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The purpose of this paper is to investigate the short-term wind power forecasting. STWPF is a typically complex issue, because
it is affected by many factors such as wind speed, wind direction, and humidity. This paper attempts to provide a reference
strategy for STWPF and to solve the problems in existence. The two main contributions of this paper are as follows. (1) In data
preprocessing, each encountered problem of employed real data such as irrelevant, outliers, missing value, and noisy data has
been taken into account, the corresponding reasonable processing has been given, and the input variable selection and order
estimation are investigated by Partial least squares technique. (2) STWPF is investigated by multiscale support vector regression
(SVR) technique, and the parameters associated with SVR are optimized based on Grid-search method. In order to investigate the
performance of proposed strategy, forecasting results comparison between two different forecasting models, multiscale SVR and
multilayer perceptron neural network applied for power forecasts, are presented. In addition, the error evaluation demonstrates
that the multiscale SVR is a robust, precise, and effective approach.

1. Introduction

Compared to the traditional thermal power [1], wind energy
is a significant aspect of renewable energy and it is getting
more and more attention due to it is a renewable, inexhaust-
ible and free source. Therefore, the corresponding wind
energy forecasting becomes a critical issue for dispatch and
scheduling of power systems [2]. Precise wind energy fore-
casting can balance and integrate the multiple volatile power
sources at all levels of the transmission and distribution grid
[3]. Moreover, accurate short-term wind power forecasting
can reduce the problems which are caused by grid integration
and energy trading [4].

Short-term wind distribution is essentially a random one
although it can be described by a continuous probability dis-
tribution namedWeibull distribution in a long term. It is hard
to obtain the intrinsic regulation of wind speed in a short-
term; thus, the soft computing can play a significant role in

short-term wind power forecasting. SVR technique has
already been employed for the short energy forecasting in
the existing literatures; however, many of them assume that
the employed data have good quality. In fact, it is impossible
to acquire the data without noise because there are many
reasons that are sometimes beyond the control of human
operators [5]. Generalization capability of traditional forecast
approach is relatively low because the employed approach
is seriously dependent on the quality of sample. In this
paper, we optimize the parameters for two different kernel
functions, radial basis function (RBF) or polynomial function
(PF), based on the Grid-search method for SVR such that
the accuracy of forecasting results is improved. The main
algorithm flow is illustrated in Figure 1.

Figure 1 provides a brief illustration for the main process-
ing step of proposed approach in this paper. The rest of this
paper is organized as follows: formalization and illustration
related to the dataset are investigated in Section 2. A brief
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Figure 1: Algorithm flow.

review on wind energy forecasting is given in Section 3.
Section 4 presents the detailed information related to our
proposed approach including the basic employed theory. In
Section 5, firstly, the missing value of employed data is filled
by the data interpolation techniques. Secondly, two different
filter methods (median absolute deviation (MAD) filter and
wavelet decomposition and denoising) are used to eliminate
the irrelevant, noisy, and outlier value.Thirdly, the input vari-
able selection is investigated by Partial least squares (PLS)
technique. Fourthly, the data order estimation is imple-
mented through the cross-correlation methods. Fifthly, the
multiscale SVR in combination with Grid-search technique
is applied to forecast the short-term wind power. Finally,
the performance evaluation and error analysis are given. In
Section 6, the proposed results and the prospective research
questions are summarized and discussed, respectively.

2. Problem Description

2.1. Data Resources. The quality of data samples plays an
important role in wind power forecasting because it has a
direct impact on forecasting performance. The data quality

is the fundamental issue for the data analysis; in particular,
data do not exist without noise in the real application. The
main objective of data analysis is to discover knowledge
which will be used to solve real problem and make decisions
[5]. The wind tower which is employed to collect the data
contains two different heights, 30m and 60m. The data have
been measured every 3 minutes, a total of about five days
of measurement data are selected. Specifically, the employed
data contain few irrelevant, corrupt, and noisy ones which
must be removed and filled from the data in order to proceed
with further data analysis. Taking into account the real
application, because the data sampling equipment sometime
encounter a temporary mistake and the associated data are
recorded as zero, therefore, these data with bad quality are
eliminated. Typically, the short-term wind power prediction
is within 4 days and ultra-short-term one is within 4 hours.
The paper mainly discussed the short-term wind power
prediction by SVR techniques based on Grid-search method.

2.2. Formalization. In this paper, the short-term wind fore-
casting issue is formulated as a regression problem. The time
series is denoted by

𝑥
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where 10 variables indicate 30m average wind speed, direc-
tion, temperature, humidity, and pressure and 60m average
wind speed, direction, variance, real wind speed, and real
wind direction, respectively; 𝑁 is a positive integer with the
value more than one. In general, (1) provides all the factors
in real application for short-term wind power forecasting.
The primary task of this paper is to predict the output wind
power 𝑦

𝑖
(𝑡
𝑖
), 𝑖 = 1, . . . , 𝑁 at time 𝑡 = 𝑡

𝑖
based on the wind

measurements through 𝑥
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) at time 𝑡
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, 𝑡
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, . . . , 𝑡
𝑖−𝛽

, 𝑖 > 𝛽,
𝑖, 𝛽 ∈ 𝑁

+, past observations.

3. Related Work

Short-term wind power forecast has attracted more and
more attention in recent decades. Alessandrini et al. [4]

discussed the comparison between ECMWF EPS (Ensemble
Prediction System in use at the EuropeanCentre forMedium-
Range Weather Forecasts) and COSMO-LEPS (Limited-area
Ensemble Prediction System developed within Consortium
for Small-scale Modelling) based on two forecasting models.
As a survey associated with short-term prediction in the last
30 years; Costa et al. [6] investigated the performance of two
principal approaches (mathematical and physical). Kramer
and Gieseke [2] applied the SVR techniques for short-
term wind energy forecasting based on the real world wind
power data from the National Renewable Energy Laboratory
(NREL) western wind resource dataset, and Osowski and
Garanty [7] utilized the SVR and wavelet decomposition
method to forecast the short-term air pollution. Chen et al.
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[8] proposed new learning techniques based on support
vector machine (SVM) model for the power load forecasting
and conducted experimental results for the short-term load
forecasting. Chang [9] proposed a hybrid method which
combined the orthogonal least squares (OLS) algorithm and
genetic algorithm (GA) for short-term wind power forecast-
ing based on the radial basis function (RBF) neural network.
Che et al. [10] applied a two-voltage stage topology with boost
converter to improve the conversion efficiency of commercial
small wind grid inverter by proposed control strategy. Based
on the combination of wavelet transform and neural network
arithmetic, Song et al. [11] dealt with an energy management
related to a hybrid power generation system such that the
stability of power generation system was improved greatly.
Moreover, a bibliographical survey associated with the gen-
eral application of research and developments was presented
by Lei et al. [12] in the fields of wind power forecasting. Li
et al. [13] presented ideal subspace approximation techniques
based on a chaotic time series and nonlinearKalmanfiltering,
and the wind speed prediction experiments were used to
demonstrate the high chaotic prediction accuracy. Hoai
et al. [14] optimized an empirical-statistical downscaling
technique for prediction based on a feed-forward multilayer
perceptron (MLP) neural network, and they gave the numer-
ical simulation to demonstrate the robustness of proposed
technology. Sánchez [15] gave a statistical forecasting system
for short-term wind power prediction in 48 hours ahead
based on the techniques combinationwith recursivemethods
and schemes with adaptability. An in-depth review of the
currentwind power generationmethod and advances inwind
power forecasting was formulated by Foley et al. [16], and
Botterud et al. [17] discussed the current development of
wind power forecasting in US ISO/RTO markets and the
application of state-of-the-art forecasts refers to associated
forecasting. Based on the numerical and statistical models,
Stathopoulos et al. [18] proposed some strategies for accurate
local wind forecasts by the combination with statistical post
processes.

4. Theory for Proposed Approach

Data analysis is the fundamental approach for the knowledge
investigation [19]. Proper data preprocessing can eliminate
the unreasonable trend of data without loss of data charac-
teristics. Therefore, efficient techniques for automatic data
preprocessing are crucial [20]. In this section, the basic theory
illustration refers to data preprocessing and multiscale SVR
are introduced as follows.

4.1. Missing Value. In the data preprocessing, the issues that
must be considered are about the irrelevant, missing value,
and noisy data.The data with poor quality will result from the
poor performance of final employed approaches. In this case,
the data are not complete because there are missing values
which cannot be eliminated because of the requirement for
time continuity as well as they may contain useful informa-
tion [5]. In this paper, the missing value is filled via data
interpolation by the intrinsic relationship between data; for
instance, the missing value of wind power can be filled by

its associated influential factor wind speed. The nearest-
neighbor interpolation (also named as proximal interpola-
tion) is a typical method of multivariate interpolation in
one or more dimensions, which can be used to approximate
the value of a nongiven point based on the corresponding
point of the neighborhood. Under normal circumstances,
the filled data is reasonable because the value of data is not
suddenly changed in the real application, and the neighboring
data correlation is taken into account in nearest-neighbor
interpolation method.

4.2. MAD Filter. Median absolute deviation from themedian
𝑥
∗ for a data sequence (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
) is more robust with

good performance in the presence of multiple outliers [21,
22]. The Hampel filter (also known as MAD filter) which is
used to eliminate the outlier is denoted by
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where 𝑎 = 1.4826 and 𝑀 = median{|𝑥
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|} is the median

value of |𝑥
𝑖
− 𝑥
∗

𝑖
|. 𝑡 is the threshold employed to control

range of convergence, and it can be estimated based on the
sample standard deviation of the distribution.TheMADfilter
can replace the outlier-sensitivemean and standard deviation
estimates with the outlier-resistant median as well as MAD
from the data [23].

4.3. Wavelet Decomposition and Denoising. Unlike the MAD
filter, the wavelet decomposition and denoising analysis for
data is localized in both time domain and frequency domain,
and it can be used to decompose the original data into high-
frequency component (HFC) and low-frequency component
(LFC). Typically, the HFC denotes the detailed information
such as mutant value, while the LFC usually represents the
generalized or stationary characteristic related to employed
data. The more detailed discussion of wavelet decomposition
and denoising can be founded in [24–27].

Comparing to the continuous wavelet transform, the
discrete wavelet transform (DWT) is more commonly used
in real application and defined by

𝐶
𝑓
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where ∀ means for any 𝜑
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̸= 0. The above DWT is also
known as Mallat algorithm [28], in this paper, the Vaidyanat-
han filter [29–31] is applied for the implementation of data
decomposition and denoising.

4.4. Input Variable Selection. Swedish statistician named
Herman Wold first introduces Partial least squares (PLS)
technique which is used to find the fundamental relations
between two variables (𝑥 and 𝑦); that is, a latent variable
approach is employed to investigate the covariance structures
between variables. Partial correlation can be used to explore
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the association between pairs of random variables in the
presence of other variables [32, 33], and its coefficients can be
calculated between the variables and exclude the influence of
other variables, then the main instruction of PLS coefficients
can be derived via the following three steps.

(i) Hypothesis. Consider three variables, 𝑦
1
, 𝑦
2
, and 𝑥

3
; the

partial correlation coefficient 𝑟
12(3)

between 𝑦
1
and 𝑦

2
given

𝑥
3
is defined by

𝑟
12(3)
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12
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13
𝑟
23
)
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2

13
) (1 − 𝑟

2

23
)

, (4)

where 𝑟
𝑖𝑗

is the product-moment correlation coefficient
between variables with subscripts 𝑖 and 𝑗. The range of PLS
coefficients values is (−1, 1), in particular, 0 indicates no
association between 𝑦

1
and 𝑦

2
.

(ii) Statistic. A test associated with the full correlation coef-
ficient is used to test the original hypothesis in Step (4)
under the assumption that data has an approximately normal
distribution. If the 𝑟

12(3)
is the obtained partial correlation

coefficient, then the appropriate 𝑡 statistics is denoted as

𝑡
𝑛−𝑞−2

=

𝑟
12(3)√

𝑛 − 𝑞 − 2

1 − 𝑟
2

12(3)

, (5)

where 𝑡
𝑛−𝑞−2

has an approximate Student’s 𝑡-distribution, and
its degrees of freedom are 𝑛 − 𝑞 − 2; 𝑛 is the number of obser-
vations from the computed full correlation coefficients.

(iii) Probability Calculation. Calculate the observation of test
𝑡-statistics as well as its corresponding values of probabilities
𝑃. If the value of probability 𝑃, which is used to test 𝑡-statis-
tics, is less than the value of given significance level 𝛼, then
the original hypothesis should not be accepted; otherwise, it
is available for the test.

4.5. Order Estimation. Data order reflects the intrinsic rela-
tionship between past data and current data, which is
derived through the autocorrelation function (ACF) for one
data sequence and cross-correlation function (CCF) for two
different data sequences. Autocorrelation (is also sometimes
called “lagged correlation” or “serial correlation”) refers to the
correlation of a time serieswith its ownpast and future values,
which relate to the correlation betweenmembers of a series of
numbers arranged in time. CCF is a measure of similarity of
two given date as a function of a time lag, and it is commonly
used for the replacement of a long data by a shorter and
suitable length. In the discrete domain, ACF and CCF for two
real time series 𝑥

𝑖
, 𝑦
𝑗
, 𝑖 = 0, 1, . . . ,𝑀 − 1, 𝑗 = 0, 1, . . . , 𝑁 − 1

are defined by
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(6)
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(7)

In MATLAB, ACF and CCF are computed with the
function “xcorr” which are defined by (6) and (7) in the
frequency domain, respectively.

4.6. Support Vector Regression. SVM for regression was pro-
posed in 1996 by Drucker et al. in [33]; this method is called
support vector regression (SVR), and its basic idea is based on
support vector classification, more precisely, the fact that the
cost function does not take into account the training points
that lie beyond the margin; thus, the SVR only depends on
a subset of the training data. Analogously, least squares sup-
port vector machine (LS-SVM) which is known as another
SVM has been presented by Suykens and Vandewalle [34].
Vanik-Chervonenkis theory and structural riskminimization
(SRM) are the fundamental theory for the SVM [35, 36].
SVM is to investigate the intrinsic relationship between the
prediction model related to wind time series and learning
capability and derive the best generalization capability, if the
given sample dataset is𝑋×𝑌 = {(𝑥

1
, 𝑦
1
), . . . , (𝑥

𝑖
, 𝑦
𝑖
), . . .}
𝑁

𝑖=1
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𝑅
𝑁

× 𝑅.
The basic task of regression is to establish the nonlinear

function 𝑓 : 𝑅
𝑁

→ 𝑅, such that 𝑦 = 𝑓(𝑥); the estimation
function and loss function are, respectively, defined as
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(8)

where 𝐶 is penalty factor which is employed for empirical
risk and confidence range, 𝜉∗

𝑖
, 𝜉 are relaxation factors which

are used to modify the convergence speed, 𝜀 is loss function
which is applied to estimate the prediction accuracy for (8),
and its detailed information is given as
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Moreover, the 𝐿
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𝜀. Essentially, (8) and (9) are equivalent quadratic convex
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where if the value of 𝐶 is large, then the accuracy capability
of data fitting will be more good in the complexity and
approximation error of the control model; 𝜀 is applied to
control the generalization capability and regression approx-
imate error, 𝛼

𝑖
, 𝛼∗
𝑖
are the Lagrange multiplier, when they

are not equivalent to zero and then the SVR can be used
for regression prediction, and𝐾(𝑥

𝑖
, 𝑥
𝑗
) is the kernel function

which is used to simulate the inner production, which can
be given as radial basis function or polynomial function.
Furthermore, the regression function is 𝑦

𝑗
= ∑
𝑁−𝑚

𝑖=1
(𝛼
𝑖
−

𝛼
∗

𝑖
)𝐾(𝑥
𝑖
, 𝑥
𝑗
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4.7. Error Evaluation Criteria. Consider
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where MAE is the absolute average error between forecasting
power 𝑃

𝑓𝑡
and real power 𝑃

𝑟𝑡
over the time 𝑡. 𝑛 is the number

of test sample; RMSE and RMAE are the root mean square
error and relative average absolute error, respectively.

5. Experimental Analysis

In this section, the numerical simulation is constructed for
each part of Section 4 based on the wind resources dataset
which are presented in Section 2.1.

5.1. Data Interpolation and Filter. In this section, the data
interpolation, MAD filter, wavelet decomposition, and de-
noising technique which correspond to the theory analysis
in Sections 4.1–4.3 are, respectively, to handle the missing
value, irrelevant, outliers, and noisy data.The variables which
can be used as the forecasting factors consist of two groups,
that is, 30m average wind speed (AWS), direction (AWD),
temperature (Tem), humidity (Hum), and pressure (Pre) and
60m AWS, AWD, AWS variance, real wind speed (RWS),
real wind direction (RWD), and power. The above variables
are labeled in accordance with the above order as the first
variable to eleventh variable, respectively. Moreover, the state
trajectory of original data, filled data, and filtered data are
given in Figures 2, 3, and 4, respectively.

Figures 2–4, respectively, denote the trajectory of original
data, filled data, and filtered data which are derived, respec-
tively, by nearest-neighbor interpolation (NNI), MAD filter,
wavelet decomposition, and denoising techniques, where
NNI is mainly focused on the relationship between 30m
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Figure 2: State trajectories refer to the 1st variable and 2nd variable.
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Figure 3: State trajectories refer to the 3rd variable and 4th variable.

AWS and power based on the discussion in Section 5.2.
Because 10 samples are collected in half an hour according to
sampling frequency, half of windows size of MAD filter is set
as 5, and the Vaidyanathan wavelet filter is employed for the
data preprocessing. Without loss of generality, other wavelet
transform such as Daubechies wavelet are also accepted.
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Table 1: PLS coefficients refer to eleven variables.
Variables 11 1 2 3 4 5
11 1.0000 −0.7644 −0.7185 −0.6779 −0.7602 −0.7214
6 −0.7595 0.9848 0.5741 0.8837 0.9815 0.5689
7 −0.7191 0.5944 0.9437 0.6413 0.5906 0.9228
8 −0.9648 0.8005 0.7235 0.7718 0.7949 0.7259
9 −0.9732 0.6883 0.6697 0.5516 0.6854 0.6705
10 −0.9998 0.7621 0.7174 0.6748 0.7579 0.7205

Table 2: Lower and upper bound related to Table 1.

Variables 11 1 2 3 4 5

11 UB 1.0000 −0.7434 −0.6942 −0.6508 −0.7389 −0.6973
LB 1.0000 −0.7838 −0.7412 −0.7033 −0.7799 −0.7439

6 UB −0.7382 0.9862 0.6058 0.8939 0.9832 0.6009
LB −0.7793 0.9832 0.5406 0.8726 0.9796 0.5352

7 UB −0.6948 0.6249 0.9488 0.6690 0.6213 0.9297
LB −0.7417 0.5621 0.9381 0.6118 0.5580 0.9152

8 UB −0.9613 0.8173 0.7458 0.7907 0.8121 0.7481
LB −0.9680 0.7824 0.6995 0.7514 0.7763 0.7021

9 UB −0.9705 0.7130 0.6956 0.5845 0.7103 0.6964
LB −0.9757 0.6619 0.6420 0.5169 0.6588 0.6429

10 UB −0.9998 0.7818 0.7402 0.7004 0.7779 0.7430
LB −0.9998 0.7410 0.6930 0.6475 0.7365 0.6963

From Figures 2–4, irrelevant, outliers, and noisy data of
employed data are, respectively, eliminated and filled by the
MADfilter andwavelet transform.The data become a relative
stationary and smooth time series now, which is a necessary
step for the further analysis.

5.2. Input Variables Selection Results. This section provides
the simulation results with respect to the theory analysis
of Section 4.4. The quality and quantity of samples have
significant impact on the accuracy of forecasting because
more data will increase the difficulty of real operation, and
less datamay not contain enough information for analysis. As
the discussion of Section 5.1, the PLS coefficient with regard
to eleven variables is computed by (4) and (5) and are given
in Tables 1 and 2.

Based on the discussion of Section 4.4, all the value of
“significance value” is equivalent to about 0.6936 × 10

−308,
which is far less than the set value 𝛼 = 0.01; in other words,
the original hypothesis should not be accepted because there
are significant correlation between variables. Moreover, the
lower and upper bound with confidence level of 95% are
provided in Table 2, where UB represents the upper bound
and LB represents the lower bound. From Tables 1 and 2,
we can learn two facts: one is that all the obtained data in
Table 1 are accepted because of the corresponding testing
value which is presented in Table 2; the other one is that one
group is enough for the wind power forecasting because of
the similarity between different variables.

5.3. Data Order Estimation and Normalization. Based on the
discussion of Section 5.2, the 30m variables except for the
pressure are selected as the input variables because there is no
significant change about pressure. The data order estimation
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Figure 4: State trajectories refer to the 11th variable.
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Table 3: Simulation results refer to multiscale SVR.

Item BCVM Bc Bg Foin RM RS

RBF(3)
O 0.00121642 1024 0.00195313 3465 0.00383891 0.943034
M 0.00118972 64 0.015625 1756 0.00194981 0.972598
W 0.00217458 0.5 1 1628 0.0211323 0.897533

PF(3)
O 0.00121642 1024 0.00195313 4365 0.00383891 0.943034
M 0.00118972 64 0.015625 2756 0.00194981 0.972598
W 0.00217458 0.5 1 1628 0.0211323 0.897533

RBF(6)
O 0.00117004 1024 0.00390625 4562 0.00381612 0.94281
M 0.0010876 128 0.00390625 2810 0.00189855 0.972905
W 0.0021321 0.5 1 1534 0.0219367 0.895725

PF(6)
O 0.00117004 1024 0.00390625 4562 0.00381612 0.94281
M 0.0010876 128 0.00390625 2810 0.00189855 0.972905
W 0.0021321 0.5 1 1534 0.0219367 0.895725

RBF(10)
O 0.0011804 512 0.00195313 5366 0.00381804 0.94289
M 0.00107203 128 0.00390625 2441 0.00191227 0.972918
W 0.00217458 0.5 1 1534 0.0219367 0.895725

PF(10)
O 0.0011804 512 0.00195313 5366 0.00381804 0.94289
M 0.00107203 128 0.00390625 2441 0.00191227 0.972918
W 0.00214353 0.5 1 1534 0.0219367 0.895725

O: original data; M: MAD filter; W: wavelet filter; RBF(3): number of cross-validation for testing set is 3 by RBF, similar to RBF(6) and RBF(10); PF(3): number
of cross-validation for testing set is 3 by PF, similar to PF(6) and PF(10); BCVM: best cross-validation mean squared error; Bc: best c; Bg: best g; Foin: finished
optimization iteration number; RM: regression mean squared error; RS: regression squared correlation coefficient.

is implemented through (6) and (7) and denoted in Figures 5
and 6, respectively.

From Figures 5 and 6, we can learn that the two past
values are the most significant impact factors for the current
value because the ACF value is about more than 0.9 and CCF
value is more than 0.7. Thus, 2 can be set as the data order
based on the data estimation by performance of ACF and
CCF.

5.4. Multiscale SVR Performance. The following simulation
is based on [37, 38] libsvm (2013, version 3.17, platform:
MATLAB 2012b, Microsoft Visual C++ 2010), and the kernel
functions are radial basis function (RBF) and polynomial
function (PF). Without loss of generality, 80% and 20% of
employed data (2297) are selected as the training sample and
testing samples, respectively. Because the changes in wind
direction are not obvious, so both sine and cosine with regard
to AWD are selected as the input variables. Therefore, the
number of input variables is essentially about 10 because the
data order is set as 2. In order to obtain the accuracy com-
parison between the different variables, all the variables value
are normalized at the range (1,2). Moreover, the k-fold cross-
validation (K-CV) [39–42] and “Grid search” are utilized for
the parameters selection. “Grid search” is to try every possible
value of the parameters (𝑐, 𝑔), and the best accuracy of the
(𝑐, 𝑔) can be derived based on the K-CV, where 𝑐 and 𝑔 are,
respectively, penalty factor and kernel function parameters.
The state trajectory of original data and forecasting data
are given in Figures 7, 8, 9, and 10. Moreover, the detailed
information refers to simulation results comparison between
multiscale SVR and MLP neural network will be given in
Tables 3 and 4.

Table 4: RMSE, MAE, and RMAE refer to SVR and MLP.

Item RMSE MAE RMAE Hn Et

RBF(3)
O 1.6044 1.0931 0.1094 NA 132.122945
M 1.0887 0.6336 0.0638 NA 110.138815
W 3.3950 2.3570 0.2375 NA 113.548014

PF(3)
O 1.6044 1.0931 0.1094 NA 137.698291
M 1.0887 0.6336 0.0638 NA 112.438881
W 3.3950 2.3570 0.2375 NA 113.008574

RBF(6)
O 1.5997 1.0888 0.1090 NA 374.338732
M 1.0743 0.5767 0.0581 NA 309.984871
W 3.4590 2.4161 0.2435 NA 288.569125

PF(6)
O 1.5997 1.0888 0.1090 NA 346.989140
M 1.0743 0.5767 0.0581 NA 280.287914
W 3.4590 2.4161 0.2435 NA 284.077991

RBF(10)
O 1.6001 1.0892 0.1090 NA 624.630533
M 1.0782 0.5872 0.0591 NA 501.316555
W 3.4590 2.4161 0.2435 NA 368.402477

PF(10)
O 1.6001 1.0892 0.1090 NA 623.420666
M 1.0782 0.5872 0.0591 NA 512.878352
W 3.4590 2.4161 0.2435 NA 501.985355

MLP neural network 11.6547 9.6265 0.9631 20 97.536770
O: original data; M: MAD filter; W: wavelet filter; RBF(3): number of cross-
validation for testing set is 3 by RBF, similar to RBF(6) and RBF(10); PF(3):
number of cross-validation for testing set is 3 by PF, similar to PF(6) and
PF(10); Hn: number of hidden layer; Et: elapsed time in seconds; RMSE:
regression mean squared error for testing sample; MAE: MAE for testing
sample; RMAE: RMAE for testing sample; NA: not available.
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Figure 7: 2D and 3D parameter selection results. (Grid-search method and contours method, RBF).
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Figure 8: Final forecasting results via RBF.

5.5. Error Analysis and Evaluation. In this section, the error
with respect to the forecasting results is given to evaluate
the performance of multiscale SVR and MLP network of
Section 5.4. Number of cross-validation for testing set is,
respectively, set as 3, 6, and 10 for RBF and PF, moreover,
the original data, filtered data via MAD, and wavelet are,
respectively, utilized in the SVRwith RBF and PF. Specifically,
MLP neural network is applied to compare the performance

of SVR based on the RMSE, MAE, and RMAE which are
defined in Section 4.7. In addition, the best cross-validation
mean squared error, regression mean squared error, regres-
sion squared correlation coefficient, and best kernel function
parameters are provided.The detailed information is given in
Tables 3 and 4.

Based on Tables 3 and 4, we can learn that the per-
formance of SVR is better than the tradition MLP neural
network. Because the best performance of SVR employed
MAD filter, therefore, data for MLP neural network are still
filtered by MAD. In fact, SVR turns to be a robust time series
forecasting method even with different parameters such as
different number of cross-validation for testing set, different
kernel function, and associated parameters. The simulation
results denote that the SVR is an effective approach for
STWPF.

6. Conclusions

In this paper, the multiscale SVR technique is applied for
the short-term wind power forecasting. Firstly, we introduce
a brief illustration for the main processing step and its cor-
responding theory analysis. Secondly, the data interpolation
technique is used to fill the missing value of employed
data. Thirdly, median absolute deviation filter and wavelet
decomposition and denoising technique are applied to elim-
inate the irrelevant, noisy, and outlier value. Fourthly, Partial
least squares technique, autocorrelation function, and cross-
correlation function are, respectively, employed to the input
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Figure 9: 2D and 3D parameter selection results. (Grid-search method and contours method, PF).
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Figure 10: Final forecasting results via PF.

variable selection and order estimation. Fifthly, themultiscale
SVR in combination with Grid-search technique is utilized to
forecast the short-term wind power. Finally, the performance
evaluation and error analysis are applied to evaluate the
performance of multiscale SVR. Comparing to themultilayer
perceptron (MLP) neural network, the performance demon-
strates that SVR technique is a fast and robust time series
forecasting approach. We believe that the proposed strategy

has reference value for short-term wind power forecasting
and other energy consumption on the demand aspect.
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