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This paper investigatesmean-square robust exponential stability of the equilibriumpoint of stochastic neural networks with leakage
time-varying delays and impulsive perturbations. By using Lyapunov functions and Razumikhin techniques, some easy-to-test
criteria of the stability are derived. Two examples are provided to illustrate the efficiency of the results.

1. Introduction

In recent years, stability for neural networks with time delay
has been extensively studied due to their great applications
in some practical engineering problems such as signal pro-
cessing, associate memory, and combinatorial optimization
(see [1–3]). In particular, the leakage delay, which exists in
the negative feedback terms (known as forgetting or leakage
terms) of the system, has great impact on the dynamical
behavior of neural networks (see [4–10]). Gopalsamy [4]
initially discussed the problem of bidirectional associative
memory neural networks with constant delays in the leakage
term by using model transformation technique. Then, many
results of stability of neural networks with delays in the
leakage terms are obtained (see, [5–12]).

However, besides time delay, neural networks are often
subject to impulsive perturbation—the abrupt changes at
certain instants, which may be caused by switching phe-
nomenon, frequency change, or other sudden noise (see [13,
14]). The impulsive effect can affect the dynamical behaviors
of the system. Now there are many results on stability of the
neural networks with time delays in the leakage term and
impulsive perturbations under the corresponding delayed
neural networks without impulses must be stable themselves
(see [5–8]). To best of the authors’ knowledge, this is the
first attempt to investigate the stability of the systems under

the corresponding delayed neural networks without impulses
which are unstable themselves.

On the other hand, in real nervous systems, the synaptic
transmission is a noisy process brought on by random
fluctuations from the release of neurotransmitters and other
probabilistic causes [15]. It is well known that a neural
network could be stabilized or destabilized by certain stochas-
tic inputs. Therefore, noise disturbances have an important
effect on the stability of neural networks. Recently, many
interesting results on stochastic effect to the stability of
neural networks with delays have been reported (see [11,
16, 17]). Moreover, uncertainties are unavoidable in practical
implementation of neural networks due to modeling errors
and parameter fluctuation, which also cause instability and
poor performance [12]. Hence, we can obtain a more perfect
model of this situation if we include parameter uncertainties
and stochastic effects in neural networks.

Motivated by the above, it is of practical and theoretical
importance to study the stability problem of impulsive neural
networks with time-varying delays in the leakage term. In
this paper, we will investigate stability for a class of stochastic
neural networks with time-varying delay in the leakage term
and impulses. By using Razumikhin techniques [18–21], some
new robust mean-square exponential stability criteria will
be given under the corresponding delayed neural networks
without impulses which are stable and unstable, respectively.
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2. Problem Formulation

Consider the following uncertain neural networks model
with impulses and leakage time-varying delay

𝑑𝑥 (𝑡) = [−𝐶 (𝑡) 𝑥 (𝑡 − 𝜎 (𝑡)) + 𝐴 (𝑡) 𝑓 (𝑥 (𝑡))

+ 𝐵 (𝑡) 𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))] 𝑑𝑡

+ ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
;

Δ𝑥 (𝑡) = 𝐼𝑘 (𝑥 (𝑡
−
) , 𝑥 (𝑡

−
− 𝜏 (𝑡)) , 𝑥 (𝑡

−
− 𝜎 (𝑡))) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ N,

𝑥 (𝑡
0
+ 𝑠) = 𝜑 (𝑠) , 𝑠 ∈ [−𝜌, 0] ,

(1)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ R𝑛 is the neuron

state vector of the neural networks, 𝐶(𝑡) = diag(𝑐
𝑖
(𝑡))
𝑛×𝑛
> 0,

𝑓(𝑥) = (𝑓
1
(𝑥
1
), 𝑓
2
(𝑥
2
), . . . , 𝑓

𝑛
(𝑥
𝑛
))
𝑇 represents the neuron

activation function, and𝐴(𝑡), 𝐵(𝑡) ∈ R𝑛×𝑛 are the connection
weight matrix. 𝜏(𝑡) is the time-varying delay and 𝜎(𝑡) is the
leakage time-varying delay satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏, 0 ≤
𝜎(𝑡) ≤ 𝜎, 𝜌 = max(𝜏, 𝜎). 𝜔(𝑡) = (𝜔

1
(𝑡), 𝜔
2
(𝑡), . . . , 𝜔

𝑛
(𝑡))
𝑇

is a 𝑛-dimensional Brownian motion defined on complete
probability space (Ω,F,P). 𝑡

𝑘
∈ 𝐽 = {{𝑡

𝑘
} : 0 = 𝑡

0
<

𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→∞
𝑡
𝑘
→ ∞} is impulsive time.

Δ𝑥(𝑡) = 𝑥(𝑡
𝑘
) − 𝑥(𝑡

−

𝑘
) represents the jump in the state 𝑥

at 𝑡
𝑘
with 𝐼

𝑘
determining the size of the jump and 𝑥(𝑡+

𝑘
) =

𝑥(𝑡
𝑘
). The initial conditions 𝜑(𝑡) ∈ 𝑃𝐶𝑏F0([−𝜌, 0];R

𝑛
), where

𝑃𝐶
𝑏

F0
([−𝜌, 0];R𝑛) denotes the family of all bounded F

0

measurable and 𝑃𝐶([−𝜌, 0],R𝑛) valued random variable 𝜑,
satisfying E‖𝜑‖

2
= sup

−𝜌≤𝑠≤0
E|𝜑(𝑠)|

2
< +∞; E denotes

the mathematical expectation. 𝑃𝐶(𝐽,R𝑛) = {𝜑 : 𝐽 →
R𝑛 is piecewise continuous}.

Throughout this paper, symmetric matrix𝑀 ≥ 0 (resp.,
𝑀 > 0) means that the matrix 𝑀 is positive semidefinite
(resp., positive definite). 𝐼 denotes an identity matrix. The
notation𝑀𝑇 represents the transpose of the matrix𝑀. The
symmetric terms in asymmetric matrix are denoted by ∗.
𝜆max(𝐴) and 𝜆min(𝐴) mean the largest and the smallest
eigenvalue of 𝐴, respectively.

In this paper, we assume that 𝑥∗ = (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 is

the equilibrium point of the system (1). And we have the
following assumptions.

(A
1
) The neuron activation function 𝑓

𝑗
(𝑥) is continuous

on R and satisfies

𝑙
𝑗
≤
𝑓
𝑗 (𝑢) − 𝑓𝑗 (V)
𝑢 − V

≤ 𝐿
𝑗
,

𝑗 = 1, 2, . . . , 𝑛, for any 𝑢, V ∈ R, 𝑢 ̸= V,

(2)

where 𝑙
𝑗
, 𝐿
𝑗
are some real constants and they may be

positive, zero, or negative.

(A
2
) Consider

𝐼
𝑘
(𝑥 (𝑡
−
) , 𝑥 (𝑡

−
− 𝜏 (𝑡)) , 𝑥 (𝑡

−
− 𝜎 (𝑡)))

= (𝐺
1𝑘 (𝑡) − 𝐼) (𝑥 (𝑡

−
) − 𝑥
∗
) + 𝐺
2𝑘 (𝑡) (𝑥 (𝑡

−
− 𝜏 (𝑡)) − 𝑥

∗
)

+ 𝐺
3𝑘 (𝑡) (𝑥 (𝑡

−
− 𝜎 (𝑡)) − 𝑥

∗
) ,

(3)

where 𝐺
𝑖𝑘
(𝑡) ∈ R𝑛×𝑛, 𝑖 = 1, 2, 3, and 𝑘 ∈ N.

(A
3
) Consider ℎ(𝑥(𝑡), 𝑥(𝑡−𝜏(𝑡)), 𝑥(𝑡−𝜎(𝑡))) = 𝐻

1
(𝑡)(𝑥(𝑡)−

𝑥
∗
) +𝐻
2
(𝑡)(𝑥(𝑡 − 𝜏(𝑡)) −𝑥

∗
) +𝐻
3
(𝑡)(𝑥(𝑡 −𝜎(𝑡)) −𝑥

∗
).

Let 𝑦(𝑡) = 𝑥(𝑡) − 𝑥∗, and system (1) becomes

𝑑𝑦 (𝑡) = [ − 𝐶 (𝑡) 𝑦 (𝑡 − 𝜎 (𝑡)) + 𝐴 (𝑡) 𝑔 (𝑦 (𝑡))

+𝐵 (𝑡) 𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))] 𝑑𝑡

+ [𝐻
1 (𝑡) 𝑦 (𝑡) + 𝐻2 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))

+𝐻
3
(𝑡) 𝑦 (𝑡 − 𝜎 (𝑡))] 𝑑𝜔 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
;

Δ𝑦 (𝑡) = (𝐺
1𝑘
(𝑡) − 𝐼) 𝑦 (𝑡

−
) + 𝐺
2𝑘
(𝑡) 𝑦 ((𝑡 − 𝜏 (𝑡))

−
)

+ 𝐺
3𝑘
(𝑡) 𝑦 ((𝑡 − 𝜎 (𝑡))

−
) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N,

𝑦 (𝑡
0
+ 𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] ,

(4)

where 𝑔(𝑦(𝑡)) = 𝑓(𝑥(𝑡)) − 𝑓(𝑥
∗
) =

(𝑔
1
(𝑦
1
(𝑡)), 𝑔

2
(𝑦
2
(𝑡)), . . ., 𝑔

𝑛
(𝑦
𝑛
(𝑡)))
𝑇, 𝜙(𝑠) = 𝜑(𝑠)−𝑥∗.

(A
4
) We consider the parameter uncertainties expressed as

𝐴 (𝑡) = 𝐴 + Δ𝐴 (𝑡) , 𝐵 (𝑡) = 𝐵 + Δ𝐵 (𝑡) ,

𝐶 (𝑡) = 𝐶 + Δ𝐶 (𝑡) ,

𝐻
𝑖
(𝑡) = 𝐻

𝑖
+ Δ𝐻
𝑖
(𝑡) , 𝐺

𝑖𝑘
(𝑡) = 𝐺

𝑖𝑘
+ Δ𝐺
𝑖𝑘
(𝑡) ,

𝑖 = 1, 2, 3, 𝑘 ∈ N,

(5)

where 𝐴, 𝐵, 𝐶, 𝐻
𝑖
, and 𝐺

𝑖𝑘
are known real constant

matrices; Δ𝐴(𝑡), Δ𝐵(𝑡), Δ𝐶(𝑡), Δ𝐻
𝑖
(𝑡), and Δ𝐺

𝑖𝑘
(𝑡)

are unknown matrices representing the parameter
uncertainties, which are assumed to be the following
form:

[Δ𝐶 (𝑡) Δ𝐴 (𝑡) Δ𝐵 (𝑡)] = 𝐸
1
𝐹
1
(𝑡) [𝑀1 𝑀2 𝑀3] ,

[Δ𝐻1 (𝑡) Δ𝐻2 (𝑡) Δ𝐻3 (𝑡)] = 𝐸2𝐹2 (𝑡) [𝑁1 𝑁2 𝑁3] ,

[Δ𝐺1𝑘 (𝑡) Δ𝐺2𝑘 (𝑡) Δ𝐺3𝑘 (𝑡)] = 𝐸3𝐹2 (𝑡) [𝑈1 𝑈2 𝑈3] ,

(6)

where 𝑈
𝑖
, 𝐸
𝑖
, 𝑀
𝑖
, 𝑁
𝑖
(𝑖 = 1, 2, 3) are known real

constant matrices and 𝐹
𝑖
(𝑡) are unknown real time-

varying matrix functions satisfying 𝐹𝑇
𝑖
(𝑡)𝐹
𝑖
(𝑡) ≤ 𝐼,

𝑖 = 1, 2, 3.

Remark 1. Assumptions (A
1
)–(A
4
) imply that system (4)

satisfies the local Lipschitz condition and linear growth
condition. Thus there exists a unique solution of system (4).
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Definition 2. The equilibrium point 𝑥∗ of system (1) is said to
be robustly exponentially stable in the mean square, if there
exists scalars 𝛾 > 0 and 𝛿 > 0 such that for any 𝜀 > 0
and initial condition 𝜑 satisfying E‖𝜑‖ ≤ 𝛿 which implies
E|𝑥(𝑡; 𝑡

0
, 𝜑) − 𝑥

∗
| < 𝜀𝑒
−𝛾(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
.

Lemma3 (see [22]). Givenmatrices𝐷,𝐸, and𝐹with𝐹𝑇𝐹 ≤ 𝐼
and a scalar 𝜀 > 0, then

𝐷𝐹𝐸 + 𝐸
𝑇
𝐹
𝑇
𝐷
𝑇
≤ 𝜀𝐷𝐷

𝑇
+ 𝜀
−1
𝐸
𝑇
𝐸. (7)

3. Main Results

Theorem 4. Suppose that assumptions (A
1
)–(A
4
) hold and for

prescribed scalar Δmax > 0, choose positive scalars 𝛼, 𝛽, and
𝜇
1
> 0, 𝜇

2
> 0, 𝜇

3
> 0, such that 𝜇

1
+ 𝜇
2
+ 𝜇
3
< 1. Then the

equilibrium point of system (1) is robustly exponentially stable
in the mean square over any impulse time sequences satisfying
sup{𝑡
𝑘
− 𝑡
𝑘−1
| 𝑘 = 1, 2, . . .} ≤ Δmax, if there exist positive

definite matrix 𝑃 > 0 and definite diagonal matrices𝑊
1
,𝑊
2
,

and positive constants 𝜀
1
, 𝜀
2
, 𝜀
3
such that the following LMI

holds:

[
[
[
[
[
[
[
[
[
[
[

[

−𝜇
1
𝑃 + 𝜀
1
𝑈
𝑇

1
𝑈
1

𝜀
1
𝑈
𝑇

1
𝑈
2

𝜀
1
𝑈
𝑇

1
𝑈
3

𝐺
𝑇

1𝑘
𝑃 0

∗ −𝜇
2
𝑃 + 𝜀
1
𝑈
𝑇

2
𝑈
2

𝜀
1
𝑈
𝑇

2
𝑈
3

𝐺
𝑇

2𝑘
𝑃 0

∗ ∗ −𝜇
3
𝑃 + 𝜀
1
𝑈
𝑇

3
𝑈
3
𝐺
𝑇

3𝑘
𝑃 0

∗ ∗ ∗ −𝑃 𝑃𝐸
3

∗ ∗ ∗ ∗ −𝜀
1
𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0, (8)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11
𝜀
3
𝑁
𝑇

1
𝑁
2
−𝑃𝐶 + 𝜀

3
𝑁
𝑇

1
𝑁
3

𝑃𝐴 +𝑊
1
𝐾
1

𝑃𝐵 𝐻
𝑇

1
𝑃 𝑃𝐸

1
0

∗ Ω
22

𝜀
3
𝑁
𝑇

2
𝑁
3

0 𝑊
2
𝐾
1

𝐻
𝑇

2
𝑃 0 0

∗ ∗ Ω
33

−𝜀
2
𝑀
𝑇

1
𝑀
2

−𝜀
2
𝑀
𝑇

1
𝑀
3

𝐻
𝑇

3
𝑃 0 0

∗ ∗ ∗ −𝑊
1
+ 𝜀
2
𝑀
𝑇

2
𝑀
2

𝜀
2
𝑀
𝑇

2
𝑀
3

0 0 0

∗ ∗ ∗ ∗ −𝑊
2
+ 𝜀
2
𝑀
𝑇

3
𝑀
3
0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃 0 𝑃𝐸
2

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (9)

whereΩ
11
= [(𝛼+𝛽)/(𝜇

1
+𝜇
2
+𝜇
3
)+ ln(𝜇

1
+𝜇
2
+𝜇
3
)/Δmax]𝑃−

𝑊
1
𝐾
2
+ 𝜀
3
𝑁
𝑇

1
𝑁
1
, Ω
22
= −𝛼𝑃 − 𝑊

2
𝐾
2
+ 𝜀
3
𝑁
𝑇

2
𝑁
2
, Ω
33
=

−𝛽𝑃 + 𝜀
2
𝑀
𝑇

1
𝑀
1
+ 𝜀
3
𝑁
𝑇

3
𝑁
3
, 𝐾
1
= diag(((𝑙

1
+ 𝐿
1
)/2), ((𝑙

2
+

𝐿
2
)/2), . . . , ((𝑙

𝑛
+ 𝐿
𝑛
)/2)), 𝐾

2
= diag(𝑙

1
𝐿
1
, 𝑙
2
𝐿
2
, . . . , 𝑙
𝑛
𝐿
𝑛
).

Proof. Since the matrix inequality (9) holds, we can choose
small enough scalars 𝜂 > 0, ℎ > 0 satisfying 𝜇

1
+ 𝜇
2
𝑒
2𝜂𝜏
+

𝜇
3
𝑒
2𝜂𝜎
< 1 and ℎ < 1 − 𝜇

1
− 𝜇
2
𝑒
2𝜂𝜏
− 𝜇
3
𝑒
2𝜂𝜎, such that

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11
𝜀
3
𝑁
𝑇

1
𝑁
2
−𝑃𝐶 + 𝜀

3
𝑁
𝑇

1
𝑁
3

𝑃𝐴 +𝑊
1
𝐾
1

𝑃𝐵 𝐻
𝑇

1
𝑃 𝑃𝐸

1
0

∗ Ω
22

𝜀
3
𝑁
𝑇

2
𝑁
3

0 𝑊
2
𝐾
1

𝐻
𝑇

2
𝑃 0 0

∗ ∗ Ω
33

−𝜀
2
𝑀
𝑇

1
𝑀
2

−𝜀
2
𝑀
𝑇

1
𝑀
3

𝐻
𝑇

3
𝑃 0 0

∗ ∗ ∗ −𝑊
1
+ 𝜀
2
𝑀
𝑇

2
𝑀
2

𝜀
2
𝑀
𝑇

2
𝑀
3

0 0 0

∗ ∗ ∗ ∗ −𝑊
2
+ 𝜀
2
𝑀
𝑇

3
𝑀
3
0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃 0 𝑃𝐸
2

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (10)
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whereΩ
11
= [2𝜂+(𝛼+𝛽)/(𝜇

1
+𝜇
2
𝑒
2𝜂𝜏
+𝜇
3
𝑒
2𝜂𝜎
)+ln(𝜇

1
+𝜇
2
𝑒
2𝜂𝜏
+

𝜇
3
𝑒
2𝜂𝜎
+ ℎ)/Δmax]𝑃 − 𝑊1𝐾2 + 𝜀3𝑁

𝑇

1
𝑁
1
, Ω
22
= −𝛼𝑒

−2𝜂𝜏
𝑃 −

𝑊
2
𝐾
2
+ 𝜀
3
𝑁
𝑇

2
𝑁
2
, Ω
33
= −𝛽𝑒

−2𝜂𝜎
𝑃 + 𝜀
2
𝑀
𝑇

1
𝑀
1
+ 𝜀
3
𝑁
𝑇

3
𝑁
3
.

Let 𝑞 = 1/(𝜇
1
+ 𝜇
2
𝑒
2𝜂𝜏
+ 𝜇
3
𝑒
2𝜂𝜎
), 𝜆 = − ln(𝜇

1
+ 𝜇
2
𝑒
2𝜂𝜏
+

𝜇
3
𝑒
2𝜂𝜎
+ ℎ)/Δmax; then 𝜆 > 0, 𝑞 > 1, 𝑒

𝜆Δmax < 𝑞.
Define Lyapunov function

𝑉 (𝑡, 𝑦 (𝑡)) = 𝑒
2𝜂𝑡
𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡) . (11)

From the condition (8), applying Schur complement [23] and
Lemma 3, we have

[

[

−𝜇
1
𝑃 0 0

0 −𝜇
2
𝑃 0

0 0 −𝜇
3
𝑃

]

]

+

[
[
[
[
[

[

𝐺
𝑇

1𝑘
(𝑡)

𝐺
𝑇

2𝑘
(𝑡)

𝐺
𝑇

3𝑘
(𝑡)

]
]
]
]
]

]

× 𝑃 [𝐺1𝑘 (𝑡) 𝐺2𝑘 (𝑡) 𝐺3𝑘 (𝑡)] < 0.

(12)

Therefore, when 𝑡 = 𝑡
𝑘
,

𝑉 (𝑡
𝑘
) = 𝑒
2𝜂𝑡
𝑦
𝑇
(𝑡
𝑘
) 𝑃𝑦 (𝑡

𝑘
)

= 𝑒
2𝜂𝑡[

[

𝑦(𝑡
−

𝑘
)

𝑦(𝑡
−

𝑘
− 𝜏(𝑡
𝑘
))

𝑦(𝑡
−

𝑘
− 𝜎(𝑡
𝑘
))

]

]

𝑇[
[
[
[
[

[

𝐺
𝑇

1𝑘
(𝑡)

𝐺
𝑇

2𝑘
(𝑡)

𝐺
𝑇

3𝑘
(𝑡)

]
]
]
]
]

]

× 𝑃 [𝐺1𝑘 (𝑡) 𝐺2𝑘 (𝑡) 𝐺3𝑘 (𝑡)]
[

[

𝑦 (𝑡
−

𝑘
)

𝑦 (𝑡
−

𝑘
− 𝜏 (𝑡
𝑘
))

𝑦 (𝑡
−

𝑘
− 𝜎 (𝑡

𝑘
))

]

]

≤ 𝜇
1
𝑉 (𝑡
−

𝑘
) + 𝜇
2
𝑒
2𝜂𝜏
𝑉 (𝑡
−

𝑘
− 𝜏 (𝑡
𝑘
))

+ 𝜇
3
𝑒
2𝜂𝜎
𝑉 (𝑡
−

𝑘
− 𝜎 (𝑡

𝑘
)) .

(13)
When 𝑡 ̸= 𝑡

𝑘
, applying the Itô formula, we have

L𝑉 (𝑡, 𝑦 (𝑡)) = 2𝜂𝑒
2𝜂𝑡
𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡) + 2𝑒

2𝜂𝑡
𝑦
𝑇
(𝑡)

× 𝑃 [ − 𝐶 (𝑡) 𝑦 (𝑡 − 𝜎 (𝑡)) + 𝐴 (𝑡) 𝑔 (𝑦 (𝑡))

+𝐵 (𝑡) 𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))]

+ 𝑒
2𝜂𝑡
[𝐻
1
(𝑡) 𝑦 (𝑡) + 𝐻

2
(𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))

+𝐻
3
(𝑡) 𝑦 (𝑡 − 𝜎 (𝑡))]

𝑇

× 𝑃 [𝐻
1 (𝑡) 𝑦 (𝑡) + 𝐻2 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))

+𝐻
3
(𝑡) 𝑦 (𝑡 − 𝜎 (𝑡))] .

(14)
Let

𝑊(𝑡) =L𝑉 (𝑡) + 𝛼 (𝑞𝑉 (𝑡) − 𝑉 (𝑡 − 𝜏 (𝑡)))

+ 𝛽 (𝑞𝑉 (𝑡) − 𝑉 (𝑡 − 𝜎 (𝑡))) − 𝜆𝑉 (𝑡) .

(15)

Fromassumption (A
1
), the following inequalities hold for any

diagonal matrices𝑊
1
> 0,𝑊

2
> 0,

𝑒
2𝜂𝑡
[𝑔 (𝑦 (𝑡))𝑊

1
𝑔 (𝑦 (𝑡)) − 2𝑦

𝑇
(𝑡)𝑊
1
𝐾
1
𝑔 (𝑦 (𝑡))

+ 𝑦
𝑇
(𝑡)𝑊1𝐾2𝑦 (𝑡)] ≤ 0,

𝑒
2𝜂𝑡
[𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))𝑊

2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) − 2𝑦

𝑇
(𝑡 − 𝜏 (𝑡))

× 𝑊
2
𝐾
1
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) + 𝑦

𝑇
(𝑡 − 𝜏 (𝑡))

×𝑊
2
𝐾
2
𝑦 (𝑡 − 𝜏 (𝑡)) ] ≤ 0.

(16)

Set

𝜉
𝑇
(𝑡) = (𝑦

𝑇
(𝑡) , 𝑦
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝑦

𝑇
(𝑡 − 𝜎 (𝑡)) , 𝑔

𝑇
(𝑦 (𝑡)) ,

𝑔
𝑇
(𝑦 (𝑡 − 𝜏 (𝑡)))) .

(17)

Combining (15)–(16) together, we have

𝑊(𝑡) ≤ 𝑒
2𝜂𝑡
𝜉
𝑇
(𝑡) Ψ𝜉 (𝑡) , (18)

where

Ψ =

[
[
[
[
[

[

Γ
11
0 −𝑃𝐶 (𝑡) 𝑃𝐴 (𝑡) + 𝑊

1
𝐾
1
𝑃𝐵 (𝑡)

∗ Γ
22

0 0 𝑊
2
𝐾
1

∗ ∗ −𝛽𝑃 0 0

∗ ∗ ∗ −𝑊
1

0

∗ ∗ ∗ ∗ −𝑊
2

]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[

[

𝐻
𝑇

1
(𝑡) 𝑃

𝐻
𝑇

2
(𝑡) 𝑃

𝐻
𝑇

3
(𝑡) 𝑃

0

0

]
]
]
]
]
]
]
]
]

]

𝑃
−1

[
[
[
[
[
[
[
[
[

[

𝐻
𝑇

1
(𝑡) 𝑃

𝐻
𝑇

2
(𝑡) 𝑃

𝐻
𝑇

3
(𝑡) 𝑃

0

0

]
]
]
]
]
]
]
]
]

]

𝑇

,

Γ
11
= 2𝜂𝑃 + 𝛼𝑞𝑃 + 𝛽𝑞𝑃 −𝑊

1
𝐾
2
− 𝜆𝑃,

Γ
22
= −𝛼𝑃 −𝑊

2
𝐾
2
.

(19)

Using the similar method for uncertain parameters as above
and from (10), we can get Ψ < 0. Then we have E𝑊(𝑡) < 0;
that is,

EL𝑉 (𝑡) + 𝛼 (𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜏 (𝑡)))

+ 𝛽 (𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜎 (𝑡))) < 𝜆E𝑉 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
.

(20)

Let 𝜆
1
= 𝜆max(𝑃), 𝜆0 = 𝜆min(𝑃). For any 𝜀 > 0, there exists a

𝛿 > 0, such that 𝑞𝜆
1
𝛿
2
< 𝜆
0
𝜀
2.

In the following, we will prove that when the initial
function 𝜙 satisfies E‖𝜙‖ < 𝛿, we have

E𝑉 (𝑡) < 𝜆
0
𝜀
2
, 𝑡 ≥ 𝑡

0
− 𝜌. (21)
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First, for 𝑡 ∈ [𝑡
0
− 𝜌, 𝑡
0
],

E𝑉 (𝑡) = E (𝑒
2𝜂𝑡
𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡))

≤ 𝜆
1
E
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2
≤ 𝜆
1
𝛿
2
<
1

𝑞
𝜆
0
𝜀
2
< 𝜆
0
𝜀
2
.

(22)

Then we will prove that

E𝑉 (𝑡) < 𝜆
0
𝜀
2
, 𝑡 ∈ [𝑡

0
, 𝑡
1
) . (23)

If the above inequality does not hold, then there exist 𝑡∗ =
inf{𝑡 ∈ (𝑡

0
, 𝑡
1
) : E𝑉(𝑡) ≥ 𝜆

0
𝜀
2
}, such that E𝑉(𝑡∗) = 𝜆

0
𝜀
2. Set

𝑡 = sup{𝑡 ∈ [𝑡
0
, 𝑡
∗
) : E𝑉(𝑡) ≤ (1/𝑞)𝜆

0
𝜀
2
}; then 𝑡 ∈ (𝑡

0
, 𝑡
∗
) and

E𝑉(𝑡) = (1/𝑞)𝜆
0
𝜀
2. Hence for all 𝑡 ∈ (𝑡, 𝑡∗), 𝑞E𝑉(𝑡) ≥ 𝜆

0
𝜀
2
>

E𝑉(𝑡 + 𝜃), ∀𝜃 ∈ [−𝜌, 0], which implies that

𝑞E𝑉 (𝑡) > E𝑉 (𝑡 − 𝜏 (𝑡)) , 𝑞E𝑉 (𝑡) > E𝑉 (𝑡 − 𝜎 (𝑡))

for 𝑡 ∈ (𝑡, 𝑡∗) .
(24)

It follows from (20) that for any 𝛼 > 0, 𝛽 > 0 and 𝑡 ∈ (𝑡, 𝑡∗),
we have

𝐷
+
E𝑉 (𝑡) = EL𝑉 (𝑡) < EL𝑉 (𝑡)

+ 𝛼 [𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜏 (𝑡))]

+ 𝛽 [𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜎 (𝑡))] < 𝜆E𝑉 (𝑡) ,

(25)

which leads to E𝑉(𝑡∗) ≤ E𝑉(𝑡)𝑒𝜆(𝑡
∗
−𝑡)
≤ E𝑉(𝑡)𝑒𝜆Δmax =

(1/𝑞)𝑒
𝜆Δmax𝜆

0
𝜀
2
< 𝜆
0
𝜀
2. This is a contradiction.

Thus (23) holds.
Now we assume that for some 𝑚 ∈ N, E𝑉(𝑡) < 𝜆

0
𝜀
2, 𝑡 ∈

[𝑡
0
− 𝜌, 𝑡
𝑚
); we will prove that

E𝑉 (𝑡) < 𝜆
0
𝜀
2
, 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1
) . (26)

From (13), we have

E𝑉 (𝑡
𝑚
) ≤ 𝜇
1
E𝑉 (𝑡
−

𝑘
) + 𝜇
2
𝑒
2𝜂𝜏

E𝑉 (𝑡
−

𝑘
− 𝜏 (𝑡
𝑘
))

+ 𝜇
3
𝑒
2𝜂𝜎

E𝑉 (𝑡
−

𝑘
− 𝜎 (𝑡

𝑘
))

< (𝜇
1
+ 𝜇
2
𝑒
2𝜂𝜏
+ 𝜇
3
𝑒
2𝜂𝜎
) 𝜆
0
𝜀
2

=
1

𝑞
𝜆
0
𝜀
2
< 𝜆
0
𝜀
2
.

(27)

Suppose (26) does not hold; then there exists 𝑡∗ = inf{𝑡 ∈
(𝑡
𝑚
, 𝑡
𝑚+1
) : E𝑉(𝑡) ≥ 𝜆

0
𝜀
2
} and E𝑉(𝑡∗) = 𝜆

0
𝜀
2. Set 𝑡 = sup{𝑡 ∈

[𝑡
𝑚
, 𝑡
∗
) : E𝑉(𝑡) ≤ (1/𝑞)𝜆

0
𝜀
2
}, and then from (27), 𝑡 ∈ (𝑡

𝑚
, 𝑡
∗
)

andE𝑉(𝑡) = (1/𝑞)𝜆
0
𝜀
2. In the sequel, the proof is very similar

with the proof of (23).Therefore (26) holds. By mathematical
induction, inequality (21) holds. This together with E𝑉(𝑡) ≥

𝜆
0
𝑒
2𝜂𝑡E|𝑦(𝑡)|

2, we have

E
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 < 𝜀𝑒
−𝜂𝑡
. (28)

This completes the proof of Theorem 4.

Remark 5. Theorem 4 shows that robustly exponential sta-
bility of system (1) can be achieved by adjusting suitable
impulsive control and appropriate impulsive intervals even
if the given networks without impulses may be unstable or
chaotic themselves.

Remark 6. In [5], the authors investigated the stability of
neural networks with delayed leakage term and impul-
sive perturbations. However, the neural networks without
impulses must be stable. Moreover, parameter uncertainties
and stochastic effects were not taken into account in the
models. Hence, the results in this paper have wider adaptive
range.

Theorem 7. Suppose that assumptions (A
1
)–(A
4
) hold and for

prescribed scalars Δmin > 0, choose positive scalars 𝛼, 𝛽, 𝜇1,
𝜇
2
, 𝜇
3
, satisfying 𝜇

1
+ 𝜇
2
+ 𝜇
3
≥ 1 and 𝜇

1
+ 𝜇
2
𝑒
𝑐𝜏
+ 𝜇
3
𝑒
𝑐𝜎
<

𝑒
𝑐Δmin . Then the equilibrium point of system (1) is robustly
exponentially stable in the mean square over any impulse time
sequences satisfying inf{𝑡

𝑘
−𝑡
𝑘−1
| 𝑘 = 1, 2, . . .} ≥ Δmin, if there

exist positive definite matrix 𝑃 and positive definite diagonal
matrices𝑊

1
,𝑊
2
and positive constants 𝜀

1
, 𝜀
2
, 𝜀
3
such that (8)

and the following LMI hold:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11
𝜀
3
𝑁
𝑇

1
𝑁
2
−𝑃𝐶 + 𝜀

3
𝑁
𝑇

1
𝑁
3

𝑃𝐴 +𝑊
1
𝐾
1

𝑃𝐵 𝐻
𝑇

1
𝑃 𝑃𝐸

1
0

∗ Ω
22

𝜀
3
𝑁
𝑇

2
𝑁
3

0 𝑊
2
𝐾
1

𝐻
𝑇

2
𝑃 0 0

∗ ∗ Ω
33

−𝜀
2
𝑀
𝑇

1
𝑀
2

−𝜀
2
𝑀
𝑇

1
𝑀
3

𝐻
𝑇

3
𝑃 0 0

∗ ∗ ∗ −𝑊
1
+ 𝜀
2
𝑀
𝑇

2
𝑀
2

𝜀
2
𝑀
𝑇

2
𝑀
3

0 0 0

∗ ∗ ∗ ∗ −𝑊
2
+ 𝜀
2
𝑀
𝑇

3
𝑀
3
0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃 0 𝑃𝐸
2

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (29)
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where Ω
11
= [(𝛼 + 𝛽)(𝜇

1
+ 𝜇
2
𝑒
𝑐𝜏
+ 𝜇
3
𝑒
𝑐𝜎
) + ln(𝜇

1
+ 𝜇
2
𝑒
𝑐𝜏
+

𝜇
3
𝑒
𝑐𝜎
)/Δmin]𝑃 − 𝑊1𝐾2 + 𝜀3𝑁

𝑇

1
𝑁
1
and Ω

22
= −𝛼𝑃 −𝑊

2
𝐾
2
+

𝜀
3
𝑁
𝑇

2
𝑁
2
, Ω
33
= −𝛽𝑃 + 𝜀

2
𝑀
𝑇

1
𝑀
1
+ 𝜀
3
𝑁
𝑇

3
𝑁
3
.

Proof. Since the matrix inequality (29) holds, we can choose
small enough scalars 𝜂 > 0, ℎ > 0 satisfying ln(𝜇

1
+ 𝜇
2
𝑒
𝑐𝜏
+

𝜇
3
𝑒
𝑐𝜎
+ 2ℎ)/Δmin + 2𝜂 ≤ 𝑐, such that the following matrix

inequality holds:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11
𝜀
3
𝑁
𝑇

1
𝑁
2
−𝑃𝐶 + 𝜀

3
𝑁
𝑇

1
𝑁
3

𝑃𝐴 +𝑊
1
𝐾
1

𝑃𝐵 𝐻
𝑇

1
𝑃 𝑃𝐸

1
0

∗ Ω
22

𝜀
3
𝑁
𝑇

2
𝑁
3

0 𝑊
2
𝐾
1

𝐻
𝑇

2
𝑃 0 0

∗ ∗ Ω
33

−𝜀
2
𝑀
𝑇

1
𝑀
2

−𝜀
2
𝑀
𝑇

1
𝑀
3

𝐻
𝑇

3
𝑃 0 0

∗ ∗ ∗ −𝑊
1
+ 𝜀
2
𝑀
𝑇

2
𝑀
2

𝜀
2
𝑀
𝑇

2
𝑀
3

0 0 0

∗ ∗ ∗ ∗ −𝑊
2
+ 𝜀
2
𝑀
𝑇

3
𝑀
3
0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃 0 𝑃𝐸
2

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (30)

where Ω
11
= [2𝜂 + (𝛼 + 𝛽)(𝜇

1
+ 𝜇
2
𝑒
𝑐𝜏
+ 𝜇
3
𝑒
𝑐𝜎
+ ℎ) + ln(𝜇

1
+

𝜇
2
𝑒
𝑐𝜏
+𝜇
3
𝑒
𝑐𝜎
+2ℎ)/Δmin]𝑃−𝑊1𝐾2+𝜀3𝑁

𝑇

1
𝑁
1
,Ω
22
= −𝛼𝑒

−2𝜂𝜏
𝑃−

𝑊
2
𝐾
2
+ 𝜀
3
𝑁
𝑇

2
𝑁
2
, andΩ

33
= −𝛽𝑒

−2𝜂𝜎
𝑃+ 𝜀
2
𝑀
𝑇

1
𝑀
1
+ 𝜀
3
𝑁
𝑇

3
𝑁
3
.

Set 𝑞 = 𝜇
1
+ 𝜇
2
𝑒
𝑐𝜏
+ 𝜇
3
𝑒
𝑐𝜎
+ ℎ, 𝜆 = ln(𝜇

1
+ 𝜇
2
𝑒
𝑐𝜏
+ 𝜇
3
𝑒
𝑐𝜎
+

2ℎ)/Δmin; then 𝜆 > 0, 𝑞 > 1, 𝑒
𝜆Δmin > 𝑞.

Define Lyapunov function

𝑉 (𝑡, 𝑦 (𝑡)) = 𝑒
2𝜂𝑡
𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡) (31)

and function
𝑊(𝑡) =L𝑉 (𝑡) + 𝛼 (𝑞𝑉 (𝑡) − 𝑉 (𝑡 − 𝜏 (𝑡)))

+ 𝛽 (𝑞𝑉 (𝑡) − 𝑉 (𝑡 − 𝜎 (𝑡))) + 𝜆𝑉 (𝑡) .

(32)

Similar to the proof Theorem 4, if (8) and (29) hold, we have

𝑉 (𝑡
𝑘
) = 𝑒
2𝜂𝑡
𝑦
𝑇
(𝑡
𝑘
) 𝑃𝑦 (𝑡

𝑘
)

≤ 𝜇
1
𝑉 (𝑡
−

𝑘
) + 𝜇
2
𝑒
2𝜂𝜏
𝑉 (𝑡
−

𝑘
− 𝜏 (𝑡
𝑘
))

+ 𝜇
3
𝑒
2𝜂𝜎
𝑉 (𝑡
−

𝑘
− 𝜎 (𝑡

𝑘
)) , 𝑡 = 𝑡

𝑘
,

(33)

and E𝑊(𝑡) < 0 for 𝑡 ̸= 𝑡
𝑘
, which implies that

EL𝑉 (𝑡) + 𝛼 (𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜏 (𝑡)))

+ 𝛽 (𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜎 (𝑡))) < −𝜆E𝑉 (𝑡) .
(34)

For any 𝜀 > 0, there exists 𝛿 > 0, such that 𝑞𝜆
1
𝛿
2
< 𝜆
0
𝜀
2.

In the following, we will prove that when the initial function
𝜙 ∈ 𝑃𝐶

𝑏

F0
([−𝜌, 0];R𝑛) satisfies E‖𝜙‖ < 𝛿, we have

E𝑉 (𝑡) < 𝜆
0
𝜀
2
, 𝑡 ≥ 𝑡

0
− 𝜌. (35)

First, for 𝑡 ∈ [𝑡
0
− 𝜌, 𝑡
0
],

E𝑉 (𝑡) = E𝑒
2𝜂𝑡
𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡) ≤ 𝜆1E

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2
≤ 𝜆
1
𝛿
2

<
1

𝑞
𝜆
0
𝜀
2
< 𝜆
0
𝜀
2
.

(36)

Then we will prove that

E𝑉 (𝑡) < 𝜆
0
𝜀
2
, 𝑡 ∈ [𝑡

0
, 𝑡
1
) . (37)

If (37) does not hold, there exists 𝑡∗ = inf{𝑡 ∈ [𝑡
0
, 𝑡
1
) :

E𝑉(𝑡) ≥ 𝜆
0
𝜀
2
}. From (36), 𝑡∗ ∈ (𝑡

0
, 𝑡
1
) and E𝑉(𝑡∗) = 𝜆

0
𝜀
2.

Set 𝑡 = sup{𝑡 ∈ [𝑡
0
, 𝑡
∗
) : E𝑉(𝑡) ≤ (1/𝑞)𝜆

0
𝜀
2
}; then 𝑡 ∈ (𝑡

0
, 𝑡
∗
)

and E𝑉(𝑡) = (1/𝑞)𝜆
0
𝜀
2.

So for 𝑡 ∈ (𝑡, 𝑡∗) and any 𝜃 ∈ [−𝜌, 0], we have 𝑞E𝑉(𝑡) ≥
𝜆
0
𝜀
2
> E𝑉(𝑡 + 𝜃). It follows from (34) that for any 𝛼 > 0,

𝛽 > 0 and 𝑡 ∈ (𝑡, 𝑡∗),

𝐷
+
E𝑉 (𝑡) = EL𝑉 (𝑡) ≤ EL𝑉 (𝑡)

+ 𝛼 [𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜏 (𝑡))]

+ 𝛽 [𝑞E𝑉 (𝑡) − E𝑉 (𝑡 − 𝜎 (𝑡))] < −𝜆E𝑉 (𝑡) .

(38)

Then we have 𝜆
0
𝜀
2
= E𝑉(𝑡∗) < E𝑉(𝑡)𝑒−𝜆(𝑡

∗
−𝑡)
≤ E𝑉(𝑡) =

(1/𝑞)𝜆
0
𝜀
2
< 𝜆
0
𝜀
2. This is a contradiction. Thus (37) holds.

Suppose that for some 𝑚 ∈ N, E𝑉(𝑡) < 𝜆
0
𝜀
2, 𝑡 ∈ [𝑡

0
−

𝜌, 𝑡
𝑚
). We will prove that

E𝑉 (𝑡) < 𝜆0𝜀
2
, 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1
) . (39)

We first claim that E𝑉(𝑡−
𝑚
) ≤ (1/𝑞)𝜆

0
𝜀
2. The proof is very

similar to [18, 19], so we omit it here. Next, we show that

E𝑉 (𝑡
−

𝑚
− 𝜎 (𝑡

𝑚
)) ≤

1

𝑞
𝑒
𝜆𝜎
𝜆
0
𝜀
2
. (40)
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Suppose not; then we have E𝑉(𝑡−
𝑚
− 𝜎(𝑡
𝑚
)) > (1/𝑞)𝑒

𝜆𝜎
𝜆
0
𝜀
2.

Without loss of generality, we assume 𝑡
𝑚
−𝜎(𝑡
𝑚
) ∈ (𝑡
𝑙−1
, 𝑡
𝑙
], 𝑙 ∈

N, 𝑙 ≤ 𝑚. There are two cases to be considered.

Case 1. E𝑉(𝑡) > (1/𝑞)𝑒𝜆𝜎𝜆
0
𝜀
2 for any 𝑡 ∈ [𝑡

𝑙−1
, 𝑡
𝑚
− 𝜎(𝑡
𝑚
)).

Then we have

𝑞E𝑉 (𝑡) > 𝑒
𝜆𝜎
𝜆
0
𝜀
2
≥ 𝜆
0
𝜀
2
> E𝑉 (𝑡 + 𝜃) ,

∀𝜃 ∈ [−𝜌, 0] , 𝑡 ∈ [𝑡
𝑙−1
, 𝑡
𝑚
− 𝜎 (𝑡

𝑚
)) .

(41)

It follows from (34) that for any𝛼 > 0,𝛽 > 0 and 𝑡 ∈ (𝑡
𝑙−1
, 𝑡
𝑚
−

𝜎(𝑡
𝑚
)) (38) holds, which leads to

E𝑉 (𝑡
−

𝑚
− 𝜎 (𝑡

𝑚
)) < E𝑉 (𝑡

𝑙−1
) 𝑒
−𝜆(𝑡𝑚−𝜎(𝑡𝑚)−𝑡𝑙−1)

< 𝑒
−𝜆Δmin𝑒

𝜆𝜎
𝜆
0
𝜀
2
<
1

𝑞
𝑒
𝜆𝜎
𝜆
0
𝜀
2
.

(42)

This is a contradiction.

Case 2. There exist some 𝑡 ∈ [𝑡
𝑙−1
, 𝑡
𝑚
− 𝜎(𝑡
𝑚
)), such that

E𝑉(𝑡) ≤ (1/𝑞)𝑒𝜆𝜎𝜆
0
𝜀
2.

Set 𝑡 = sup{𝑡 ∈ [𝑡
𝑙−1
, 𝑡
𝑚
−𝜎(𝑡
𝑚
)) : E𝑉(𝑡) ≤ (1/𝑞)𝑒𝜆𝜎𝜆

0
𝜀
2
}.

Then we have 𝑡 ∈ [𝑡
𝑙−1
, 𝑡
−

𝑚
−𝜎(𝑡
𝑚
)) and E𝑉(𝑡) = (1/𝑞)𝑒𝜆𝜎𝜆

0
𝜀
2.

Hence for 𝑡 ∈ (𝑡, 𝑡
𝑚
− 𝜎(𝑡
𝑚
)), we have

𝑞E𝑉 (𝑡) ≥ 𝑒
𝜆𝜎
𝜆
0
𝜀
2
≥ 𝜆
0
𝜀
2
> E𝑉 (𝑡 + 𝜃) , ∀𝜃 ∈ [−𝜌, 0] .

(43)

It follows from (34) that for any 𝛼 > 0, 𝛽 > 0 and 𝑡 ∈ (𝑡, 𝑡
𝑚
−

𝜎(𝑡
𝑚
)) (38) holds, which leads to

E𝑉 (𝑡
−

𝑚
− 𝜎 (𝑡

𝑚
)) < E𝑉 (𝑡) 𝑒

−𝜆(𝑡𝑚−𝜎(𝑡𝑚)−𝑡) ≤ E𝑉 (𝑡)

=
1

𝑞
𝑒
𝜆𝜎
𝜆
0
𝜀
2
.

(44)

This is a contradiction.
Therefore (40) holds. By the same methods, we can prove

E𝑉(𝑡−
𝑚
− 𝜏(𝑡
𝑚
)) ≤ (1/𝑞)𝑒

𝜆𝜏
𝜆
0
𝜀
2. Then from (33), we get

E𝑉 (𝑡
𝑚
) ≤ 𝜇
1
E𝑉 (𝑡
−

𝑚
) + 𝜇
2
𝑒
2𝜂𝜏

E𝑉 (𝑡
−

𝑚
− 𝜏 (𝑡
𝑚
))

+ 𝜇
3
𝑒
2𝜂𝜎

E𝑉 (𝑡
−

𝑚
− 𝜎 (𝑡

𝑚
))

≤ (𝜇
1
+ 𝜇
2
𝑒
(2𝜂+𝜆)𝜏

+ 𝜇
3
𝑒
(2𝜂+𝜆)𝜎

)
1

𝑞
𝜆
0
𝜀
2

≤ (𝜇
1
+ 𝜇
2
𝑒
𝑐𝜏
+ 𝜇
3
𝑒
𝑐𝜎
)
1

𝑞
𝜆
0
𝜀
2
< 𝜆
0
𝜀
2
.

(45)

Suppose (39) does not hold; then there exist 𝑡∗ = inf{𝑡 ∈
(𝑡
𝑚
, 𝑡
𝑚+1
) : E𝑉(𝑡) ≥ 𝜆

0
𝜀
2
} and E𝑉(𝑡∗) = 𝜆

0
𝜀
2. If E𝑉(𝑡) >

(1/𝑞)𝜆
0
𝜀
2 for all 𝑡 ∈ [𝑡

𝑚
, 𝑡
∗
), set 𝑡 = 𝑡

𝑚
. Otherwise let 𝑡 =

sup{𝑡 ∈ [𝑡
𝑚
, 𝑡
∗
) : E𝑉(𝑡) ≤ (1/𝑞)𝜆

0
𝜀
2
}. Then for 𝑡 ∈ (𝑡, 𝑡∗)

and any 𝜃 ∈ [−𝜌, 0], we have 𝑞E𝑉(𝑡) ≥ 𝜆
0
𝜀
2
> E𝑉(𝑡 + 𝜃). It

follows from (34) that for any 𝛼 > 0, 𝛽 > 0, and 𝑡 ∈ (𝑡, 𝑡∗),
(38) holds. Then, 𝜆

0
𝜀
2
= E𝑉(𝑡∗) < E𝑉(𝑡)𝑒−𝜆(𝑡

∗
−𝑡)
≤ E𝑉(𝑡) =

(1/𝑞)𝜆
0
𝜀
2
< 𝜆
0
𝜀
2.

This is a contradiction. Thus (39) holds.

The next proof is very similar to Theorem 4. This com-
pletes the proof.

Remark 8. Theorem 7 shows that the system will remain
exponentially stable on the condition that the impulses,
which may destabilize the system, do not occur too fre-
quently.

Remark 9. If there is no leakage delay, that is, 𝜎(𝑡) = 0,
𝐻
3
(𝑡) = 0, 𝐺

3𝑘
(𝑡) = 0, 𝑘 ∈ N, 𝑡 ≥ 0, then the system (4) is the

one investigated in [19]. If there is no stochastic perturbation
either, then system (4) is the one investigated in [18, 20].

4. Examples

In this section, we present some examples to verify the
effectiveness of the theoretical results.

Example 1. Consider (4) with two neurons. The uncertain
parameters satisfy assumption (A

4
), where 𝐶 = [ 7 0

0 6
], 𝐴 =

[ 0.6 −0.2
0.7 0.5

], 𝐵 = [ 0.5 −0.1
−1.2 −0.9

],𝐻
1
= 𝐻
2
= 𝐻
3
= 0.03𝐼,𝑀

1
= 𝑀
2
=

𝑀
3
= 0.03𝐼, 𝐺

1𝑘
= 𝐺
2𝑘
= 𝐺
3𝑘
= 0.1𝐼, 𝑘 ∈ N, 𝑁

1
= 𝑁
2
=

𝑁
3
= 0.3𝐼, 𝑈

1
= 𝑈
2
= 𝑈
3
= 0.1𝐼, 𝐸

1
= 𝐸
2
= 𝐸
3
= 0.03𝐼.

𝜏 < +∞, 𝜎 < +∞. 𝑔
1
(𝑦) = 𝑔

2
(𝑦) = |𝑦 + 1| − |𝑦 − 1|, and it is

obvious that𝐾
1
= 𝐼,𝐾

2
= 0. Choose 𝜇

1
= 0.05, 𝜇

2
= 0.1, 𝜇

3
=

0.1, 𝛼 = 𝛽 = 0.5, for 𝑡
𝑘
−𝑡
𝑘−1
≤ Δmax = 0.01; then the LMIs in

Theorem 4 have the following feasible solution via MATLAB
LMI toolbox: 𝜀

1
= 1.2054, 𝜀

2
= 11.5508, 𝜀

3
= 0.7167,

𝑃 = [ 1.2516 0.0492
0.0492 1.1285

],𝑊
1
= [ 9.7101 0

0 10.6592
],𝑊
2
= [ 0.3534 0

0 0.2846
].

Thus fromTheorem 4, the equilibrium (0, 0)𝑇of system (4) is
robustly exponentially stable in the mean square.

Example 2. We consider neural network shown in [5] as
follows:

𝑥̇ (𝑡) = [
−9 0

0 −9
] 𝑥 (𝑡 − 𝜎) + [

1 1

−1 1
]𝑓 (𝑥 (𝑡)) , 𝑡 > 0,

(46)
where 𝑓

1
(𝑠) = 𝑓

2
(𝑠) = tanh(𝑠). As shown in [5], the system

(46) is stable when 𝜎 = 0, and it becomes unstable when 𝜎 =
0.2. We consider that the system has the following impulsive
perturbation at times 𝑡

𝑘
:

Δ𝑥 (𝑡) = (𝐺
1𝑘
(𝑡) − 𝐼) 𝑥 (𝑡

−
) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N, (47)

where 𝐺
1𝑘
= 0.3𝐼, 𝑘 ∈ N. It is obvious that𝐾

1
= 0.5𝐼,𝐾

2
= 0.

For 𝑡
𝑘
− 𝑡
𝑘−1
≤ Δmax = 0.01, choosing 𝜇1 = 0.1, 𝜇2 = 0.01,

𝜇
3
= 0.05, 𝛼 = 0.5, 𝛽 = 0.5, by using the LMI toolbox in

MATLAB, a feasible solution of Theorem 4 is

𝑃 = [
0.0210 0

0 0.0210
] , 𝑊

1
= [
0.6321 0

0 0.6321
] ,

𝑊
2
= [
0.0289 0

0 0.0289
] , 𝜀

1
= 𝜀
2
= 𝜀
3
= 0.6748.

(48)

Thus fromTheorem 4, the equilibrium (0, 0)𝑇 of system (46)
is robustly exponentially stable in the mean square. It can be
seen that the impulses play an important role in inducing the
stability of neural network in the leakage time delay.
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5. Conclusion

Robust exponential stability of stochastic neural networks
with time-varying delay in the leakage term under impul-
sive perturbations is investigated. The leakage delay is time
varying and the impulsive perturbations depend not only on
the current state of neurons at impulse times but also on
the state of neurons in its recent history. Based on Lyapunov
functions and Razumikhin techniques, some new criteria
are derived. Some examples have been given to demonstrate
that, even though the corresponding delayed neural networks
without impulses are unstable, impulses may compensate the
deviating trend.
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