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A Petrov-Galerkin method and product approximation technique are used to solve numerically the Hirota-Satsuma coupled
Korteweg-de Vries equation, using cubic 𝐵-splines as test functions and a linear 𝐵-spline as trial functions. The implicit midpoint
rule is used to advance the solution in time. Newton’s method is used to solve the block nonlinear pentadiagonal system we have
obtained.The resulting schemes are of second order accuracy in both directions, space and time.The vonNeumann stability analysis
of the schemes shows that the two schemes are unconditionally stable. The single soliton solution and the conserved quantities are
used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitons, three solitons, and birth of
solitons is also discussed.

1. Introduction

In 1981, Hirota and Satsuma [1] introduced the coupled
Korteweg-de Vries equation (CKdV) as follows:
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𝜕𝑡
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𝜕
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𝜕𝑥3
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3V
𝜕𝑥3
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,

(1)

where 𝑎 and 𝑏 are arbitrary constants. The CKdV equation
describes interactions of two longwaveswith different disper-
sion relations. Namely, it is connected withmost types of long
waves with weak dispersion, internal, acoustic, and planetary
waves in geophysical hydrodynamics [2, 3]. By using Hirota
method [1, 4], the single solitary wave solution of this system
is

𝑢 (𝑥, 𝑡) = 2𝜆
2sech2 (𝜉) , V (𝑥, 𝑡) =
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8 (4𝑎 + 1) 𝜆
4
,

(2)

where 𝜆 is an arbitrary constant. The two and three solitons
solutions for 𝑎 = 1/2 can be found in [1]. The CKdV system
has three conserved quantities
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2

𝑥
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𝑥
)] 𝑑𝑥.

(3)

The proof can be found in [1, 5, 6].
The CKdV equation has been discussed analytically by

many authors; Kaya and Inan [7] used Adomian decompo-
sition method to solve this system. Fan used tanh method
to find some traveling wave solution [8]. Assas [9] solved
this system using variational iteration method. Abbasbandy
[10] used homotopy analysis method to solve the generalized
CKdV system.

The numerical solutions of coupled nonlinear systems
are very interesting and important in applied science, for
example, the coupled nonlinear Schrödinger equation which
admits soliton solution and it has many applications in
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communication and optical fibers; this system has been
solved numerically by Ismail using finite difference and finite
elementmethods [11–13].TheCKdVhas been also considered
numerically by some researchers; Halim et al. [2, 3] have
introduced a numerical scheme for general CKdV systems.
The scheme is valid for solving an arbitrary number of
equations with arbitrary constant coefficients; the method
is applied to the Hirota system and compared with its
known explicit solution investigating the influence of initial
conditions and grid sizes on accuracy.Wazwaz [14] produced
a finite difference scheme for the periodic initial boundary
problem of the CKdV system. Ismail [6] solved this system
using collocation method and quintic splines; Kutluay and
Ucar [15] solved this system using a quadratic B-spline
Galerkin approach.

In this work, we are going to solve the CKdV equation
using Petrov-Galerkin method [4]. We choose the cubic
𝐵-spline as test functions and the linear 𝐵-spline as trial
(basis) functions. Implicit midpoint rule is used in the time
direction. Newton’s method is used to solve the nonlinear
block pentadigonal system obtained from the schemes we
have derived. The von Neumann stability analysis shows that
the scheme is unconditionally stable. Regarding the accuracy,
the scheme is of second order in space and time.

The paper is organized as follows. In Section 2, Petrov-
Galerkin method is used to derive a numerical method for
theCKdVequation; a coupled nonlinear pentadigonal system
is obtained. Analysis of the method is given in Section 3. In
Section 4, product approximation technique is used to derive
a second method for solving the CKdV equation. Numerical
results of various tests are contained in Section 5. We recap
and sum up our conclusions in Section 6.

2. Numerical Method

To derive numerical method for the CKdV system, we
consider the initial boundary value problem

𝜕𝑢

𝜕𝑡
− 𝑎(

𝜕
3
𝑢

𝜕𝑥3
+ 6𝑢
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= 0,
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𝜕𝑥

= 0, (𝑥, 𝑡) ∈ [𝑥𝐿, 𝑥𝑅] × (0, 𝑇] ,

(4)

subject to the initial conditions
𝑢 (𝑥, 0) = 𝑔 (𝑥) , V (𝑥, 0) = 0 (5)

and the boundary conditions
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𝐿
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𝑥
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𝑅
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(6)

A standard weak formulation is obtained by multiplying (4)
by a twice differentiable test function𝜓(𝑥) and integrating by
parts to obtain

(𝑢
𝑡
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(7)

where ( , ) denotes the usual 𝐿
2
inner product

(𝑓, 𝑔) = ∫

𝑥𝑅

𝑥𝐿

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥. (8)

The space interval [𝑥
𝐿
, 𝑥
𝑅
] is discretized by uniform (𝑁+

1) grid points. Consider

𝑥
𝑚
= 𝑥
𝐿
+ 𝑚ℎ, 𝑚 = 0, 1, . . . , 𝑁, (9)

where the grid spacing ℎ is given by ℎ = (𝑥
𝑅
− 𝑥
𝐿
)/𝑁. We

introduce finite elements in space in (7). Approximate the
exact solutions of 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) by

𝑢 (𝑥, 𝑡) =

𝑁
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(10)

where the trial functions 𝜙
𝑚
(𝑥) = 𝜙((𝑥 − 𝑥

𝑚
)/ℎ), 𝑚 =

0, 1, . . . , 𝑁, are the piecewise linear functions. Consider

𝜙 (𝑥) =

{{

{{

{

1 + 𝑥 if − 1 < 𝑥 ≤ 0

1 − 𝑥 if 0 < 𝑥 ≤ 1

0 otherwise.
(11)

The unknown functions 𝑈
𝑚
(𝑡), 𝑉
𝑚
(𝑡), 𝑚 = 0, 1, 2, . . . , 𝑁,

are determined from the ordinary differential system. Con-
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𝑡
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(12)

where the test functions𝜓
𝑗
(𝑥) = 𝜓((𝑥−𝑥

𝑖
)/ℎ), 𝑗 = 1, 2, . . . , 𝑁,

are the cubic 𝐵-spline with compact support. Consider

𝜓 (𝑥) =
1

4

{{{{{{{{

{{{{{{{{

{

(𝑥 + 2)
3 if − 2 ≤ 𝑥 ≤ −1

[(2 + 𝑥)
3
− 4(1 + 𝑥)

3
] if − 1 < 𝑥 ≤ 0

[(2 − 𝑥)
3
− 4(1 − 𝑥)

3
] if 0 < 𝑥 ≤ 1

(2 − 𝑥)
3 if 1 < 𝑥 ≤ 2

0 otherwise.

(13)
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Direct calculation of the inner products given in (12)
will lead us to the following system of first order ordinary
differential system (ODES):

1

80
(𝑈̇
𝑚−2

+ 26𝑈̇
𝑚−1
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𝑚
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1
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+
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𝑚
, 𝑉
𝑚
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(14)

where
𝐹 (𝑈
𝑚
, 𝑉
𝑚
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)
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+ 𝑉
𝑚
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𝑚
)
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𝑚
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)
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(15)

Now to the ODES, we assume 𝑈𝑛
𝑚
and 𝑉𝑛

𝑚
to be the fully

discrete approximation to the exact solutions 𝑢(𝑥
𝑚
, 𝑡
𝑛
) and

V(𝑥
𝑚
, 𝑡
𝑛
), where 𝑡

𝑛
= 𝑛𝑘 and 𝑘 is the time step size. By using

the finite difference approximation
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𝑚
− 𝑈
𝑛
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𝑘
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𝑚
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𝑚
+ 𝑈
𝑛

𝑚

2
= 𝑈
∗
,
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𝑚
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𝑉
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𝑚

𝑘
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𝑚
=
𝑉
𝑛+1

𝑚
+ 𝑉
𝑛

𝑚

2
= 𝑉
∗
,

(16)

the ODES (14) will be reduced to the implicit nonlinear finite
difference scheme

(𝑈
𝑛+1

𝑚−2
+ 26𝑈

𝑛+1

𝑚−1
+ 66𝑈

𝑛+1

𝑚
+ 26𝑈

𝑛+1

𝑚+1
+ 𝑈
𝑛+1

𝑚+2
)

− (𝑈
𝑛

𝑚−2
+ 26𝑈

𝑛

𝑚−1
+ 66𝑈

𝑛

𝑚
+ 26𝑈

𝑛

𝑚+1
+ 𝑈
𝑛

𝑚+2
)

− 𝑝
1
(𝑈
∗

𝑚+2
− 2𝑈
∗

𝑚+1
+ 2𝑈
∗

𝑚−1
− 𝑈
∗

𝑚−2
)

+ 𝑝
2
𝐹 (𝑈
∗
, 𝑈
∗
) + 𝑝
3
𝐹 (𝑉
∗
, 𝑉
∗
) = 0,

(17)

(𝑉
𝑛+1

𝑚−2
+ 26𝑉

𝑛+1

𝑚−1
+ 66𝑉

𝑛+1

𝑚
+ 26𝑉

𝑛+1

𝑚+1
+ 𝑉
𝑛+1

𝑚+2
)

− (𝑉
𝑛

𝑚−2
+ 26𝑉

𝑛

𝑚−1
+ 66𝑉

𝑛

𝑚
+ 26𝑉

𝑛

𝑚+1
+ 𝑉
𝑛

𝑚+2
)

+ 𝑝
4
(𝑉
∗

𝑚+2
− 2𝑉
∗

𝑚+1
+ 2𝑉
∗

𝑚−1
− 𝑉
∗

𝑚−2
)

+ 𝑝
5
𝐹 (𝑈
∗
, 𝑉
∗
) = 0, 𝑚 = 1, 2, . . . , 𝑁,

(18)

𝑝
1
=
−60𝑎𝑘

ℎ3
, 𝑝

2
=
−6𝑎𝑘

ℎ
, 𝑝

3
=
−2𝑏𝑘

ℎ
,

𝑝
4
=
60𝑘

ℎ3
, 𝑝

5
=
3𝑘

ℎ
.

(19)

The system (17)-(18) is a nonlinear block penta diagonal
system in the unknown vectors U𝑛+1 and V𝑛+1 and is solved
using Newton’s method.We denote this method by Scheme 1.

3. Analysis of the Method

In this section we will discuss the stability and the accuracy
of Scheme 1.

3.1. Stability of the Scheme. To study the stability of Scheme 1,
von Neumann stability analysis will be used and this can be
only applied for linear finite difference schemes; accordingly,
we consider the linear version of the proposed method

(𝑈
𝑛+1

𝑚−2
+ 26𝑈

𝑛+1

𝑚−1
+ 66𝑈

𝑛+1

𝑚
+ 26𝑈

𝑛+1

𝑚+1
+ 𝑈
𝑛+1

𝑚+2
)

− (𝑈
𝑛

𝑚−2
+ 26𝑈

𝑛

𝑚−1
+ 66𝑈

𝑛

𝑚
+ 26𝑈

𝑛

𝑚+1
+ 𝑈
𝑛

𝑚+2
)

+ 𝑝
1
(𝑈
∗

𝑚+2
− 2𝑈
∗

𝑚+1
+ 2𝑈
∗

𝑚−1
− 𝑈
∗

𝑚−2
)

+ 𝑝
2
𝐹 (𝑈,𝑈

∗
) + 𝑝
3
𝐹 (𝑉,𝑉

∗
) = 0,

(𝑉
𝑛+1

𝑚−2
+ 26𝑉

𝑛+1

𝑚−1
+ 66𝑉

𝑛+1

𝑚
+ 26𝑉

𝑛+1

𝑚+1
+ 𝑉
𝑛+1

𝑚+2
)

− (𝑉
𝑛

𝑚−2
+ 26𝑉

𝑛

𝑚−1
+ 66𝑉

𝑛

𝑚
+ 26𝑉

𝑛

𝑚+1
+ 𝑉
𝑛

𝑚+2
)

+ 𝑝
4
(𝑉
∗

𝑚+2
− 2𝑉
∗

𝑚+1
+ 2𝑉
∗

𝑚−1
− 𝑉
∗

𝑚−2
)

+ 𝑝
5
𝐹 (𝑈,𝑉

∗
) = 0,

(20)

where

𝐹 (𝑈,𝑉) = 𝑈 [𝑉
𝑚+2

+ 10𝑉
𝑚+1

− 10𝑉
𝑚−1

− 𝑉
𝑚−2

] , (21)

𝑝
󸀠

2
= 5𝑝
2
, 𝑝󸀠
3
= 5𝑝
3
, and 𝑝󸀠

5
= 5𝑝
5
. 𝑈 and 𝑉 are assumed

to be constant on the whole range. We assume the solution of
the linearized scheme (20) to be of the form

𝑈
𝑛

𝑚
= 𝑈
𝑛
𝑒
𝑖𝛽𝑚ℎ

, 𝑉
𝑛

𝑚
= 𝑉
𝑛
𝑒
𝑖𝛽𝑚ℎ

, (22)

where𝛽 is a real constant. Direct substitution of (22) into (20)
will lead us to the following system:

[𝛾
1
+ 𝑖𝑝
1
𝛾
2
+ 𝑖𝑝
󸀠

2
𝑈𝛾
3
]𝑈
𝑛+1

+ 𝑖𝑝
󸀠

3
𝑉𝛾
3
𝑉
𝑛+1

= [𝛾
1
− 𝑖𝑝
1
𝛾
2
− 𝑖𝑝
󸀠

2
𝑈𝛾
3
]𝑈
𝑛
− 𝑖𝑝
󸀠

3
𝑉𝛾
3
𝑉
𝑛
,

[𝛾
1
+ 𝑖𝑝
4
𝛾
2
+ 𝑖𝑝
󸀠

5
𝑈𝛾
3
]𝑉
𝑛+1

= [𝛾
1
− 𝑖𝑝
4
𝛾
2
− 𝑖𝑝
󸀠

5
𝑈𝛾
3
]𝑉
𝑛
,

(23)

where

𝛾
1
= 66 + 2 cos (2𝛽ℎ) + 52 cos (𝛽ℎ) ,

𝛾
2
= 2 sin (2𝛽ℎ) − 4 sin (𝛽ℎ) ,

𝛾
3
= 2 sin (2𝛽ℎ) + 20 sin (𝛽ℎ) .

(24)

The system (23) can be written in a matrix vector form as

Ψ
𝑛+1

= 𝐵Ψ
𝑛
, (25)
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where Ψ = [𝑈 𝑉]
𝑡 and 𝐵 is the (2 × 2)matrix. Consider

𝐵 = [
𝛾
1
+ 𝑖𝑐
1

𝑐
2

0 𝛾
1
+ 𝑖𝑐
3

]

−1

[
𝛾
1
− 𝑖𝑐
1

−𝑐
2

0 𝛾
1
− 𝑖𝑐
3

] , (26)

where

𝑐
1
= 𝑝
1
𝛾
2
+ 𝑝
󸀠

2
𝑈𝛾
3
, 𝑐

2
= 𝑝
󸀠

3
𝑉𝛾
3
,

𝑐
3
= 𝑝
4
𝛾
2
+ 𝑝
󸀠

5
𝑈𝛾
3
.

(27)

von Neumann stability condition for the system (25) states
that, for the scheme to be stable, the maximum modulus of
the eigenvalues of the amplification matrix 𝐵 should be less
than or equal to one. The eigenvalues of the matrix 𝐵 are

𝜆
1
=
𝛾
1
− 𝑖𝑐
1

𝛾
1
+ 𝑖𝑐
1

, 𝜆
2
=
𝛾
1
− 𝑖𝑐
3

𝛾
1
+ 𝑖𝑐
3

, (28)

which hasmodulus equal to one, and hence the scheme under
consideration is unconditionally stable in the linearized
sense.

3.2. Accuracy of the Scheme. In order to study the accuracy of
the scheme, we replace the numerical solution 𝑈𝑛

𝑚
and 𝑉𝑛

𝑚
in

(17) and (18) by the exact solutions 𝑢𝑛
𝑚
and V𝑛
𝑚
. By making use

of the following Taylor series expansions at the point (𝑥
𝑚
, 𝑡
𝑛
)

1

𝑘
[(𝑢
𝑛+1

𝑚−2
+ 26𝑢

𝑛+1

𝑚−1
+ 66𝑢

𝑛+1

𝑚
+ 26𝑢

𝑛+1

𝑚+1
+ 𝑢
𝑛+1

𝑚+2
)

− (𝑢
𝑛

𝑚−2
+ 26𝑢

𝑛

𝑚−1
+ 66𝑢

𝑛

𝑚
+ 26𝑢

𝑛

𝑚+1
+ 𝑢
𝑛

𝑚+2
) ]

=
3

2
𝑢
𝑡
+
3𝑘

4
𝑢
𝑡𝑡
+
3ℎ
2

8
𝑢
𝑥𝑥𝑡

+
𝑘
2

4
𝑢
𝑡𝑡𝑡
+ ⋅ ⋅ ⋅

(29)

3

8ℎ3
[𝑢
𝑛+1

𝑚+2
− 2𝑢
𝑛+1

𝑚+1
+ 2𝑢
𝑛+1

𝑚−1
− 𝑢
𝑛+1

𝑚−2

+ 𝑢
𝑛

𝑚+2
− 2𝑢
𝑛

𝑚+1
+ 2𝑢
𝑛

𝑚−1
− 𝑢
𝑛

𝑚−2
]

=
3

2
𝑢
𝑥𝑥𝑥

+
3𝑘

4
𝑢
𝑥𝑥𝑥𝑡

+
3ℎ
2

8
𝑢
𝑥𝑥𝑥𝑥𝑥

+
3𝑘
2

8
𝑢
𝑥𝑥𝑥𝑡𝑡

+ ⋅ ⋅ ⋅ ,

(30)

1

80ℎ
𝐹 (𝑢
∗
, 𝑢
∗
) =

3

2
𝑢𝑢
𝑥
+
3𝑘

4
(𝑢𝑢
𝑥
)
𝑡

+ ℎ
2
[
3

8
𝑢𝑢
𝑥𝑥𝑥

+
7

8
𝑢
𝑥
𝑢
𝑥𝑥
]

+
3𝑘
2

8
[𝑢
𝑥
𝑢
𝑡𝑡
+ 𝑢
𝑡
𝑢
𝑥𝑡
+ 𝑢𝑢
𝑥𝑡𝑡
] + ⋅ ⋅ ⋅ ,

(31)

1

80ℎ
𝐹 (𝑢
∗
, V∗) =

3

2
𝑢V
𝑥
+
3𝑘

4
(𝑢V
𝑥
)
𝑡

+ ℎ
2
[
3

8
𝑢V
𝑥𝑥𝑥

+
3

8
V
𝑥
𝑢
𝑥𝑥
+
1

2
𝑢
𝑥
V
𝑥𝑥
]

+
3𝑘
2

8
[V
𝑥
𝑢
𝑡𝑡
+ 𝑢
𝑡
V
𝑥𝑡
+ 𝑢V
𝑥𝑡𝑡
] + ⋅ ⋅ ⋅ ,

(32)

and the CKdV system (1), we obtain the local truncation error
(LTE) for the proposed scheme

LTE (17) = −3ℎ
2

2
𝑢
𝑥
𝑢
𝑥𝑥
−
𝑏ℎ
2

2
V𝑢
𝑥𝑥
−
𝑘
2

8
𝑢
𝑡𝑡𝑡

+
9𝑘
2
𝑎

4
𝑢
𝑡
𝑢
𝑥𝑡
−
3𝑏𝑘
2

4
V
𝑡
V
𝑥𝑡
+ ⋅ ⋅ ⋅ ,

LTE (18) = −3ℎ
2

2
𝑢
𝑥
V
𝑥𝑥
−
𝑘
2

8
𝑢
𝑡𝑡𝑡
−
3𝑘
2

8
𝑢
𝑡
V
𝑥𝑡
+ ⋅ ⋅ ⋅ ,

(33)

and hence the scheme is of second order in both directions
space and time.

4. Product Approximation Technique

A modified Petrov-Galerkin method for solving the CKdV
system (1) can be achieved by using the product approxi-
mation technique, where we used special approximation to
the nonlinear terms in the differential system. In order to
apply this technique, we rewrite the CKdV in the following
form:

𝜕𝑢

𝜕𝑡
= 𝑎(

𝜕
3
𝑢

𝜕𝑥3
+ 3

𝜕 (𝑢
2
)

𝜕𝑥
) + 𝑏

𝜕 (V2)
𝜕𝑥

, (34)

𝜕V
𝜕𝑡

= −
𝜕
3V
𝜕𝑥3

− 3𝑢
𝜕V
𝜕𝑥

. (35)

The product approximation technique is used to approx-
imate the nonlinear terms in (34) in the following man-
ner:

𝑢
2
(𝑥, 𝑡) =

𝑁

∑

𝑚=1

𝑈
2

𝑚
(𝑡) 𝜙
𝑚
(𝑥) ,

V2 (𝑥, 𝑡) =
𝑁

∑

𝑚=1

𝑉
2

𝑚
(𝑡) 𝜙
𝑚
(𝑥) .

(36)

By using the same procedure in deriving Scheme 1 and the
approximation (37), we can obtain after some manipulations
the following scheme:

𝑝
1
[(𝑈
𝑛+1

𝑚−2
+ 26𝑈

𝑛+1

𝑚−1
+ 66𝑈

𝑛+1

𝑚
+ 26𝑈

𝑛+1

𝑚+1
+ 𝑈
𝑛+1

𝑚+2
)

− (𝑈
𝑛

𝑚−2
+ 26𝑈

𝑛

𝑚−1
+ 66𝑈

𝑛

𝑚
+ 26𝑈

𝑛

𝑚+1
+ 𝑈
𝑛

𝑚+2
) ]

− 𝑝
2
[(𝑈
∗

𝑚+2
)
2
+ 10(𝑈

∗

𝑚+1
)
2
− 10(𝑈

∗

𝑚−1
)
2
− (𝑈
∗

𝑚−2
)
2
]
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Table 1: Petrov-Galerkin method.

𝑇 𝐿
∞
(𝑈) 𝐿

∞
(𝑉) 𝐼

1
𝐼
2

𝐼
3

0 0.000000 0.000000 2.000000 0.5000000 0.112529
2 0.000015 0.000004 2.000000 0.5000000 0.112529
4 0.000021 0.000005 2.000000 0.5000000 0.112529
6 0.000023 0.000006 2.000000 0.5000000 0.112529
8 0.000024 0.000007 2.000000 0.5000000 0.112529
10 0.000025 0.000008 2.000000 0.5000000 0.112529

− 𝑝
3
(𝑈
∗

𝑚+2
− 2𝑈
∗

𝑚+1
+ 2𝑈
∗

𝑚−1
− 𝑈
∗

𝑚−2
)

− 𝑝
4
[(𝑉
∗

𝑚+2
)
2
+ 10(𝑉

∗

𝑚+1
)
2
− 10(𝑉

∗

𝑚−1
)
2
− (𝑉
∗

𝑚−2
)
2
] = 0,

(37)

𝑝
1
[(𝑉
𝑛+1

𝑚−2
+ 26𝑉

𝑛+1

𝑚−1
+ 66𝑉

𝑛+1

𝑚
+ 26𝑉

𝑛+1

𝑚+1
+ 𝑉
𝑛+1

𝑚+2
)

− (𝑉
𝑛

𝑚−2
+ 26𝑉

𝑛

𝑚−1
+ 66𝑉

𝑛

𝑚
+ 26𝑉

𝑛

𝑚+1
+ 𝑉
𝑛

𝑚+2
) ]

+ 𝑝
5
(𝑉
∗

𝑚+2
− 2𝑉
∗

𝑚+1
+ 2𝑉
∗

𝑚−1
− 𝑉
∗

𝑚−2
)

+ 𝑝
6
[− (𝑈
∗

𝑚−2
+ 4𝑈
∗

𝑚−1
) 𝑉
∗

𝑚−2

+ (𝑈
∗

𝑚−2
− 18𝑈

∗

𝑚−1
− 33𝑈

∗

𝑚
) 𝑉
∗

𝑚−1

+ 22 (𝑈
∗

𝑚−1
− 𝑈
∗

𝑚+1
) 𝑉
∗

𝑚

+ (33𝑈
∗

𝑚
+ 18𝑈

∗

𝑚+1
− 𝑈
∗

𝑚+2
) 𝑉
∗

𝑚+1

+ (4𝑈
∗

𝑚+1
+ 𝑈
∗

𝑚+2
) 𝑉
∗

𝑚+2
] = 0,

(38)

where

𝑈
∗

𝑚
= 𝑈
𝑛+1

𝑚
+ 𝑈
𝑛

𝑚
, 𝑉

∗

𝑚
= 𝑉
𝑛+1

𝑚
+ 𝑉
𝑛

𝑚
,

𝑝
1
=

1

80
, 𝑝

2
=
3𝑎𝑘

64ℎ
, 𝑝

3
=
3𝑎𝑘

8ℎ3
,

𝑝
4
=

𝑏𝑘

64ℎ
, 𝑝

5
=

3𝑘

8ℎ3
, 𝑝

6
=

3𝑘

320ℎ
.

(39)

Again, the method is unconditionally stable according
to von Neumann stability analysis, and it is of second
order in both directions. The scheme produced a nonlinear
block pentadiagonal system and its solution obtained using
Newton’smethod.Wehave noticed that the accuracy has been
improved in the first equation (38) as we will see in the next
section. We will denote the scheme obtained by using the
product approximation technique by Scheme 2.

5. Numerical Results

To gain insight into the performance of the proposed
schemes, we perform different numerical tests, like sin-
gle soliton, two and three solitons interaction, and birth
of solitons. The conservation properties of the proposed
schemes are examined by calculating 𝐼

1
, 𝐼
2
, and 𝐼

3
using

the trapezoidal rule. The 𝐿
∞
(𝑢) and 𝐿

∞
(V) error norms are

defined as

𝐿
∞
(𝑢) =

󵄩󵄩󵄩󵄩U
𝑛
− u𝑛󵄩󵄩󵄩󵄩∞ = max

𝑚

󵄨󵄨󵄨󵄨𝑈
𝑛

𝑚
− 𝑢
𝑛

𝑚

󵄨󵄨󵄨󵄨 ,

𝐿
∞ (V) =

󵄩󵄩󵄩󵄩V
𝑛
− k𝑛󵄩󵄩󵄩󵄩∞ = max

𝑚

󵄨󵄨󵄨󵄨𝑉
𝑛

𝑚
− V𝑛
𝑚

󵄨󵄨󵄨󵄨 .

(40)

are used to examine the accuracy of the proposed schemes.

5.1. Single Soliton. In the first test, we choose the initial
conditions

𝑢 (𝑥, 0) = 2𝜆
2sech2 (𝜉) , V (𝑥, 0) =

1

2√𝑤
sech (𝜉) ,

𝜉 = 𝜆𝑥 +
1

2 log (𝑤)
, 𝑤 =

−𝑏

8 (4𝑎 + 1) 𝜆
4
,

(41)

which represents a single soliton solution at 𝑡 = 0. To study
the behavior of numerical solution using Scheme 1 and
Scheme 2, we choose the set of parameters as ℎ = 0.05,
𝑘 = 0.01, tol = 10

−7, 𝑥
𝐿
= −25, 𝑥

𝑅
= 25, 𝑎 = −0.125,

𝑏 = −3, and 𝜆 = 0.5. The conserved quantities and the
error norms 𝐿

∞
(𝑈), 𝐿

∞
(𝑉) are displayed in Tables 1 and 2

for Scheme 1 and Scheme 2, respectively. It is clear from these
tables that our schemes are highly accurate. In addition, the
schemes preserve the conserved quantities exactly during the
evolution of the numerical solution from 𝑡 = 0 to 𝑡 = 10. The
execution time required to produce Table 1 is 2.328 second
and 2.171 second to produce Table 2. We have noticed that
Scheme 2 has an upper hand over Scheme 1 with respect to
accuracy and CPU time. In Figures 1 and 2, we display the
numerical solution of 𝑈𝑛

𝑚
and 𝑉𝑛

𝑚
for 𝑡 = 0, 1, 2, . . . , 20.

By choosing the set of values 𝑘 = 0.01, 𝑎 = 0.5, 𝑏 = −3.0,
𝜆 = 0.5, and 𝑡 = 1, we perform a comparison of Scheme 1 and
Scheme 2 with Ismail [6] and we display this in Table 3, we
can easily see that the three methods produce highly accurate
results with some credits for collocation method.

5.2. Two Solitons Interaction. To study the interaction of two
solitons, we choose the initial conditions as

𝑢 (𝑥, 0) =

2

∑

𝑗=1

𝑢
𝑗
(𝑥, 0) , V (𝑥, 0) =

2

∑

𝑗=1

V
𝑗
(𝑥, 0) , (42)
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Table 2: Product approximation technique.

𝑇 𝐿
∞
(𝑈) 𝐿

∞
(𝑉) 𝐼

1
𝐼
2

𝐼
3

0 0.000000 0.000000 2.000000 0.5000000 0.112529
2 0.000004 0.000005 2.000000 0.5000000 0.112529
4 0.000008 0.000007 2.000000 0.5000000 0.112529
6 0.000010 0.000009 2.000000 0.5000000 0.112529
8 0.000013 0.000012 2.000000 0.5000000 0.112529
10 0.000014 0.000013 2.000000 0.5000000 0.112529

Table 3: Comparison of three methods with 𝑎 = 0.5, 𝑏 = −3.0, 𝜆 = 0.5, 𝑘 = 0.01, and 𝑡 = 1.

ℎ
Petrov-Galerkin Product approximation Collocation (Ismail [6])

𝐿
∞
(𝑈
𝑛

𝑚
) 𝐿

∞
(𝑉
𝑛

𝑚
) CPU 𝐿

∞
(𝑈
𝑛

𝑚
) 𝐿

∞
(𝑉
𝑛

𝑚
) CPU 𝐿

∞
(𝑈
𝑛

𝑚
) 𝐿

∞
(𝑉
𝑛

𝑚
) CPU

0.1 0.000051 0.000027 0.218 0.000014 0.000019 0.203 0.000000 0.000003 0.188
0.05 0.000013 0.000007 0.343 0.000009 0.000008 0.328 0.000000 0.000003 0.312
0.025 0.000003 0.000004 0.625 0.000002 0.000004 0.609 0.000000 0.000003 0.578
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Figure 1: Single soliton 𝑈: 𝑎 = −0.125, 𝑏 = −3.0, and 𝜆 = 0.5.
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Figure 2: Single soliton 𝑉: 𝑎 = −0.125, 𝑏 = −3.0, and 𝜆 = 0.5.

Table 4: Two solitons interaction (conserved quantities).

𝑇 𝐼
1

𝐼
2

𝐼
3

0.00 6.400000 −3.243013 −2.584118
20.0 6.399985 −3.243298 −2.586545
40.0 6.400034 −3.243016 −2.584155
60.0 6.399962 −3.243017 −2.584203
80.0 6.400234 −3.242978 −2.583492

where

𝑢
𝑗 (𝑥, 0) = 2𝜆

2

𝑗
sech2 (𝜉

𝑗
) , V

𝑗 (𝑥, 0) =
1

2√𝑤𝑗

sech (𝜉
𝑗
) ,

𝜉
𝑗
= 𝜆
𝑗
(𝑥 − 𝑦

𝑗
) +

1

2 log (𝑤
𝑗
)

,

𝑤
𝑗
=

−𝑏

8 (4𝑎 + 1) 𝜆
4

𝑗

, 𝑗 = 1, 2,

(43)

which represents the sum of two single solitons, we assign
the value of the parameters 𝑐 = 0, 𝑑 = 100, ℎ = 0.05,
𝑘 = 0.01, 𝑎 = 0.5, 𝑏 = −3.0, 𝜆

1
= 1.0, 𝜆

2
= 0.6, 𝑦

1
= 10,

and 𝑦
2
= 30. In Table 4, we present the conserved quantities

during the interaction scenario and show that our numerical
methods achieved the goal of conserving these quantities.
The interaction scenario is presented in Figures 3 and 4.
The contours of the interaction process are given in Figure 5.
We have noticed that the taller (faster) wave collides with
the shorter (slower) wave and leaves the interaction region
without any disturbance in their identities.This phenomenon
indicates the interaction scenario is elastic [1].

To examine the interaction scenario for 𝑎 ̸= 1/2, we use
the set of parameters 𝑎 = 0.495, 𝑏 = −3, 𝜆

1
= 1.0, 𝜆

2
= 0.6,
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Figure 3: Numerical solution 𝑈
𝑛 with parameters 𝜆

1
= 1.0, 𝜆

2
=

0.6, 𝑦
1
= 10, and 𝑦

2
= 30.

0
20

40
60

80
100

0
10

20
30

40
50

60
70

80

0
1
2

x

t

v

−1

Figure 4: Numerical solution 𝑉
𝑛 with parameters 𝜆

1
= 1.0, 𝜆

2
=

0.6, 𝑦
1
= 10, and 𝑦

2
= 30.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

x

t

Figure 5: Contours of the numerical solution𝑈𝑛 (interaction of two
solitons).
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Figure 6: Inelastic interaction: numerical solution 𝑈
𝑛 with 𝑎 =

0.495.
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Figure 7: Inelastic interaction: numerical solution 𝑉
𝑛 with 𝑎 =

0.495.

𝑦
1
= 10, 𝑦

2
= 30, 𝑐 = 0, 𝑑 = 100, ℎ = 0.05, and 𝑘 = 0.01. Our

results are demonstrated in Figures 6 and 7; the amplitudes
of the two solitons have changed after the interaction, which
indicates that the interaction scenario is inelastic. We have
tested other values of 𝑎; in all cases we have found that
the interaction is inelastic and this in agreement with [1],
which they claim the CKdV equation, is integrable only for
𝑎 = 1/2.

5.3. Three Solitons Interaction. To study the interaction of
three solitons, we choose the initial condition as a sum
of three well separated single solitons in the following
form:

𝑢 (𝑥, 0) =

3

∑

𝑗=1

𝑢
𝑗
(𝑥, 0) , V (𝑥, 0) =

3

∑

𝑗=1

V
𝑗
(𝑥, 0) , (44)



8 Abstract and Applied Analysis

0
20

40
60

80
100

0
10

20
30

40
50

60
70

80

0
1
2
3

x

t

u

−1

Figure 8: Interaction of three solitons: numerical solution 𝑈𝑛 with
parameters 𝜆

1
= 1, 𝜆

2
= 0.6, and 𝜆

3
= 0.3.
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Figure 9: Interaction of three solitons: numerical solution 𝑉𝑛 with
parameters 𝜆

1
= 1, 𝜆

2
= 0.6, and 𝜆

3
= 0.3.

where

𝑢
𝑗 (𝑥, 0) = 2𝜆

2

𝑗
sech2 (𝜉

𝑗
) , V

𝑗 (𝑥, 0) =
1

2√𝑤𝑗

sech (𝜉
𝑗
) ,

𝜉
𝑗
= 𝜆
𝑗
(𝑥 − 𝑦

𝑗
) +

1

2 log (𝑤
𝑗
)

,

𝑤
𝑗
=

−𝑏

8 (4𝑎 + 1) 𝜆
4

𝑗

, 𝑗 = 1, 2, 3.

(45)

In this test we choose the set of parameters 𝑥
𝐿
= 0, 𝑥

𝑅
=

80, ℎ = 0.05, 𝑘 = 0.01, 𝑎 = 0.5, 𝑏 = −3.0, 𝜆
1
= 1.0, 𝜆

2
= 0.6,

𝜆
3
= 0.3, 𝑦

1
= 10, 𝑦

2
= 30, and 𝑦

3
= 50.

The simulation of the three solitons interaction scenario
is given in Figures 8 and 9, respectively, for the time duration
𝑡 = 0, 4, . . . , 80. It is very clear to see how the soliton
with the largest amplitude 𝑢

1
interacts with the other two

solitons and leaves the interaction regionunchanged in shape.
The three solitons appear after the interaction in the reverse
order compared to the initial state. In Table 5, we display the
conserved quantities during the interaction scenario.

0
20

40
60

80

0
5

10
15

20
25

0
2
4

−40

−20

−2

x

t

u

Figure 10: Birth of solitons with parameters 𝑎 = 0.5 and 𝑏 = −3.0.

Table 5: Three solitons interaction: the conserved quantities.

𝑇 𝐼
1

𝐼
2

𝐼
3

0 7.600000 −3.351855 −2.610283
20 7.600042 −3.352227 −2.613149
40 7.600800 −3.352034 −2.611347
60 7.599367 −3.351547 −2.608970
80 7.600545 −3.351562 −2.602090

Table 6: Birth of solitons with 𝑎 = 0.5 and 𝑏 = −3.0.

𝑇 𝐼
1

𝐼
2

0.0 17.724343 −12.533142
5.0 17.723816 −12.532956
10.0 17.723352 −12.530116
15.0 17.722782 −12.529239
20.0 17.722217 −12.529013
25.0 17.721734 −12.528983

5.4. Birth of Solitons. In this test we choose the initial condi-
tion

𝑢 (𝑥, 0) = exp (−0.01𝑥2) ,

V (𝑥, 0) = exp (−0.01𝑥2) ,
(46)

with the following set of parameters 𝑎 = 0.5, 𝑏 = −3.0, 0 ≤

𝑥 ≤ 100, ℎ = 0.05, and 𝑘 = 0.01. We have noticed as time
evolves, a birth of four solitons with different amplitudes and
this can be easily seen in Figure 10. The conserved quantities
are given in Table 6 which is almost conserved.

6. Conclusion

In this work, we have derived two numerical schemes for
solving the Hirota-Satsuma CKdV system. The resulting
schemes are nonlinear, implicit, and unconditionally stable.
The schemes show almost similar results. Single soliton solu-
tion and conserved quantities are used to assess the accuracy
and the efficiency the derived schemes. We have noticed
that the schemes accomplished the aim of preserving the
conserved quantities, while maintaining small errors norm
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during the simulation. The features of an elastic interaction
have been shown in the simulation of two and three solitons
interaction using the proposed schemes for 𝑎 = 1/2 and
inelasticity occurs for 𝑎 ̸= 1/2.

To sum up, the derived methods are qualified and can be
adopted for solving any CKdV like systems successfully due
to their effective performance.
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