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We present the necessary and sufficient condition for the monotonicity of the ratio of the power and second Seiffert means. As
applications, we get the sharp upper and lower bounds for the second Seiffert mean in terms of the power mean.

1. Introduction

Throughout this paper, we assume that 𝑎, 𝑏 > 0 with 𝑎 ̸=

𝑏. The second Seiffert mean 𝑇(𝑎, 𝑏) and 𝑟th power mean
𝑀
𝑟
(𝑎, 𝑏) of 𝑎 and 𝑏 are defined by

𝑇 (𝑎, 𝑏) =

𝑎 − 𝑏

2 arctan ((𝑎 − 𝑏) / (𝑎 + 𝑏))
, (1)

𝑀
𝑟
(𝑎, 𝑏) = (

𝑎
𝑟

+ 𝑏
𝑟

2

)

1/𝑟

(𝑟 ̸= 0) , 𝑀
0
(𝑎, 𝑏) = √𝑎𝑏,

(2)
respectively.

It is well-known that the power mean𝑀
𝑟
(𝑎, 𝑏) is strictly

increasing with respect to 𝑟 ∈ R for fixed 𝑎, 𝑏 > 0 with
𝑎 ̸= 𝑏. In the recent past, both mean values have been the
subject of intensive research. In particular, many remarkable
inequalities for 𝑇 and𝑀

𝑟
can be found in the literature [1–5].

Seiffert [6] proved that the double inequality
𝑀
1
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝑀

2
(𝑎, 𝑏) (3)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
In [7], Hästö proved that the function 𝑇(1, 𝑥)/𝑀

𝑝
(1, 𝑥)

is strictly increasing on [1,∞) if 𝑝 ≤ 1 and presented an
improvement for the first inequality in (3).

Costin and Toader [8] proved that the inequality
𝑇 (𝑎, 𝑏) > 𝑀

3/2
(𝑎, 𝑏) (4)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

In [9], Witkowski proved that the double inequality

2√2

𝜋

𝑀
2
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) <

4

𝜋

𝑀
1
(𝑎, 𝑏) (5)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Recently, the following optimal estimations for the second

Seiffert mean by power means were obtained independently
in [10, 11]:

𝑀log 2/(log𝜋−log 2) (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝑀5/3 (𝑎, 𝑏) (6)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The main purpose of this paper is to give the necessary

and sufficient condition for the monotonicity of the function
𝑇(1, 𝑥)/𝑀

𝑝
(1, 𝑥) on (0, 1) and present the best possible

parameters 𝛼 and 𝛽 such that the double inequality

𝛼𝑀
5/3
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ≤ 𝛽𝑀log 2/(log𝜋−log 2) (𝑎, 𝑏) (7)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

2. Main Results

In order to prove our main results we first establish a lemma.

Lemma 1. Let 𝑓(𝑝, 𝑥) be defined on R × (0, 1) by

𝑓 (𝑝, 𝑥) =

(1 − 𝑥) (1 + 𝑥
𝑝

)

(1 + 𝑥
2
) (1 + 𝑥

𝑝−1
)

− arctan 1 − 𝑥
1 + 𝑥

. (8)
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Then there exists 𝜆 ∈ (0, 1) such that 𝑓(𝑝, 𝑥) is strictly decreas-
ing with respect to 𝑥 on (0, 𝜆] and strictly increasing with
respect to 𝑥 on [𝜆, 1) if 𝑝 ∈ (1, 5/3).

Proof. Let

𝑓
1
(𝑝, 𝑥) = (1 − 𝑝) 𝑥

𝑝

+ (1 + 𝑝) 𝑥
𝑝−1

− (1 + 𝑝) 𝑥
𝑝−2

+ (𝑝 − 1) 𝑥
𝑝−3

− 2𝑥
2𝑝−3

+ 2.

(9)

Then,

𝑓
1
(𝑝, 1) = 0, 𝑓

1
(𝑝, 0
+

) = ∞, (10)

𝜕𝑓 (𝑝, 𝑥)

𝜕𝑥

= −

𝑥 (1 − 𝑥)

(1 + 𝑥
2
)
2

(1 + 𝑥
𝑝−1
)
2
𝑓
1
(𝑝, 𝑥) , (11)

𝑥
4−𝑝

𝜕𝑓
1
(𝑝, 𝑥)

𝜕𝑥

= −2 (2𝑝 − 3) 𝑥
𝑝

− 𝑝 (𝑝 − 1) 𝑥
3

+ (𝑝 − 1) (𝑝 + 1) 𝑥
2

− (𝑝 + 1) (𝑝 − 2) 𝑥 + (𝑝 − 1) (𝑝 − 3)

:= 𝑓
2
(𝑝, 𝑥) ,

(12)

𝑓
2
(𝑝, 0) = (𝑝 − 1) (𝑝 − 3) < 0,

𝑓
2
(𝑝, 1) = 2 (5 − 3𝑝) > 0,

(13)

𝜕𝑓
2
(𝑝, 𝑥)

𝜕𝑥

= −2𝑝 (2𝑝 − 3) 𝑥
𝑝−1

− 3𝑝 (𝑝 − 1) 𝑥
2

+ 2 (𝑝 − 1) (𝑝 + 1) 𝑥 − (𝑝 + 1) (𝑝 − 2) .

(14)

We divide two cases to prove that 𝜕𝑓
2
(𝑝, 𝑥)/𝜕𝑥 > 0 for all

𝑥 ∈ (0, 1) and 𝑝 ∈ (1, 5/3).

Case 1. Consider that 𝑝 ∈ (1, 3/2]. From (14) we clearly see
that

𝜕
3

𝑓
2
(𝑝, 𝑥)

𝜕𝑥
3

= −2𝑝 (𝑝 − 1) [3 + (2 − 𝑝) (3 − 2𝑝) 𝑥
𝑝−3

] < 0,

(15)

𝜕𝑓
2

𝜕𝑥

(𝑝, 0) = (𝑝 + 1) (2 − 𝑝) > 0,

𝜕𝑓
2

𝜕𝑥

(𝑝, 1) = 2𝑝 (5 − 3𝑝) > 0.

(16)

Equation (15) implies that 𝜕𝑓
2
(𝑝, 𝑥)/𝜕𝑥 is strictly concave

with respect to 𝑥 on the interval (0, 1).Then (16) and the basic
properties of concave function lead to the conclusion that

𝜕𝑓
2

𝜕𝑥

(𝑝, 𝑥) > (1 − 𝑥)

𝜕𝑓
2

𝜕𝑥

(𝑝, 0) + 𝑥

𝜕𝑓
2

𝜕𝑥

(𝑝, 1) > 0. (17)

Case 2. Consider that 𝑝 ∈ (3/2, 5/3). Making use of the
weighted arithmetic-geometric inequality 𝜆𝑎 + (1 − 𝜆)𝑏 ≥

𝑎
𝜆

𝑏
1−𝜆

(0 ≤ 𝜆 ≤ 1) we get

𝑥
𝑝−1

≤ (𝑝 − 1) 𝑥 + (2 − 𝑝) . (18)

Equations (14) and (18) lead to

𝜕𝑓
2
(𝑝, 𝑥)

𝜕𝑥

≥ −2𝑝 (2𝑝 − 3) [(𝑝 − 1) 𝑥 + (2 − 𝑝)]

− 3𝑝 (𝑝 − 1) 𝑥
2

+ 2 (𝑝 − 1) (𝑝 + 1) 𝑥 − (𝑝 + 1) (𝑝 − 2)

= −3𝑝 (𝑝 − 1) 𝑥
2

− 2 (𝑝 − 1) (2𝑝
2

− 4𝑝 − 1) 𝑥

+ (𝑝 − 2) (4𝑝
2

− 7𝑝 − 1) := 𝑓
3
(𝑝, 𝑥) .

(19)

Note that

𝜕
2

𝑓
3
(𝑝, 𝑥)

𝜕𝑥
2

= −6𝑝 (𝑝 − 1) < 0,

𝑓
3
(𝑝, 1) = 2𝑝 (5 − 3𝑝) > 0,

𝑓
3
(𝑝, 0) = 4 (𝑝 − 2)(𝑝 −

√65 + 7

8

)(𝑝 +

√65 + 7

8

) > 0.

(20)

It follows from (20) and the concavity of the function
𝑓
3
(𝑝, 𝑥) with respect to 𝑥 on the interval (0, 1) that

𝑓
3
(𝑝, 𝑥) > (1 − 𝑥) 𝑓

3
(𝑝, 0
+

) + 𝑥𝑓
3
(𝑝, 1) > 0. (21)

Therefore, 𝜕𝑓
2
(𝑝, 𝑥)/𝜕𝑥 > 0 follows from (19) and (21).

Next we prove the desired result. From (12) and (13)
together with the fact that 𝜕𝑓

2
(𝑝, 𝑥)/𝜕𝑥 > 0 we clearly see

that there exists 𝜆
1
∈ (0, 1) such that 𝑓

1
(𝑝, 𝑥) is strictly

decreasing with respect to 𝑥 on (0, 𝜆
1
] and strictly increasing

with respect to 𝑥 on [𝜆
1
, 1).Therefore, Lemma 1 follows easily

from (10) and (11) together with the piecewise monotonicity
of 𝑓
1
(𝑝, 𝑥) with respect to 𝑥 on the interval (0, 1).

Theorem 2. Let 𝐹(𝑝, 𝑥) be defined on R × (0, 1) by

𝐹 (𝑝, 𝑥) = log 𝑇 (1, 𝑥)

𝑀
𝑝
(1, 𝑥)

= log 1 − 𝑥

2 arctan ((1 − 𝑥) / (1 + 𝑥))

−

1

𝑝

log 1 + 𝑥
𝑝

2

(𝑝 ̸= 0) ,

(22)
𝐹 (0, 𝑥) = lim

𝑝→0

𝐹 (𝑝, 𝑥)

= log 1 − 𝑥

2 arctan ((1 − 𝑥) / (1 + 𝑥))
−

1

2

log𝑥.
(23)

Then the following statements are true.

(1) 𝐹(𝑝, 𝑥) is strictly increasing with respect to 𝑥 on (0, 1)
if and only if 𝑝 ≥ 5/3.
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(2) 𝐹(𝑝, 𝑥) is strictly decreasing with respect to 𝑥 on (0, 1)
if and only if 𝑝 ≤ 1.

(3) If 𝑝 ∈ (1, 5/3), then there exists 𝜇 ∈ (0, 1) such that
𝐹(𝑝, 𝑥) is strictly increasing with respect to 𝑥 on (0, 𝜇]
and strictly decreasing with respect to 𝑥 on [𝜇, 1).

Proof. It follows from (22) and (23) that

𝜕𝐹 (𝑝, 𝑥)

𝜕𝑥

=

1 + 𝑥
𝑝−1

𝑥 (1 − 𝑥) (1 + 𝑥
𝑝
) arctan ((1 − 𝑥) / (1 + 𝑥))

𝑓 (𝑝, 𝑥) ,

(24)

where 𝑓(𝑝, 𝑥) is defined by (8). And

𝜕𝑓 (𝑝, 𝑥)

𝜕𝑥

= −

𝑥 (1 − 𝑥)

(1 + 𝑥
2
)
2

(1 + 𝑥
𝑝−1
)

𝑔 (𝑝, 𝑥) , (25)

where

𝑔 (𝑝, 𝑥) = (1 − 𝑝) 𝑥
𝑝

+ (1 + 𝑝) 𝑥
𝑝−1

− 2𝑥
2𝑝−3

− (1 + 𝑝) 𝑥
𝑝−2

+ (𝑝 − 1) 𝑥
𝑝−3

+ 2.

(26)

(1) If 𝐹(𝑝, 𝑥) is strictly increasing with respect to 𝑥 on
(0, 1), then (24) leads to 𝑓(𝑝, 𝑥) > 0 for all 𝑥 ∈ (0, 1). Making
use of L’Höspital’s rule and (8) we get

lim
𝑥→1

−

𝑓 (𝑝, 𝑥)

(1 − 𝑥)
3
=

1

24

(3𝑝 − 5) ≥ 0, (27)

which implies that 𝑝 ≥ 5/3.
If 𝑝 ≥ 5/3, then from (8) and (26) together with the fact

that the function𝑝 → (1+𝑥
𝑝

)/(1+𝑥
𝑝−1

) is strictly increasing
on R we get

𝑓 (𝑝, 𝑥) ≥ 𝑓(

5

3

, 𝑥) , (28)

𝑔(

5

3

, 𝑥) =

2

3

𝑥
−4/3

(1 − 𝑥
1/3

)

3

(1 + 𝑥
2/3

)

× (1 + 3𝑥
1/3

+ 5𝑥
2/3

+ 3𝑥 + 𝑥
4/3

) > 0

(29)

for all 𝑥 ∈ (0, 1).
Equations (8) and (25) together with inequality (29) lead

to the conclusion that

𝑓(

5

3

, 𝑥) > 𝑓(

5

3

, 1) = 0 (30)

for all 𝑥 ∈ (0, 1).
Therefore, 𝐹(𝑝, 𝑥) is strictly increasing with respect to 𝑥

on (0, 1) which follows easily from (24), (28), and (30).
(2) If 𝐹(𝑝, 𝑥) is strictly decreasing with respect to 𝑥 on

(0, 1), then (24) implies that 𝑓(𝑝, 𝑥) < 0 for all 𝑥 ∈ (0, 1). In
particular, we have 𝑓(𝑝, 0+) ≤ 0 and 𝑝 ≤ 1. Indeed, if 𝑝 > 1,
then (8) leads to the conclusion that 𝑓(𝑝, 0+) = 1 − 𝜋/4 > 0.

If 𝑝 ≤ 1, then from (8) and (26) together with the fact that
the function 𝑝 → (1+𝑥

𝑝

)/(1+𝑥
𝑝−1

) is strictly increasing on
R we get

𝑓 (𝑝, 𝑥) ≤ 𝑓 (1, 𝑥) , (31)

𝑔 (1, 𝑥) = 4 (1 −

1

𝑥

) < 0 (32)

for all 𝑥 ∈ (0, 1).
Equations (8) and (25) together with inequality (32) lead

to the conclusion that

𝑓 (1, 𝑥) < 𝑓 (1, 1) = 0 (33)

for all 𝑥 ∈ (0, 1).
Therefore, 𝐹(𝑝, 𝑥) is strictly decreasing with respect to 𝑥

on (0, 1) which follows easily from (24), (31), and (33).
(3) If 𝑝 ∈ (1, 5/3), then (8) leads to

𝑓 (𝑝, 0) = 1 −

𝜋

4

> 0, 𝑓 (𝑝, 1) = 0. (34)

It follows from Lemma 1 and (34) that we clearly see that
there exists 𝜇 ∈ (0, 1) such that 𝑓(𝑝, 𝑥) > 0 for 𝑥 ∈ (0, 𝜇)

and 𝑓(𝑝, 𝑥) < 0 for 𝑥 ∈ (𝜇, 1). Then from (24) we get
Theorem 2(3) immediately.

Theorem 3. For all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, the double inequality

𝛼𝑀
5/3
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ≤ 𝛽𝑀log 2/(log𝜋−log 2) (𝑎, 𝑏) (35)

holds with the best possible constants 𝛽 = 𝑒𝐹(log 2/(log𝜋−log 2),𝜇) =
1.0136 . . . and 𝛼 = 2

8/5

/𝜋 = 0.9649 . . ., where 𝜇 is the
solution of the equation 𝑓(log 2/(log𝜋 − log 2), 𝑥) = 0 on
(0, 1) and 𝑓(𝑝, 𝑥) and 𝐹(𝑝, 𝑥) are defined by (8) and (22),
respectively.

Proof. Without loss of generality, we assume that 𝑎 > 𝑏 > 0.
Let 𝑥 = 𝑏/𝑎 ∈ (0, 1); then from (1) and (2) we get

log𝑇 (𝑎, 𝑏) − log𝑀
𝑝
(𝑎, 𝑏) = 𝐹 (𝑝, 𝑥) . (36)

If 𝑝 = 5/3, then from (22) andTheorem 2(1) we get

𝐹(

5

3

, 𝑥) > 𝐹(

5

3

, 0) = log 2
8/5

𝜋

. (37)

Therefore, the first inequality in (35)with the best possible
constant 𝛼 = 28/5/𝜋 follows from (36) and (37) together with
the monotonicity of 𝐹(5/3, 𝑥) given inTheorem 2(1).

If 𝑝 = log 2/(log𝜋 − log 2) ∈ (1, 5/3), then Lemma 1
and (24) together with (34) imply that there exists 𝜇 ∈ (0, 1)
such that 𝑓(log 2/(log𝜋 − log 2), 𝑥) = 0, and 𝐹(log 2/(log𝜋 −
log 2), 𝑥) is strictly increasing on (0, 𝜇] and strictly decreasing
on [𝜇, 1). Therefore, we have

𝐹(

log 2
log𝜋 − log 2

, 𝑥) ≤ 𝐹(

log 2
log𝜋 − log 2

, 𝜇) . (38)
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Making use of MATHEMATICA software, numerical
computations show that

0.186930110570624 < 𝜇 < 0.186930110570625,

𝑒
𝐹(log 2/(log𝜋−log 2),𝜇)

= 1.0136 . . . .

(39)

Therefore, the second inequality in (35) with the best
possible constant 𝛽 = 𝑒𝐹(log 2/(log𝜋−log 2),𝜇) = 1.0136 . . . follows
from (36) and (38) together with the piecewise monotonicity
of 𝐹(log 2/(log𝜋 − log 2), 𝑥).

Corollary 4. The double inequality

𝑄
2

(𝑎, 𝑏)

𝐿
𝑝−1

(𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) <

𝑄
2

(𝑎, 𝑏)

𝐿
𝑞−1
(𝑎, 𝑏)

(40)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≥ 5/3 and
𝑞 ≤ 1, where 𝑄(𝑎, 𝑏) = √(𝑎2 + 𝑏2)/2 and 𝐿

𝑝
(𝑎, 𝑏) = (𝑎

𝑝+1

+

𝑏
𝑝+1

)/(𝑎
𝑝

+𝑏
𝑝

) are, respectively, the quadratic and 𝑝th Lehmer
means of 𝑎 and 𝑏.

Proof. Without loss of generality, we assume that 𝑎 > 𝑏 > 0.
Let𝑥 = 𝑏/𝑎 ∈ (0, 1).Then fromTheorem2 and (24)we clearly
see that the 𝑓(𝑝, 𝑥) > 0 if and only if 𝑝 ≥ 5/3 and 𝑓(𝑝, 𝑥) < 0
if and only if 𝑝 ≤ 1. Then (8) leads to the conclusion that the
inequalities

(1 − 𝑥) (1 + 𝑥
𝑝

)

(1 + 𝑥
2
) (1 + 𝑥

𝑝−1
)

> arctan 1 − 𝑥
1 + 𝑥

, (41)

(1 − 𝑥) (1 + 𝑥
𝑞

)

(1 + 𝑥
2
) (1 + 𝑥

𝑞−1
)

< arctan 1 − 𝑥
1 + 𝑥

(42)

hold for all 𝑥 ∈ (0, 1) if and only 𝑝 ≥ 5/3 and 𝑞 ≤ 1.
Therefore, Corollary 4 follows easily from inequalities

(41) and (42) together with (1).

Corollary 5. Let 𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
> 0 with 𝑎

1
/𝑏
1
< 𝑎
2
/𝑏
2
. Then

Theorem 2 leads to the following Ky Fan type inequality:

𝑇 (𝑎
1
, 𝑏
1
)

𝑇 (𝑎
2
, 𝑏
2
)

< (>)

𝑀
𝑝
(𝑎
1
, 𝑏
1
)

𝑀
𝑝
(𝑎
2
, 𝑏
2
)

(43)

if 𝑝 ≥ 5/3 (𝑝 ≤ 1).
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