (1) has
at least three solutions.
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