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Retarded differential inclusions have drawn more and more attention, due to the development of feedback control systems with
delays and dynamical systems determined by retarded differential equations with a discontinuous right-hand side. The purpose
of this paper is to establish a result on the stability and asymptotical stability for retarded differential inclusions. Comparing with
the previous results, the main result obtained in this paper allows Lyapunov functions to be nonsmooth. Moreover, to deal with
the asymptotical stability, it is not required that Lyapunov functions should have an infinitesimal upper limit, but this condition is
needed in most of the previous results. To demonstrate applicability, we use the main result in the analysis of asymptotical stability
of a class of neural networks with discontinuous activations and delays.

1. Introduction

It has been known for ages that the future state of a system
might depend not only on the present states but also on the
past states [1–4]. In particular, in some problems it is mean-
ingless not to have dependence on the past. Consequently,
there is much concern about retarded differential equations:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥

𝑡
) , (1)

where “⋅” represents the derivative, 𝑥(𝑡) : R → R𝑛 is
a vector-valued function, 𝑥

𝑡
∈ 𝐶([−𝑟, 0],R𝑛) is defined by

𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃), and 𝑓 : R × 𝐶([−𝑟, 0],R𝑛) → R𝑛 is a given

function. To our knowledge, most results for (1) require the
function 𝑓 to be continuous. However, in many applications
the function 𝑓 may be discontinuous or even multivalued.
For example, a lot of phenomena in biology are characterized
by strongly localized coupling, that is, by interaction of an
almost on-off nature; see [5–7]. Thus it is realistic to consider
retarded differential equations with a discontinuous right-
hand side [8].This gives rise to the study of systems described
by retarded differential inclusions.

Another great impetus to study retarded differential
inclusion comes from the development of control theory.
A specific class of systems of retarded differential inclusion

arising in technology consists of feedback control systems
which can be described by equations of the form

�̇� (𝑡) = 𝑓 (𝑡, 𝑥

𝑡
, 𝑢) , (2)

where 𝑢 = 𝑢(𝑡, 𝑥

𝑡
) denotes controllers. Let 𝑈 be the set of

allowable controllers and 𝐺(𝑡, 𝑥

𝑡
) := {𝑓(𝑡, 𝑥

𝑡
, 𝑢)}

𝑢∈𝑈
; then

many of the qualitative properties of the control system
(2) can be deduced from the corresponding qualitative
properties of the system of retarded differential inclusions
�̇�(𝑡) ∈ 𝐺(𝑡, 𝑥

𝑡
). This approach has played an important role

in investigating the absolute stability problem of regulator
systems; see [9, 10].

In recent years, more and more attention has been
drawn to the stability of the retarded differential inclusions;
see [9–14]. In [9, 10], stability and asymptotical stability
are investigated for retarded differential inclusions, and the
Lyapunov functions are required to be differentiable. To study
the asymptotical stability of retarded differential inclusions
as well as ordinary differential inclusions, most of results
in the literature are under the condition that the Lyapunov
functions have an infinitesimal upper limit; see [1, 9, 10, 13],
for example. In [11, 15], nonsmooth Lyapunov functions are
successfully applied in discussing the stability of ordinary
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differential inclusions or ordinary differential equations with
a discontinuous right-hand side. However, to the best of our
knowledge, there is very little literature using nonsmooth
Lyapunov functions to deal with the stability for retarded
differential inclusions.

Based on these motivations, the objective of this paper
is to make use of nonsmooth Lyapunov functions to study
the stability of retarded differential inclusions. Dropping
the condition that Lyapunov functions have an infinitesimal
upper limit, we manage to obtain the asymptotical stability
for retarded differential inclusions. Our method is based on
the generalized Lyapunov approach introduced by [15, 16].

The outline of this paper is as follows. In Section 2, we give
some preliminaries which are needed in this paper. Section 3
is devoted to investigate stability and asymptotical stability for
retarded differential inclusions. In Section 4, an application
of the main result obtained in Section 3 is given for analysis
of stability of neural networks with discontinuous activations
and delays.

2. Preliminaries

For 𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
)

T
∈ R𝑛, ‖𝑥‖ denotes a norm of

𝑥, where “T” is the transpose. Let 𝑟 ≥ 0 be a given real
number and 𝐶 = 𝐶([−𝑟, 0],R𝑛) be the Banach space of
continuous functions mapping the interval [−𝑟, 0] into R𝑛.
For an element 𝜙 ∈ 𝐶, the norm of 𝜙 is defined by |𝜙| =
sup
−𝑟≤𝜃≤0

|𝜙(𝜃)|. If 𝑏 ≥ 0 and 𝑥(𝑡) : [𝜎 − 𝑟, 𝜎 + 𝑏] → R𝑛

is continuous, then 𝑥

𝑡
∈ 𝐶 is defined by 𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃),

−𝑟 ≤ 𝜃 ≤ 0 for any 𝑡 ∈ [𝜎, 𝜎 + 𝑏]. In the present paper, we
consider the following retarded differential inclusion:

�̇� (𝑡) ∈ 𝐹 (𝑡, 𝑥

𝑡
) , (3)

where 𝐹 : R × 𝐶 → R𝑛 is a set-valued map with nonempty
convex compact values.

Definition 1. A function 𝑥 is said to be a solution of differ-
ential inclusion (3) on [𝜎 − 𝑟, 𝜎 + 𝑏) if there are 𝜎 ∈ R and
𝑏 > 0 such that 𝑥(𝑡) is continuous on [𝜎 − 𝑟, 𝜎 + 𝑏) and
absolutely continuous on any compact subinterval of [𝜎, 𝜎+𝑏)
and satisfies (3) for almost all (a.a.) 𝑡 ∈ [𝜎, 𝜎 + 𝑏). For given
𝜎 ∈ R, 𝜙 ∈ 𝐶, 𝑥(𝜎, 𝜙)(𝑡) is said to be a solution of differential
inclusion (3) with initial value 𝜙 at 𝜎 if 𝑥(𝜎, 𝜙)(𝑡) is a solution
of (3) on [𝜎 − 𝑟, 𝜎 + 𝑏) and 𝑥

𝜎
= 𝜙.

It is remarked that, under the condition that the set-
valuedmap𝐹 in (3) is semicontinuouswith nonempty convex
compact values, a result on existence of solutions for (3) can
be found in [17].

In order to investigate the stability of (3), we will use
the generalized Lyapunov approach, so we borrow some
basic notations and the chain rule for nonsmooth Lyapunov
function from [15, 16].

A function 𝑉 : R𝑛 → R, which is locally Lipschitz
continuous at 𝑥 ∈ R𝑛, is said to be C-regular at 𝑥 if 𝑉(𝑥; V)
exists and 𝑉(𝑥; V) = 𝑉

∘
(𝑥; V), where

𝑉


(𝑥; V) = lim

𝜌→0
+

𝑉 (𝑥 + 𝜌V) − 𝑉 (𝑥)

𝜌

(4)

is the directional derivative of 𝑉 at 𝑥 in the direction V and

𝑉

∘
(𝑥; V) = lim sup

𝑦→𝑥

𝜌→0
+

𝑉 (𝑦 + 𝜌V) − 𝑉 (𝑦)

𝜌

(5)

is the generalized directional derivative of 𝑉 at 𝑥 in the
direction V. The function 𝑉 is said to be C-regular in R𝑛, if
it is C-regular at any 𝑥 ∈ R𝑛. The generalized gradient 𝜕𝑉(𝑥)
of 𝑉 at 𝑥 ∈ R𝑛 is defined by

𝜕𝑉 (𝑥) = {𝜁 ∈ R
𝑛
| ⟨𝜁, V⟩ ≤ 𝑉

∘
(𝑥; V) , ∀V ∈ R

𝑛
} . (6)

Lemma 2 (see [15]). If 𝑉(𝑥) : R𝑛 → R is C-regular and
𝑥(𝑡) : [𝜎, +∞) → R𝑛 is absolutely continuous on any compact
subinterval of [𝜎, +∞) then for a.a. 𝑡 ∈ [𝜎, +∞), 𝑥(𝑡) and
𝑉(𝑥(𝑡)) : [𝜎, +∞) → R are differentiable, and

̇

𝑉 (𝑥 (𝑡)) = ⟨𝜁 (𝑡) , �̇� (𝑡)⟩ , ∀𝜁 (𝑡) ∈ 𝜕𝑉 (𝑥 (𝑡)) . (7)

3. Main Result

In this section, we suppose 𝐹(𝑡, 0) = 0 and focus on the
stability of the zero solution 𝑥 = 0 of the differential
inclusion (3), since by a transformation the stability of any
solution could be investigated in terms of the zero solution
of the corresponding differential inclusion. The definition of
stability of the solution 𝑥 = 0 can be given as in [1]. Let
B(0, 𝛿) = {𝜙 ∈ 𝐶 | |𝜙| < 𝛿}.

Definition 3. The solution 𝑥 = 0 of differential inclusion (3)
is said to be stable if for any 𝜎 ∈ R, 𝜀 > 0, there is a 𝛿 = 𝛿(𝜀, 𝜎)

such that𝜙 ∈ B(0, 𝛿) implies𝑥
𝑡
(𝜎, 𝜙) ∈ B(0, 𝜀) for 𝑡 ≥ 𝜎.The

solution 𝑥 = 0 is said to be asymptotically stable if it is stable
and there is a 𝑏

0
= 𝑏

0
(𝜎) > 0 such that 𝜙 ∈ B(0, 𝑏

0
) implies

𝑥(𝜎, 𝜙)(𝑡) → 0 as 𝑡 → ∞. The solution 𝑥 = 0 is said to be
globally asymptotically stable if it is stable and 𝑥(𝜎, 𝜙)(𝑡) →

0 as 𝑡 → ∞ for any 𝜙 ∈ 𝐶.

Let 𝑉 : R × R𝑛 → R𝑛 be locally Lipschitz continuous
and 𝑥(𝜎, 𝜙)(𝑡) is a solution of (3) with initial value 𝜙 at 𝜎; we
define

̇

𝑉 (𝑡, 𝑥) = lim
ℎ→0

𝑉 (𝑡 + ℎ, 𝑥 (𝜎, 𝜙) (𝑡 + ℎ)) − 𝑉 (𝑡, 𝑥 (𝜎, 𝜙) (𝑡))

ℎ

,

(8)

where ̇

𝑉(𝑡, 𝑥) exists. The function ̇

𝑉(𝑡, 𝑥) is the derivative of
𝑉(𝑡, 𝑥) along the solution of (3).

Now we give the main result in this paper.

Theorem 4. Suppose that 𝐹 : R × 𝐶 → R𝑛 takes R ×

(𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑠𝑒𝑡𝑠 𝑜𝑓 𝐶) into bounded sets of R𝑛, and 𝜑, 𝜔 :

R+ → R+ are continuous nondecreasing functions, 𝜑(0) = 0
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and 𝜑(𝑠) > 0 for 𝑠 > 0. If there is a locally Lipschitz continuous
function 𝑉 : R ×R𝑛 → R such that

𝑉 (𝑡, 𝑥) ≥ 𝜑 (‖𝑥‖) (9)

and for any 𝜎 ∈ R and a.a. 𝑡 ∈ [𝜎, +∞)

̇

𝑉 (𝑡, 𝑥) ≤ −𝜔 (‖𝑥‖) , (10)

then one has the following:

(i) the solution 𝑥 = 0 of the differential inclusion (3) is
stable;

(ii) if 𝜔(𝑠) > 0 for 𝑠 > 0, the solution 𝑥 = 0 of the
differential inclusion (3) is asymptotically stable;

(iii) if 𝜔(𝑠) > 0 for 𝑠 > 0 and 𝜑(𝑠) → ∞ as 𝑠 → ∞, the
solution 𝑥 = 0 of the differential inclusion (3) is globally
asymptotically stable.

Proof. For any 𝜎 ∈ R and 𝜀 > 0, there is a 𝛿 = 𝛿(𝜀,

𝜎) such that 𝜙 ∈ B(0, 𝛿) implies that 𝑉(𝜎, 𝜙(0)) < 𝜑(𝜀/2)

from the continuity of the function 𝑉. Since 𝑉(𝑡, 𝑥) is
locally Lipschitz continuous, we have that 𝑉(𝑡, 𝑥(𝜎, 𝜙)(𝑡)) is
absolutely continuous on any compact subinterval of [𝜎, +∞)

and

𝑉 (𝑡, 𝑥 (𝜎, 𝜙) (𝑡)) = 𝑉 (𝑡

0
, 𝑥 (𝜎, 𝜙) (𝑡

0
))

+ ∫

𝑡

𝑡
0

̇

𝑉 (𝑠, 𝑥 (𝜎, 𝜙) (𝑠)) d𝑠, ∀𝑡

0
, 𝑡 ≥ 𝜎.

(11)

It follows from (9) and (10) that

𝜑 (









𝑥 (𝜎, 𝜙) (𝑡)









) ≤ 𝑉 (𝑡, 𝑥 (𝜎, 𝜙) (𝑡))

≤ 𝑉 (𝜎, 𝜙 (0)) < 𝜑 (

𝜀

2

) , 𝑡 ≥ 𝜎,

(12)

which means that








𝑥 (𝜎, 𝜙) (𝑡)









≤

𝜀

2

< 𝜀, 𝑡 ≥ 𝜎, (13)

and thus 𝑥
𝑡
(𝜎, 𝜙) ∈ B(0, 𝜀) for 𝑡 ≥ 𝜎.This proves the stability.

In order to prove the assertion (ii), we need only to show
that there is a 𝑏

0
= 𝑏

0
(𝜎) > 0 such that

lim
𝑡→∞

𝑥 (𝜎, 𝜙) (𝑡) = 0 (14)

for any 𝜙 ∈ B(0, 𝑏

0
). Using the approach of contradiction,

assume for any 𝑏
0
> 0 there is 𝜙 ∈ B(0, 𝑏

0
) such that (14) fails

to hold; then there exist 𝜀
0
> 0 and a sequence {𝑡

𝑘
} such that

𝑡

𝑘
→ ∞ as 𝑘 → ∞ and









𝑥 (𝜎, 𝜙) (𝑡

𝑘
)









≥ 𝜀

0
. (15)

Note that, as long as 𝑏
0
is small enough, there is𝑀 > 0 such

that 𝑉(𝜎, 𝜙(0)) < 𝜑(𝑀). It follows from (9) and (10) that

𝜑 (









𝑥 (𝜎, 𝜙) (𝑡)









) ≤ 𝑉 (𝑡, 𝑥 (𝜎, 𝜙) (𝑡)) ≤ 𝑉 (𝜎, 𝜙 (0))

< 𝜑 (𝑀) ,

(16)

and thus









𝑥 (𝜎, 𝜙) (𝑡)









≤ 𝑀, (17)

which means 𝑥(𝜎, 𝜙)(𝑡) is bounded. Notice that the map 𝐹 :

R × 𝐶 → R𝑛 takes R × (bounded sets of 𝐶) into bounded
sets of R𝑛, there is 𝐿 > 0 such that









�̇� (𝜎, 𝜙) (𝑡)









< 𝐿, 𝑡 ≥ 𝜎. (18)

Take 𝑙 = 𝜀

0
/2𝐿; then for 𝑡 ∈ [𝑡

𝑘
− 𝑙, 𝑡

𝑘
+ 𝑙]









𝑥 (𝜎, 𝜙) (𝑡)









≥









𝑥 (𝜎, 𝜙) (𝑡

𝑘
)









−



















∫

𝑡

𝑡
𝑘

�̇� (𝜎, 𝜙) (𝑠) d𝑠


















(19)

and hence from (15) and (18)









𝑥 (𝜎, 𝜙) (𝑡)









≥ 𝜀

0
− 𝐿









𝑡 − 𝑡

𝑘









≥

𝜀

0

2

,

𝑡 ∈ [𝑡

𝑘
− 𝑙, 𝑡

𝑘
+ 𝑙] .

(20)

Therefore, by (10) we have for a.a. 𝑡 ∈ [𝑡
𝑘
− 𝑙, 𝑡

𝑘
+ 𝑙]

̇

𝑉 (𝑡, 𝑥 (𝜎, 𝜙) (𝑡)) ≤ −𝜔(

𝜀

0

2

) . (21)

By taking a subsequence of {𝑡
𝑘
}, if necessary, we can assume

that 𝑡
1
− 𝑙 > 𝜎 and the intervals [𝑡

𝑘
− 𝑙, 𝑡

𝑘
+ 𝑙] do not overlap,

and (10) implies that

𝑉 (𝑡

𝑘
, 𝑥 (𝜎, 𝜙) (𝑡

𝑘
))

= 𝑉 (𝜎, 𝜙 (0)) + ∫

𝑡
𝑘

𝜎

̇

𝑉 (𝑠, 𝑥 (𝜎, 𝜙) (𝑠)) d𝑠

≤ 𝑉 (𝜎, 𝜙 (0)) −

𝑘

∑

𝑖=1

∫

𝑡
𝑖

𝑡
𝑖
−𝑙

𝜔(

𝜀

0

2

) d𝑠

= 𝑉 (𝜎, 𝜙 (0)) − 𝑘𝑙𝜔 (

𝜀

0

2

) .

(22)

If 𝑘 > 𝑉(𝜎, 𝜙(0))/𝑙𝜔(𝜀

0
/2), then

𝑉 (𝑡

𝑘
, 𝑥 (𝜎, 𝜙) (𝑡

𝑘
)) < 0, (23)

which is a contradiction. This proves the asymptotical stabil-
ity.

It is clear that if 𝜑(𝑠) → ∞ as 𝑠 → ∞, then (14) is
true for all 𝜙 ∈ 𝐶. Therefore, the solution 𝑥 = 0 is globally
asymptotically stable.

Take 𝜔(𝑠) ≡ 0; then 𝜔(𝑠) is a continuous nondecreasing
function. Thus we have the following remark.

Remark 5. The conclusion (i) of Theorem 4 also holds, if the
condition (10) is replaced by the following simple condition:

̇

𝑉 (𝑡, 𝑥) ≤ 0. (24)
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Remark 6. Comparing with previous stability results in [1, 9,
10, 15], the advantages of Theorem 4 are as follows.

(i) Theorem 4 can be used to deal with the stability for
retarded differential inclusions or retarded differen-
tial equations with a discontinuous right-hand side
(see Section 4).

(ii) Theorem 4 allows us to use nonsmooth Lyapunov
function to discuss the stability.

(iii) To investigate the asymptotical stability, Theorem 4
drops the condition that the Lyapunov function
should have an infinitesimal upper limit; that is, there
exists a function 𝜑

2
: R+ → R+ such that 𝜑

2
(0) = 0,

𝜑

2
(𝑠) > 0 for 𝑠 > 0, and

𝑉 (𝑡, 𝑥) ≤ 𝜑

2
(‖𝑥‖) . (25)

4. Application

In this section, an application of the main result obtained in
Section 3 is given for analysis of stability of retarded neural
networks with discontinuous activations.

Consider the retarded neural network which is described
by the following differential equation:

�̇�

1
(𝑡) = −𝑥

1
(𝑡) − 𝑎𝑔 (𝑥

1
(𝑡)) + 𝑏𝑔 (𝑥

2
(𝑡 − 1)) ,

�̇�

2
(𝑡) = −𝑥

2
(𝑡) − 𝑎𝑔 (𝑥

2
(𝑡)) + 𝑏𝑔 (𝑥

1
(𝑡 − 1)) ,

(26)

where 𝑥
1
and 𝑥

2
are neuron states, 𝑎 and 𝑏 are constants

representing the neuron interconnection coefficients, and
𝑔(𝑠) : R → R is the neuron input-output activation, which
is defined by

𝑔 (𝑠) = sgn (𝑠) =
{

{

{

{

{

1, 𝑠 > 0,

0, 𝑠 = 0,

−1, 𝑠 < 0.

(27)

Following [18, 19], 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡))

T is a solution of
the system (26) on [𝜎 − 1, +∞) with initial value 𝜙 at 𝜎, if
𝑥 is continuous on [𝜎 − 1, +∞) and absolutely continuous
on any compact subinterval of [𝜎, +∞), and there exists a
measurable function 𝛾(𝑡) = (𝛾

1
(𝑡), 𝛾

2
(𝑡))

T
: [𝜎 − 1, +∞) →

R2 such that 𝛾
𝑖
(𝑡) ∈ 𝐾[𝑔(𝑥

𝑖
(𝑡))], 𝑖 = 1, 2, for a.a. 𝑡 ∈ [𝜎 −

1, +∞) and

�̇�

1
(𝑡) = −𝑥

1
(𝑡) − 𝑎𝛾

1
(𝑡) + 𝑏𝛾

2
(𝑡 − 1) ,

�̇�

2
(𝑡) = −𝑥

2
(𝑡) − 𝑎𝛾

2
(𝑡) + 𝑏𝛾

1
(𝑡 − 1) ,

(28)

where

𝐾[𝑔 (𝑠)] =

{

{

{

{

{

{1} , 𝑠 > 0,

[−1, 1] , 𝑠 = 0,

{−1} , 𝑠 < 0,

(29)

and 𝛾(𝑡) is called an output associated with the solution 𝑥(𝑡).
It is clear that if 𝑥(𝑡) is a solution of the system (26), then

it is a solution of the following retarded differential inclusion:

�̇� (𝑡) ∈ 𝐹 (𝑡, 𝑥

𝑡
) , (30)

where

𝐹 (𝑡, 𝑥

𝑡
) = (

−𝑥

1
(𝑡) − 𝑎𝐾 [𝑔 (𝑥

1
(𝑡))] + 𝑏𝐾 [𝑔 (𝑥

2
(𝑡 − 1))]

−𝑥

2
(𝑡) − 𝑎𝐾 [𝑔 (𝑥

2
(𝑡))] + 𝑏𝐾 [𝑔 (𝑥

1
(𝑡 − 1))]

) .

(31)

It is evident that 𝑥 = (0, 0)

T is a solution of the system
(26). Next we will use Theorem 4 to show that the solution
𝑥 = (0, 0)

T is globally asymptotically stable if 𝑎 ≥ |𝑏|.
Let 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡))

T be a solution of the system (26)
on [𝜎 − 1, +∞) with initial value 𝜙 at 𝜎 and let the output
associated with 𝑥(𝑡) be 𝛾(𝑡) = (𝛾

1
(𝑡), 𝛾

2
(𝑡))

T. Consider the
function

𝑉 (𝑡, 𝑥

1
, 𝑥

2
) = 𝑉

1
(𝑥

1
, 𝑥

2
) + |𝑏| 𝑉

2
(𝑡) , (32)

where
𝑉

1
(𝑥

1
, 𝑥

2
) = ‖𝑥‖ =









𝑥

1









+









𝑥

2









,

𝑉

2
(𝑡) = ∫

𝑡

𝑡−1

(









𝛾

1
(𝑠)









+









𝛾

2
(𝑠)









) d𝑠;
(33)

then 𝑉(𝑡, 𝑥

1
, 𝑥

2
) ≥ ‖𝑥‖, 𝑉

1
(𝑥

1
, 𝑥

2
) is regular, and the

generalized gradient of 𝑉
1
at (𝑥
1
, 𝑥

2
) is

𝜕𝑉

1
(𝑥

1
, 𝑥

2
) = {(𝜂

1
, 𝜂

2
)

T
| 𝜂

𝑖
∈ 𝐾 [𝑔 (𝑥

𝑖
)] , 𝑖 = 1, 2} . (34)

It follows from Lemma 2 that𝑉
1
(𝑥

1
(𝑡), 𝑥

2
(𝑡)) is differentiable

and
̇

𝑉

1
(𝑥

1
, 𝑥

2
) = ⟨𝜁 (𝑡) , (�̇�

1
(𝑡) , �̇�

2
(𝑡))

T
⟩ ,

∀𝜁 (𝑡) ∈ 𝜕𝑉

1
(𝑥

1
(𝑡) , 𝑥

2
(𝑡))

(35)

for a.a. 𝑡 ∈ [𝜎, +∞). Define

V
𝑖
(𝑡) =

{

{

{

{

{

0, 𝑥

𝑖
(𝑡) = 𝛾

𝑖
(𝑡) = 0,

sgn (𝛾
𝑖
(𝑡)) , 𝑥

𝑖
(𝑡) = 0, 𝛾

𝑖
(𝑡) ̸= 0,

sgn (𝑥
𝑖
(𝑡)) , 𝑥

𝑖
(𝑡) ̸= 0,

(36)

𝑖 = 1, 2; then V
𝑖
𝑥

𝑖
= |𝑥

𝑖
|, V
𝑖
𝛾

𝑖
= |𝛾

𝑖
|, and 𝜁(𝑡) = (V

1
(𝑡), V
2
(𝑡))

T
∈

𝜕𝑉

1
(𝑥

1
(𝑡), 𝑥

2
(𝑡)). Note that 𝑎 ≥ |𝑏|; we have

̇

𝑉 (𝑡, 𝑥

1
, 𝑥

2
)

=
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1
(𝑥

1
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2
) + |𝑏|
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2
(𝑡)
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1
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1
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2
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2
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+ |𝑏| (









𝛾

1
(𝑡)









+









𝛾

2
(𝑡)









−









𝛾

1
(𝑡 − 1)
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2
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) = −𝜔 (‖𝑥 (𝑡)‖) ,

(37)

where 𝜔(𝑠) = 𝑠; thus it follows from Theorem 4 that the
solution 𝑥 = (0, 0)

T is globally asymptotically stable; see
Figure 1.
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Figure 1: Dynamical behavior of (26) where initial conditions are
chosen as (𝜃 + 3, 𝜃 + 0.8), (−𝜃 + 2, −𝜃 − 0.8), (0.4, 0.8), and (1.5, 0.6)
for 𝜃 ∈ [−1, 0], and the parameters are fixed as 𝑎 = 2 and 𝑏 = 1.
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