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We study the second-order neutral delay differential equation [𝑟(𝑡)Φ
𝛾
(𝑧

(𝑡))]


+ 𝑞(𝑡)Φ
𝛽
(𝑥(𝜎(𝑡))) = 0, where Φ

𝛼
(𝑡) = |𝑡|

𝛼−1
𝑡, 𝛼 ≥ 1

and 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)). Based on the conversion into a certain first-order delay differential equation we provide sufficient
conditions for nonexistence of eventually positive solutions of two different types. We cover both cases of convergent and divergent
integral ∫∞ 𝑟

−1/𝛾

(𝑡)d𝑡. A suitable combination of our results yields new oscillation criteria for this equation. Examples are shown
to exhibit that our results improve related results published recently by several authors. The results are new even in the linear case.

1. Introduction

In the paper we study the equation

[𝑟 (𝑡) Φ𝛾 (𝑧

(𝑡))]


+ 𝑞 (𝑡)Φ𝛽 (𝑥 (𝜎 (𝑡))) = 0,

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) ,

(1)

where Φ𝛼(𝑡) = |𝑡|
𝛼−1

𝑡, 𝛼 ≥ 1, is the power type nonlinearity.
The coefficients 𝑟 and 𝑝 are subject to the usual conditions
𝑟 ∈ 𝐶

1
([𝑡0,∞),R+), 𝑝 ∈ 𝐶

1
([𝑡0,∞),R+

0
) and the coefficient

𝑞 is positive, 𝑞 ∈ 𝐶([𝑡0,∞),R+).
We assume that lim𝑡→∞𝜏(𝑡) = ∞ = lim𝑡→∞𝜎(𝑡),

𝜎 (𝜏 (𝑡)) = 𝜏 (𝜎 (𝑡)) , (2)

and there exist numbers𝑝0 ≥ 0 and 𝜏0 > 0 such that𝑝(𝑡) ≤ 𝑝0
and 𝜏

(𝑡) ≥ 𝜏0.

Under the solution of (1) we understand any differentiable
function 𝑥(𝑡) which does not identically equal zero eventu-
ally, such that 𝑟(𝑡)Φ𝛾(𝑧


(𝑡)) is differentiable and (1) holds for

large 𝑡.
Following the widely accepted terminology, the solution

of (1) is said to be oscillatory if it has infinitely many zeros
tending to infinity. Equation (1) is said to be oscillatory if all its
solutions are oscillatory. In the opposite case, that is, if there

exists an eventually positive solution of (1), (1) is said to be
nonoscillatory.

In the paper we study nonoscillatory solutions of (1).
Since 𝑥(𝑡) is a solution of (1) if and only if −𝑥(𝑡) is a solution
of (1), we can focus our attention on positive solutions.

The paper is organized as follows. In the remaining part
of the current section we summarize selected important facts
related to (1) and trends in the oscillation theory of this
equation. In Section 2 we summarize tools like inequalities
and oscillation criteria used in the proofs of main results.The
main results are presented in the next three sections. Results
on eventually positive solutions are separated into Sections 3
and 4 according to different asymptotic behavior: 𝑧(𝑡) > 0

in Section 3 and 𝑧

(𝑡) < 0 in Section 4. In both cases we

provide an efficient condition which ensures that solutions
of this type do not exist. Note that under some additional
conditions (namely, divergence of integral (3) below) the
results from Section 3 immediately yield also oscillation
criteria. If (3) fails, we can formulate oscillation criteria
using a suitable combination of results from Sections 3 and
4, as shown in Section 5. The results of the paper improve
several recently published results even in the linear case.
We discuss these improvements in detail in remarks and
examples accompanying the main theorems.
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Neutral differential equation (1) as well as other related
equations have been studied frequently in the literature.There
are two main methods in the oscillation theory of (1). One
of them is based on a modification of the classical Riccati
substitution which is known to be a powerful tool in theory
of second-order linear differential equations. Following this
method, neutral equation (1) is in some sense considered
as a perturbation of some second-order ordinary differential
equation. An alternative approach, used for example, in a
series of papers by Bacuĺıková et al. [1–4] and Li [5] is based
on the fact that it is possible to derive neutral first-order
differential inequality for quasiderivative from (1) and the
resulting inequality can be studied in the scope of theory
elaborated for first-order delay differential inequalities. In
this paper we use the later approach. The resulting theorems
are sometimes referred to as comparison theorems for neutral
differential equations.

Two main approaches are used to put the shift 𝜏(𝑡) in the
differential term under the control. If𝑝(𝑡) < 1, then (1) can be
“majorized” (in the sense of the classical Sturm comparison
theory, which however has no extension to delay equations)
by a delay equation of the form (1) with 𝑝(𝑡) = 0. Oscillation
criteria for second-order delay differential equations can be
then used to conclude results for neutral equation (1) (see,
e.g., [6–8]). An alternative approach deals with a suitable
combination of (1) and the same equation with independent
variable shifted from 𝑡 to 𝜏(𝑡). This approach, which is used
also in our paper, does not require 𝑝(𝑡) < 1 but yields other
restrictions, such as commutativity of the composition of
delays (2).

Neglecting which method is used to study the oscillation
of (1), it turns out that it is necessary to distinguish two cases:
either

∫
∞ 1

𝑟1/𝛾 (𝑡)
d𝑡 = ∞ (3)

or

∫
∞ 1

𝑟1/𝛾 (𝑡)
d𝑡 < ∞. (4)

The absolute majority of oscillation results in the literature
concerns case (3), since in this case the positive solutions of
(1) exhibit simpler behavior than in case (4); see Lemma 5
below. Case (4) has been studied, for example, in [9–16]. Note
that for this case it is typical that the oscillation criterion
consists of two relatively independent conditions. One of
them is used to eliminate positive solutionswith 𝑧(𝑡) < 0; the
other one to eliminate positive solutions with 𝑧(𝑡) > 0.There
are also results which treat both cases 𝑧(𝑡) > 0 and 𝑧


(𝑡) < 0

in one unified approach. However, following this approach
a typical conclusion is weaker: the equation is proved to be
almost oscillatory (all nonoscillatory solutions, if exist any,
tend to zero). Note also that the paper [16] does not satisfy
these rules (makes use of unified approach to both cases but
concludes oscillation), but there are several inaccuracies in
this paper; see [10, 17] for corrected version of [16].

In this paper we essentially use the method from [1, 2]
with a modification for case (4) presented in [12]. However,
to keep the influence of each condition as transparent as
possible we used different organization of the paper, as we
explained above.Themain improvementwith respect to these
papers is that we replace inequalities and estimates used in
these papers by suitable parametrized versions depending
on parameters 𝑙 and 𝜑 (see below). This yields criteria with
some degree of freedom and optimization with respect to
the parameters which yields sharper results, as we carefully
explain on examples of equations with proportional delay. A
similar method where we use parameters 𝑙 and 𝜑 to refine the
widely used inequalities has been used in the recent paper
[18].

Finally, note that [12] in fact deals with linear equations
and the extension to nonlinear equations is suggested in
Remark 11 at the end of the paper [12]. However here we use
an advanced technique rather than the method suggested in
[12].

2. Preliminary Results

In the paper we derive results related to the existence or
nonexistence of certain equations and inequalities in terms of
several parameters. The following two lemmas allow to find
the values of the parameters, which yield sharpest results.

The function ℎ introduced in the following lemma plays a
role in a formulation of oscillation criteria in the case 𝛽 ≥ 1.

Lemma 1. Let 𝛽 ≥ 1. The function

ℎ (𝑥, 𝑦) = 𝑥
𝛽−1

+ 𝑦(
𝑥

𝑥 − 1
)
𝛽−1

(5)

satisfies

ℎ (𝑥, 𝑦) ≥ ℎ (1 + 𝑦
1/𝛽

, 𝑦) = (1 + 𝑦
1/𝛽

)
𝛽

, (6)

for every 𝑥 > 1 and 𝑦 > 0.

Proof. It follows from the fact that

𝜕

𝜕𝑥
ℎ (𝑥, 𝑦) = (𝛽 − 1) 𝑥

𝛽−2
[1 −

𝑦

(𝑥 − 1)
𝛽
] (7)

and ℎ as the function of 𝑥 on (1,∞) attains its minimal value
at the point 𝑥 = 1 + 𝑦

1/𝛽 and

ℎ (1 + 𝑦
1/𝛽

, 𝑦) = (1 + 𝑦
1/𝛽

)
𝛽−1

+ 𝑦
1/𝛽

(1 + 𝑦
1/𝛽

)
𝛽−1

= (1 + 𝑦
1/𝛽

)
𝛽

.

(8)

The following functions appear in the examples and allow
to find the optimal values of the parameters which yield the
sharpest result.
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Lemma 2. Let 𝑐1, 𝑐2 be positive numbers.

(i) The function 𝑓(𝑥) = 𝑥
𝑐
1 ln(𝑐2/𝑥) is increasing on (0,

𝑐2𝑒
−1/𝑐
1), decreasing on (𝑐2𝑒

−1/𝑐
1 ,∞), and satisfies

𝑓 (𝑥) ≤
1

𝑐1𝑒
𝑐
𝑐
1

2 (9)

on (0,∞) with the equality, if and only if 𝑥 = 𝑐2𝑒
−1/𝑐
1 .

(ii) The function 𝑔(𝑥) = 𝑥
−𝑐
1 ln(𝑥/𝑐2) is increasing on (0,

𝑐2𝑒
1/𝑐
1), decreasing on (𝑐2𝑒

1/𝑐
1 ,∞), and satisfies

𝑔 (𝑥) ≤
1

𝑐1𝑒
𝑐
−𝑐
1

2 (10)

on (0,∞) with the equality, if and only if 𝑥 = 𝑐2𝑒
1/𝑐
1 .

Proof. By a direct computation

𝑓

(𝑥) = 𝑥

𝑐
1
−1
(𝑐1 ln

𝑐2

𝑥
− 1) . (11)

Hence 𝑓(𝑥) has a local maximum at the point 𝑥0 = 𝑐2𝑒
−1/𝑐
1

and the value of this local maximum is 𝑐𝑐1
2
/𝑐1𝑒. Similarly,

𝑔

(𝑥) = 𝑥

−1−𝑐
1 (1 − 𝑐1 ln

𝑥

𝑐2
) , (12)

and hence 𝑔(𝑥) has a local maximum at the point 𝑥1 = 𝑐2𝑒
1/𝑐
1

and the maximal value is (1/𝑐1𝑒)𝑐
−𝑐
1

2
.

Lemma 3. Let 𝐴 ≥ 0, 𝐵 ≥ 0, 𝛽 ≥ 1, 𝑙 > 1, 𝑙∗ = 𝑙/(𝑙 − 1). Then

(𝐴 + 𝐵)
𝛽
≤ 𝑙
𝛽−1

𝐴
𝛽
+ (𝑙
∗
)
𝛽−1

𝐵
𝛽
. (13)

Proof. From the fact that the function 𝑥𝛽 is a convex function
for 𝛽 ≥ 1 we have

(
1

𝑙
𝑎 +

1

𝑙∗
𝑏)
𝛽

≤
1

𝑙
𝑎
𝛽
+

1

𝑙∗
𝑏
𝛽 (14)

for nonnegative 𝑎 and 𝑏. From here we obtain the desired
inequality for 𝐴 = 𝑎/𝑙 and 𝐵 = 𝑏/𝑙

∗.

Lemma 4. Let 𝛽 ≥ 1. The inequality

𝑙
𝛽−1

𝑥
𝛽
(𝜎 (𝑡)) + (𝑙

∗
)
𝛽−1

𝑝
𝛽
(𝜎 (𝑡)) 𝑥

𝛽
(𝜎 (𝜏 (𝑡))) ≥ 𝑧

𝛽
(𝜎 (𝑡))

(15)

holds for positive mutually conjugate numbers 𝑙, 𝑙∗ and every 𝑡
which satisfies 𝑥(𝜎(𝑡)) ≥ 0 and 𝑥(𝜎(𝜏(𝑡))) ≥ 0.

Proof. It follows from Lemma 3, from the definition of 𝑧(𝑡)
and from condition (2).

The following lemma is well known in theory of neutral
differential equations. It states (among others) that if 𝑥 is an
eventually positive solution, then 𝑧

 is eventually of one sign
and the negative sign of 𝑧 is excluded if (3) holds.

Lemma 5. Let 𝑥(𝑡) be an eventually positive solution of (1).
The corresponding function 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)) satisfies

𝑧 (𝑡) > 0, 𝑧

(𝑡) > 0, (𝑟 (𝑡) Φ𝛾 (𝑧


(𝑡)))


< 0 (16)

eventually if (3) holds and either (16) or

𝑧 (𝑡) > 0, 𝑧

(𝑡) < 0, (𝑟 (𝑡) Φ𝛾 (𝑧


(𝑡)))


< 0 (17)

eventually if (4) holds.

Proof. It follows from [7, Lemma 10] and from the proof of
that lemma.

In the following lemma we summarize effective oscil-
lation criteria for delay and advanced first-order equation
which appear in the analysis of (1). Note that (iii) is sharper
version of the related condition from [2, Lemma 4].

Lemma 6. Let 𝑞(𝑡) ≥ 0.
(i) If 𝜎(𝑡) < 𝑡 and

lim inf
𝑡→∞

∫
𝑡

𝜎(𝑡)

𝑞 (𝑠) 𝑑𝑠 >
1

𝑒
, (18)

then

𝑦

(𝑡) + 𝑞 (𝑡) 𝑦 (𝜎 (𝑡)) ≤ 0 (19)

has no eventually positive solution.
(ii) If 𝜎(𝑡) > 𝑡 and

lim inf
𝑡→∞

∫
𝜎(𝑡)

𝑡

𝑞 (𝑠) 𝑑𝑠 >
1

𝑒
, (20)

then

𝑦

(𝑡) − 𝑞 (𝑡) 𝑦 (𝜎 (𝑡)) ≥ 0 (21)

has no eventually positive solution.
(iii) Let 𝜎(𝑡) < 𝑡, 𝛼 ∈ (0, 1). If

∫
∞

𝑡
0

𝑞 (𝑠) 𝑑𝑠 = ∞, (22)

then

𝑦

(𝑡) + 𝑞 (𝑡) 𝑦

𝛼
(𝜎 (𝑡)) ≤ 0 (23)

has no eventually positive solution.
(iv) Let 𝜎(𝑡) > 𝑡, 𝛼 ∈ (1,∞). If

∫
∞

𝑡
0

𝑞 (𝑠) 𝑑𝑠 = ∞, (24)

then

𝑦

(𝑡) − 𝑞 (𝑡) 𝑦

𝛼
(𝜎 (𝑡)) ≥ 0 (25)

has no eventually positive solution.

Proof. See [9, Lemmas 2.1–2.4] and [19, Lemma 2.2.9]. Note
that the original proof of condition (i) is due to [20] and the
proofs of conditions (iii) and (iv) for equations are due to [21].
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3. Positive Solutions with 𝑧

(𝑡) > 0 Eventually

In this sectionwe give sufficient conditions which exclude the
possibility that the equation possesses an eventually positive
solution 𝑥(𝑡) such that the corresponding function 𝑧(𝑡) is
eventually increasing. Note that Lemma 5 excludes other
types of eventually positive solutions if (3) holds. Hence if
(3) holds as well, then the criteria from this section guarantee
oscillation of (1).

Denote

𝑄 (𝑡; 𝜑) = min {𝑞 (𝑡) , 𝜑𝑞 (𝜏 (𝑡))} , (26)

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) = 𝑄 (𝑡; 𝜑) [∫

𝜂(𝑡)

𝑡
1

𝑟
−1/𝛾

(𝑠) d𝑠]
𝛽

. (27)

The following theorem allows us to relate positive solu-
tions of (1) with a certain first-order neutral equation. This
neutral equation can be further compared with a certain
nonneutral differential equation.The form of this nonneutral
differential equation depends on the fact whether the deviat-
ing argument 𝜏(𝑡) in the differential term is delay or advanced
argument. If 𝜑 = 1, 𝜂 ≡ 𝜎, and 𝑙 = 2, thenTheorem 7 reduces
to [2, Theorems 4, 5 and 6].

Theorem 7. Let 𝛽 ≥ 1, 𝜑 > 0, 𝑙 > 1 and 𝜂(𝑡) a function which
satisfies 𝜂(𝑡) ≤ 𝜎(𝑡) and lim𝑡→∞𝜂(𝑡) = ∞. Suppose that there
exists a number 𝑇 > 𝑡0 and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧

(𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (28)

Let 𝑡1 > 𝑇 be such that

min {𝜂 (𝜏 (𝑡)) , 𝜂 (𝑡)} > 𝑇 (29)

for every 𝑡 ≥ 𝑡1 and let 𝑡2 ≥ 𝑡1 be such that 𝜂(𝑡) ≥ 𝑡1 for 𝑡 ≥ 𝑡2.
Then the following statements are true.

(i) The inequality

[𝑙
𝛽−1

𝑤 (𝑡) +
𝑝
𝛽

0
𝜑

𝜏0
(𝑙
∗
)
𝛽−1

𝑤 (𝜏 (𝑡))]



+𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) 𝑤

𝛽/𝛾
(𝜂 (𝑡)) ≤ 0

(30)

has a positive decreasing solution on (𝑡2,∞).
(ii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦

+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) ℎ

−𝛽/𝛾
(𝑙,

𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜂 (𝑡)) ≤ 0 (31)

has a positive solution on (𝑡2,∞).
(iii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦

+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) ℎ

−𝛽/𝛾
(𝑙,

𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜏
−1
(𝜂 (𝑡))) ≤ 0

(32)

has a positive solution on (𝑡2,∞).

Proof. Let 𝑥(𝑡) be a solution of (1) which satisfies 𝑥(𝑡) > 0

and 𝑧

(𝑡) > 0 for 𝑡 ≥ 𝑇. Inequalities (15), 𝑝(𝑡) ≤ 𝑝0, and

𝜂(𝑡) ≤ 𝜎(𝑡) imply

𝑙
𝛽−1

𝑥
𝛽
(𝜎 (𝑡)) + (𝑙

∗
)
𝛽−1

𝑝
𝛽

0
𝑥
𝛽
(𝜎 (𝜏 (𝑡))) ≥ 𝑧

𝛽
(𝜂 (𝑡)) (33)

for 𝑡 ≥ 𝑡1.
We shift (1) from 𝑡 to 𝜏(𝑡) and get

0 =
1

𝜏 (𝑡)
[𝑟 (𝜏 (𝑡)) Φ𝛾 (𝑧


(𝜏 (𝑡)))]



+ 𝑞 (𝜏 (𝑡)) Φ𝛽 (𝑥 (𝜎 (𝜏 (𝑡))))

≥
1

𝜏0
[𝑟 (𝜏 (𝑡)) Φ𝛾 (𝑧


(𝜏 (𝑡)))]



+ 𝑞 (𝜏 (𝑡)) Φ𝛽 (𝑥 (𝜎 (𝜏 (𝑡)))) .

(34)

Substituting Φ𝛽(𝑥(𝜎(𝜏(𝑡)))) from this inequality and
Φ𝛽(𝑥(𝜎(𝑡))) from (1) to (33) and using (26) we obtain

0 ≥ 𝑙
𝛽−1

[𝑟 (𝑡) Φ𝛾 (𝑧

(𝑡))]


+
(𝑙
∗
)
𝛽−1

𝑝
𝛽

0
𝜑

𝜏0

× [𝑟 (𝜏 (𝑡)) Φ𝛾 (𝑧

(𝜏 (𝑡)))]



+ 𝑄 (𝑡; 𝜑) 𝑧
𝛽
(𝜂 (𝑡)) ,

(35)

for 𝑡 ≥ 𝑡1. Denoting 𝑤(𝑡) = 𝑟(𝑡)Φ𝛾(𝑧

(𝑡)) and using the

obvious fact that 𝑤 is positive and decreasing on (𝑡1,∞) we
have

𝑧 (𝑡) = ∫
𝑡

𝑡
1

𝑤
1/𝛾

(𝑠) 𝑟
−1/𝛾

(𝑠) d𝑠 ≥ 𝑤
1/𝛾

(𝑡) ∫
𝑡

𝑡
1

𝑟
−1/𝛾

(𝑠) d𝑠

(36)

for 𝑡 ≥ 𝑡1. Thus 𝑤 is an eventually positive and eventually
decreasing solution of (30) and claim (i) is proved.

Denote

𝑦 (𝑡) = 𝑙
𝛽−1

𝑤 (𝑡) +
𝑝
𝛽

0
𝜑

𝜏0
(𝑙
∗
)
𝛽−1

𝑤 (𝜏 (𝑡)) . (37)

Since 𝑤 is a positive decreasing function, we have 𝑤(𝑡) ≥

𝑤(𝜏(𝑡)) for 𝑡 ≤ 𝜏(𝑡) and 𝑤(𝑡) ≤ 𝑤(𝜏(𝑡)) for 𝑡 ≥ 𝜏(𝑡). Hence if
𝑡 ≤ 𝜏(𝑡) we have

𝑦 (𝑡) ≤ 𝑤 (𝑡) (𝑙
𝛽−1

+
𝑝
𝛽

0
𝜑

𝜏0
(𝑙
∗
)
𝛽−1

) = 𝑤 (𝑡) ℎ(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
) ,

(38)

where the function ℎ is defined by (5), and, if 𝑡 ≥ 𝜏(𝑡), then
similarly

𝑦 (𝑡) ≤ 𝑤 (𝜏 (𝑡)) ℎ(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
) . (39)

Hence we have

𝑤
𝛽/𝛾

(𝜂 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜂 (𝑡)) , (40)
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if 𝑡 ≤ 𝜏(𝑡), and

𝑤
𝛽/𝛾

(𝜂 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜏
−1
(𝜂 (𝑡))) (41)

if 𝑡 ≥ 𝜏(𝑡). This and claim (i) prove claims (ii) and (iii) since
in each case we have found an eventually positive solution 𝑦

of the corresponding inequality.

Remark 8. Note that in the proof of Theorem 7 we con-
structed the solutions of the inequalities (30), (31), and (32).

In the following corollary we give an efficient condition
for nonexistence of the solutions mentioned in the points (ii)
and (iii) ofTheorem 7. According to Lemma 6 we distinguish
the cases 𝛾 = 𝛽 and 𝛾 ̸= 𝛽.

Corollary 9. Let 𝛾 ≥ 𝛽 ≥ 1. Equation (1) has no solution 𝑥(𝑡)

which satisfies

𝑥 (𝑡) > 0, 𝑧

(𝑡) > 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (42)

if there exists number 𝜑 > 0 and a function 𝜂(𝑡) satisfying
𝜂(𝑡) ≤ 𝜎(𝑡) and lim𝑡→∞𝜂(𝑡) = ∞ such that one of the fol-
lowing conditions holds.

(i) 𝜂(𝑡) < 𝑡 ≤ 𝜏(𝑡) and for every 𝑇 there exists 𝑡1 > 𝑇 such
that

lim inf
𝑡→∞

∫
𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) 𝑑𝑠 >

1

𝑒
(1 + (

𝜑

𝜏0
)

1/𝛽

𝑝0)

𝛽
2
/𝛾

(43)

if 𝛽 = 𝛾, and

∫
∞

𝑡
0

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) 𝑑𝑡 = ∞ (44)

if 𝛽 < 𝛾.
(ii) 𝜂(𝑡) < 𝜏(𝑡) ≤ 𝑡 and for every 𝑇 there exists 𝑡1 > 𝑇 such

that

lim inf
𝑡→∞

∫
𝑡

𝜏−1(𝜂(𝑡))
𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) 𝑑𝑠 >

1

𝑒
(1 + (

𝜑

𝜏0
)

1/𝛽

𝑝0)

𝛽
2
/𝛾

(45)

if 𝛽 = 𝛾, and (44) holds if 𝛽 < 𝛾.

Proof. It follows fromTheorem 7 and Lemmas 6 and 1.

In the following example we compare our results with the
results of [1]. Note that in this example (3) holds and hence
the results of this section ensure oscillation of the equation.

Example 10 (linear equation). Bacuĺıková and Džurina stud-
ied in [1] differential equation

(√𝑡[𝑥 (𝑡) + 𝑝0𝑥 (𝛼𝑡)]

)


+
𝑎

𝑡3/2
𝑥 (𝜇𝑡) = 0, (46)

where 0 < 𝜇 < 1, 𝛼 > 0, 𝑎 > 0, and obtained that the equation
is oscillatory if either

𝛼 ≥ 1, 2𝑎√𝜇 ln 1

𝜇
>
1

𝑒
(𝛼
3/2

+ 𝑝0√𝛼) (47)

or

0 < 𝜇 < 𝛼 ≤ 1, 2𝑎√𝜇 ln 𝛼

𝜇
>
𝛼 + 𝑝0

𝛼𝑒
. (48)

We have 𝛾 = 𝛽 = 1, 𝜏(𝑡) = 𝛼𝑡, 𝜎(𝑡) = 𝜇𝑡, 𝑟(𝑡) = √𝑡, 𝑞(𝑡) =
𝑎𝑡
−3/2, 𝑞(𝜏(𝑡)) = 𝑎(𝛼𝑡)

−3/2, and

∫ 𝑟
−1/𝛾

(𝑡) d𝑡 = ∫ 𝑡
−1/2d𝑡 = 2√𝑡, (49)

and hence (3) holds. Using Corollary 9 with 𝜂(𝑡) = 𝜆𝑡, 𝜆 ≤ 𝜇

and 𝜑 = 𝛼
3/2 we have 𝑄(𝑡) = 𝑞(𝑡) and consequently,

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) =

𝑎

𝑡3/2
[2√𝜆√𝑡 − 2√𝑡1] ,

lim inf
𝑡→∞

∫
𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) d𝑠 = 2𝑎√𝜆 ln 1

𝜆
,

lim inf
𝑡→∞

∫
𝑡

𝜏−1(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) d𝑠 = 2𝑎√𝜆 ln 𝛼

𝜆
.

(50)

Hence, (46) is oscillatory if either

𝛼 ≥ 1, 2𝑎√𝜆 ln 1

𝜆
>
1

𝑒
(1 + √𝛼𝑝0) (51)

or

0 < 𝜆 < 𝛼 ≤ 1, 2𝑎√𝜆 ln 𝛼

𝜆
>
1

𝑒
(1 + √𝛼𝑝0) . (52)

Even in case 𝜇 = 𝜆, if we view the right hand sides as linear
functions of𝑝0, we easily see from the slope and𝑦-intercept of
these lines that these conditions are sharper than those from
[1]. Note that the fact that the equation is linear causes that
the parameter 𝑙 does not have any influence on the sharpenes
of these conditions, since the function ℎ from Lemma 1 is a
constant function with respect to the first variable for 𝛽 = 1.
Hence, the improvement with respect to the results from [1]
is purely in the presence of the parameter 𝜑 in the definition
of the function 𝑄. Figure 1 reveals also different asymptotic
behavior of the right hand sides of (51) and (52) with respect
to the corresponding constants from (47) and (48). Based on
this fact we see that the improvement is significant especially
if 𝛼 is sufficiently far from 1.

When looking for optimal conditions for oscillation of
(46) it is easy to ensure that the case 𝜆 = 𝜇 is not optimal
for every 𝜇. Really, if we replace inequality signs in (51) and
(52) by equality signs and view the resulting equality as a
formula which defines 𝑎 as a function of 𝜆, we get U-shaped
function with one local minimum (see Figure 2). Since 𝜆 can
be any positive number smaller than 𝜇, it turns out that the
optimal choice for 𝜆 is 𝜆 = 𝜇 on the decreasing part and 𝜆 =

𝜆max on the increasing part, where 𝜆max is the point where
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𝛼
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S
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RHS of  (51) and (52)
RHS of  (47) and (48)

Figure 1: The graph of right hand sides (RHS) of (47) and (48) for
𝑝
0
= 0.8 compared to (51) and (52) as functions of 𝛼.

the function √𝜆 ln(𝛼/𝜆) attains its global maximum. Using
Lemma 2, we have 𝜆max = 𝛼/𝑒

2 and √𝜆 ln(𝛼/𝜆) ≤ (2√𝛼/𝑒).
Hence we get that the equation is oscillatory if

𝑎 > 𝑎crit.

:=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

1

4
(1 + √𝛼𝑝0) for 𝛼 ≥ 1, 𝜇 ≥

1

𝑒2
,

1

4√𝛼
(1 + √𝛼𝑝0) for 𝛼 ≤ 1, 𝜇 ≥

𝛼

𝑒2
,

1

2𝑒√𝜇 ln (1/𝜇)
(1 + √𝛼𝑝0) for 𝛼 ≥ 1, 𝜇 ≤

1

𝑒2
,

1

2𝑒√𝜇 ln (𝛼/𝜇)
(1 + √𝛼𝑝0) for 𝛼 ≤ 1, 𝜇 ≤

𝛼

𝑒2
.

(53)

From the graphical point of view these conditions arise from
(51) and (52) by isolating 𝑎 and replacing the increasing part
of the resulting curve by a constant function; see Figure 2 for
more details and for comparison with the oscillation constant
resulting from (48).

Example 11 (half-linear equation). Consider the differential
equation

(𝑡
2
[(𝑥 (𝑡) + (3 + sin 𝑡) 𝑥 (𝛼𝑡))]

3

)


+
𝑏

𝑡2
𝑥
3
(𝜇𝑡) = 0,

𝜇 < 1, 𝑎 > 0.

(54)

We have 𝛽 = 𝛾 = 3, 𝜏(𝑡) = 𝛼𝑡, 𝜎(𝑡) = 𝜇𝑡, 𝑝0 = 4, 𝜏0 = 𝛼,
𝑟(𝑡) = 𝑡

2, 𝑞(𝑡) = 𝑏/𝑡
2, 𝑞(𝜏(𝑡)) = 𝑏/(𝛼𝑡)

2 and,

∫ 𝑟
−1/𝛾

(𝑡) d𝑡 = ∫ 𝑡
−2/3d𝑡 = 3𝑡

1/3
, (55)

a

0.1 0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

1

U-shaped function:

Corollary 9 with optimal 𝜂,

Example 1 of  [1]:

𝜇

2a√𝜇 ln
𝛼

𝜇
=

1

e

𝛼 + p0

𝛼

2a√𝜇 ln
𝛼

𝜇
=

1

e
(1 + √𝛼)

i.e., a = acrit . , acrit . defined by (53)

Figure 2: A comparison of the lower bounds for the coefficient
𝑎 which guarantee oscillation of (46) for different values of 𝜇.
Parameters used for the graphs are 𝛼 = 0.6 and 𝑝

0
= 0.8.

and hence condition (3) holds. Using results of Bacuĺıková
and Džurina [2, Corollaries 3 and 4] we obtain that (54) is
oscillatory if

𝛼 ≥ 1, 27𝑒𝑏𝜇 ln 1

𝜇
> 4𝛼
2
(1 +

4
3

𝛼
) (56)

or

0 < 𝜇 < 𝛼 ≤ 1, 27𝑒𝑏𝜇 ln 𝛼

𝜇
> 4(1 +

4
3

𝛼
) . (57)

Using Corollary 9 with 𝜂(𝑡) = 𝜆𝑡, 𝜆 ≤ 𝜇 and 𝜑 = 𝛼
2 we have

𝑄(𝑡; 𝜑) = 𝑞(𝑡) and consequently,

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) =

27𝑏

𝑡2
[𝜆
1/3

𝑡
1/3

− 𝑡
1/3

1
]
3

. (58)

Hence,

lim inf
𝑡→∞

∫
𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) d𝑠 = 27𝑏𝜆 ln 1

𝜆
,

lim inf
𝑡→∞

∫
𝑡

𝜏−1(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) d𝑠 = 27𝑏𝜆 ln 𝛼

𝜆

(59)

and (54) is oscillatory if

𝛼 ≥ 1, 27𝑒𝑏𝜆 ln 1

𝜆
> (1 + 4𝛼

1/3
)
3

(60)

or

0 < 𝜆 < 𝛼 ≤ 1, 27𝑒𝑏𝜆 ln 𝛼

𝜆
> (1 + 4𝛼

1/3
)
3

. (61)

If 𝜆 = 𝜇, the comparison of our lower bound (1 + 4𝛼
1/3

)
3 and

the upper bound 4(1 + 4
3
/𝛼) if 𝛼 < 1 and 4𝛼

2
(1 + 4

3
/𝛼) if

𝛼 > 1 is on Figure 3. Note that in contrast to the linear case,
both curves do not intersect at 𝛼 = 1.
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Figure 3: The graph of right hand sides (RHS) of (56) and (57) for
𝑝
0
= 4 compared to (60) and (61) as functions of 𝛼.

The function 𝑓(𝜆) = 𝜆 ln(𝛼/𝜆) is positive on the interval
(0, 𝛼) and it follows from Lemma 1 that the maximal value of
𝑓(𝜆) is 𝛼/𝑒 at the point 𝜆 = 𝛼/𝑒. Hence, (54) is oscillatory if

𝑏 > 𝑏crit.

:=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

1

27
(1 + 4𝛼

1/3
)
3

for𝛼 ≥ 1, 𝜇 ≥
1

𝑒
,

1

27𝛼
(1 + 4𝛼

1/3
)
3

for𝛼 ≤ 1, 𝜇 ≥
𝛼

𝑒
,

1

27𝑒𝜇 ln (1/𝜇)
(1 + 4𝛼

1/3
)
3

for𝛼 ≥ 1, 𝜇 ≤
1

𝑒
,

1

27𝑒𝜇 ln (𝛼/𝜇)
(1 + 4𝛼

1/3
)
3

for𝛼 ≤ 1, 𝜇 ≤
𝛼

𝑒
.

(62)

Figure 4 shows how the critical constant which ensures
oscillation of (54) is improved with respect to the results of
[2] (dashed line) for various values of the delay 𝜇. For readers
convenience we graphed also a dotted curve which is only
partial improvement of [2]: the values of 𝑙 and 𝜂 are chosen as
in [2] and the value of 𝜑 (which plays role in𝑄) is choosen to
equal to 𝑞(𝑡)/𝑞(𝜏(𝑡)).

The following theorem and corollary are variants of
Theorem 7 and Corollary 9 for sublinear case 𝛽 ≤ 1.

Theorem 12. Let 𝛽 ≤ 1, 𝜑 > 0, and 𝜂(𝑡) a function which
satisfies 𝜂(𝑡) ≤ 𝜎(𝑡) and lim𝑡→∞𝜂(𝑡) = ∞. Suppose that there
exists a number 𝑇 > 𝑡0 and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧

(𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (63)

Let 𝑡1 > 𝑇 be such that

min {𝜂 (𝜏 (𝑡)) , 𝜂 (𝑡)} > 𝑇 (64)

for every 𝑡 ≥ 𝑡1 and let 𝑡2 ≥ 𝑡1 be such that 𝜂(𝑡) ≥ 𝑡1 for 𝑡 ≥ 𝑡2.
Then the following statements are true.

b

𝜇

0.1 0.2 0.3 0.4

20

40

60

80

100

Oscillation condition for (32)

Corollaries 3 and 4 of  [2]:

Corollary 9 with optimal 𝜂,
i.e., b = bcrit . , bcrit . given by (62)

with l = 2 and 𝜂 ≡ 𝜎:

27eb𝜇 ln
𝛼

𝜇
= 4(1 + 43/𝛼)

27eb𝜇 ln
𝛼

𝜇
= 4(1 + 43𝛼)

Figure 4: A comparison of the lower bounds for the coefficient
𝑏 which guarantee oscillation of (54) for different values of 𝜇.
Parameters are 𝛼 = 0.4 and 𝑝

0
= 4.

(i) The inequality

[𝑤 (𝑡) +
𝑝
𝛽

0
𝜑

𝜏0
𝑤 (𝜏 (𝑡))]



+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) 𝑤

𝛽/𝛾
(𝜂 (𝑡)) ≤ 0

(65)

has a positive decreasing solution on (𝑡2,∞).
(ii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦

+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1)(

𝜏0

𝜏0 + 𝑝
𝛽

0
𝜑
)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜂 (𝑡)) ≤ 0 (66)

has a positive solution on (𝑡2,∞).
(iii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦

+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1)(

𝜏0

𝜏0 + 𝑝
𝛽

0
𝜑
)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜏
−1
(𝜂 (𝑡))) ≤ 0

(67)

has a positive solution on (𝑡2,∞).

Proof. The proof is the same as the proof ofTheorem 7 where
we formally put 𝑙 = 𝑙

∗
= 1 and use

(𝐴 + 𝐵)
𝛽
≤ 𝐴
𝛽
+ 𝐵
𝛽 (68)

instead of Lemma 3.

Corollary 13. Let 𝛽 ≤ 1, 𝛾 ≥ 𝛽. Equation (1) has no solution
𝑥(𝑡) which satisfies

𝑥 (𝑡) > 0, 𝑧

(𝑡) > 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (69)

if there exists 𝜑 > 0 and a function 𝜂(𝑡) satisfying 𝜂(𝑡) ≤ 𝜎(𝑡)

and lim𝑡→∞𝜂(𝑡) = ∞ such that one of the following conditions
holds.
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(i) 𝜂(𝑡) < 𝑡 ≤ 𝜏(𝑡) and for every 𝑇 there exists 𝑡1 > 𝑇 such
that

lim inf
𝑡→∞

∫
𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) 𝑑𝑠 >

1

𝑒
(
𝜏0 + 𝑝

𝛽

0
𝜑

𝜏0
)

𝛽/𝛾

(70)

if 𝛽 = 𝛾, and (44) holds if 𝛽 < 𝛾.
(ii) 𝜂(𝑡) < 𝜏(𝑡) ≤ 𝑡 and for every 𝑇 there exists 𝑡1 > 𝑇 such

that

lim inf
𝑡→∞

∫
𝑡

𝜏−1(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) 𝑑𝑠 >

1

𝑒
(
𝜏0 + 𝑝

𝛽

0
𝜑

𝜏0
)

𝛽/𝛾

(71)

if 𝛽 = 𝛾, and (44) holds if 𝛽 < 𝛾.

Proof. It follows fromTheorem 12 and Lemmas 6 and 1.

Remark 14. If𝜑 = 1 and 𝜂(𝑡) = 𝜎(𝑡), thenTheorem 12 reduces
to [2, Theorems 1, 2, and 3] and Corollary 13 reduces to [2,
Corollaries 1 and 2].

4. Positive Solutions with 𝑧

(𝑡) < 0 Eventually

In this section we modify the methods from previous section
for positive solutions 𝑥(𝑡) which satisfy 𝑧(𝑡) < 0 eventually.
Troughout this section we will suppose that (4) holds, since
if it fails, then evetually positive solutions with 𝑧


(𝑡) < 0

eventually do not exist.
The function 𝑄

⋆

𝜁
defined by the relation

𝑄
⋆

𝜁
(𝑡; 𝜑) = 𝑄 (𝑡; 𝜑) [∫

∞

𝜁(𝑡)

𝑟
−1/𝛾

(𝑠) d𝑠]
𝛽

(72)

and the following Theorem 15 are the corresponding modifi-
cations of the function 𝑄

∗

𝜂
andTheorem 7.

Theorem 15. Let 𝛽 ≥ 1, 𝜑 > 0, 𝑙 > 1, and let 𝜁(𝑡) be a function
which satisfies 𝜁(𝑡) ≥ 𝜎(𝑡). Suppose that there exists a number
𝑇 > 𝑡0 and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧

(𝑡) < 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (73)

Let 𝑡1 > 𝑇 be such that

min {𝜎 (𝑡) , 𝜎 (𝜏 (𝑡))} > 𝑇 (74)

for every 𝑡 ≥ 𝑡1. Then the following statements are true.
(i) The inequality

[𝑙
𝛽−1

𝑢 (𝑡) +
𝑝
𝛽

0
𝜑

𝜏0
(𝑙
∗
)
𝛽−1

𝑢 (𝜏 (𝑡))]



− 𝑄
⋆

𝜁
(𝑡; 𝜑) 𝑢

𝛽/𝛾
(𝜁 (𝑡)) ≥ 0

(75)

has a positive increasing solution on (𝑡1,∞).
(ii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦

− 𝑄
⋆

𝜁
(𝑡; 𝜑) ℎ

−𝛽/𝛾
(𝑙,

𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜁 (𝑡)) ≥ 0 (76)

has a positive solution on (𝑡1,∞).

(iii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦

− 𝑄
⋆

𝜁
(𝑡; 𝜑) ℎ

−𝛽/𝛾
(𝑙,

𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜏
−1
(𝜁 (𝑡))) ≥ 0 (77)

has a positive solution on (𝑡1,∞).

Proof. Let 𝑥 be a solution of (1) which satisfies 𝑥(𝑡) > 0 and
𝑧

(𝑡) < 0 for 𝑡 > 𝑇. Inequalities (15),𝑝(𝑡) ≤ 𝑝0, and 𝜁(𝑡) ≥ 𝜎(𝑡)

imply

𝑙
𝛽−1

𝑥
𝛽
(𝜎 (𝑡)) + (𝑙

∗
)
𝛽−1

𝑝
𝛽

0
𝑥
𝛽
(𝜎 (𝜏 (𝑡))) ≥ 𝑧

𝛽
(𝜁 (𝑡)) . (78)

Combining this inequality with (1) and (1) shifted from 𝑡 to
𝜏(𝑡), similarly as in the proof of Theorem 7, we obtain

0 ≥ 𝑙
𝛽−1

[𝑟 (𝑡) Φ𝛾 (𝑧

(𝑡))]


+
(𝑙
∗
)
𝛽−1

𝑝
𝛽

0
𝜑

𝜏0

× [𝑟 (𝜏 (𝑡)) Φ𝛾 (𝑧

(𝜏 (𝑡)))]



+ 𝑄 (𝑡; 𝜑) 𝑧
𝛽
(𝜁 (𝑡))

(79)

for 𝑡 ≥ 𝑡1. The function 𝑤 defined by 𝑤(𝑡) = 𝑟(𝑡)Φ𝛾(𝑧

(𝑡)) is

negative and decreasing. Hence for 𝑠 ≥ 𝑡 we have

𝑟 (𝑠)Φ𝛾 (𝑧

(𝑠)) ≤ 𝑟 (𝑡) Φ𝛾 (𝑧


(𝑡)) ,

𝑧

(𝑠) ≤ 𝑧


(𝑡) Φ
−1

𝛾
(
𝑟 (𝑡)

𝑟 (𝑠)
)

(80)

and hence

𝑧 (𝑙) − 𝑧 (𝑡) ≤ Φ
−1

𝛾
(𝑟 (𝑡)) 𝑧


(𝑡) ∫
𝑙

𝑡

𝑟
−1/𝛾

(𝑠) d𝑠. (81)

Since lim𝑙→∞𝑧(𝑙) ≥ 0 we have

−𝑧 (𝑡) ≤ Φ
−1

𝛾
(𝑟 (𝑡)) 𝑧


(𝑡) ∫
∞

𝑡

𝑟
−1/𝛾

(𝑠) d𝑠, (82)

which implies

𝑧
𝛽
(𝜁 (𝑡)) ≥ (−𝑤 (𝜁 (𝑡)))

𝛽/𝛾
[∫
∞

𝜁(𝑡)

𝑟
−1/𝛾

(𝑠) d𝑠]
𝛽

. (83)

Combining this inequality with (79) and multiplying by −1

we find that 𝑢(𝑡) = −𝑤(𝑡) is a positive and increasing solution
of (75). Claim (i) is proved. Denote

𝑦 (𝑡) = 𝑙
𝛽−1

𝑤 (𝑡) +
𝑝
𝛽

0
𝜑

𝜏0
(𝑙
∗
)
𝛽−1

𝑤 (𝜏 (𝑡)) . (84)

Since 𝑢(𝑡) is positive and increasing, we have 𝑢(𝜏(𝑡)) ≤ 𝑢(𝑡)

for 𝜏(𝑡) ≤ 𝑡 and 𝑢(𝜏(𝑡)) ≥ 𝑢(𝑡) for 𝜏(𝑡) ≥ 𝑡. Hence, if 𝜏(𝑡) ≤ 𝑡,
we have

𝑦 (𝑡) ≤ 𝑢 (𝑡) ℎ(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
) , (85)

which implies

𝑢
𝛽/𝛾

(𝜁 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜁 (𝑡)) . (86)
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Analogously, if 𝜏(𝑡) ≥ 𝑡,

𝑦 (𝑡) ≤ 𝑢 (𝜏 (𝑡)) ℎ(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
) , (87)

which implies

𝑢
𝛽/𝛾

(𝜁 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,
𝑝
𝛽

0
𝜑

𝜏0
)𝑦
𝛽/𝛾

(𝜏
−1
(𝜁 (𝑡))) . (88)

Claims (ii) and (iii) then follow from (i) and positivity of 𝑦.

Corollary 16. Let 𝛽 ≥ 1 and 𝛽 ≥ 𝛾. Equation (1) has no
solution 𝑥(𝑡) which satisfies

𝑥 (𝑡) > 0, 𝑧

(𝑡) < 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (89)

if there exists 𝜑 > 0 and a function 𝜁(𝑡) satisfying 𝜁(𝑡) ≥ 𝜎(𝑡)

such that one of the following conditions holds.

(i) 𝜏(𝑡) ≤ 𝑡 < 𝜁(𝑡) and

lim inf
𝑡→∞

∫
𝜁(𝑡)

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒
(1 + (

𝜑

𝜏0
)

1/𝛽

𝑝0)

𝛽
2
/𝛾

(90)

if 𝛽 = 𝛾, and

∫
∞

𝑡
0

𝑄
⋆

𝜁
(𝑡; 𝜑) 𝑑𝑡 = ∞ (91)

if 𝛽 > 𝛾.
(ii) 𝑡 ≤ 𝜏(𝑡) < 𝜁(𝑡) and

lim inf
𝑡→∞

∫
𝜏
−1
(𝜁(𝑡))

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒
(1 + (

𝜑

𝜏0
)

1/𝛽

𝑝0)

𝛽
2
/𝛾

(92)

if 𝛽 = 𝛾, and (91) holds if 𝛽 > 𝛾.

Proof. It follows fromTheorem 15 and Lemmas 6 and 1.

In a similar way as in Theorem 12 and Corollary 13, if
we suppose 𝛽 ≤ 1 in Theorem 15 and Corollary 16 and use
inequality (68) instead of inequality from Lemma 3, we get
the following statements.

Theorem 17. Let 𝛽 ≤ 1, 𝜑 > 0, and 𝜁(𝑡) a function which
satisfies 𝜁(𝑡) ≥ 𝜎(𝑡). Suppose that there exists a number 𝑇 > 𝑡0
and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧

(𝑡) < 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (93)

Let 𝑡1 > 𝑇 be such that

min {𝜎 (𝑡) , 𝜎 (𝜏 (𝑡))} > 𝑇 (94)

for every 𝑡 ≥ 𝑡1. Then the following statements are true.

(i) The inequality

[𝑢 (𝑡) +
𝑝
𝛽

0
𝜑

𝜏0
𝑢 (𝜏 (𝑡))]



− 𝑄
⋆

𝜁
(𝑡; 𝜑) 𝑢

𝛽/𝛾
(𝜁 (𝑡)) ≥ 0 (95)

has a positive increasing solution on (𝑡1,∞).
(ii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦

− 𝑄
⋆

𝜁
(𝑡; 𝜑)(

𝜏0

𝜏0 + 𝑝
𝛽

0
𝜑
)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜁 (𝑡)) ≥ 0 (96)

has a positive solution on (𝑡1,∞).
(iii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦

− 𝑄
⋆

𝜁
(𝑡; 𝜑)(

𝜏0

𝜏0 + 𝑝
𝛽

0
𝜑
)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜏
−1
(𝜁 (𝑡))) ≥ 0 (97)

has a positive solution on (𝑡1,∞).

Corollary 18. Let 𝛽 ≤ 1, 𝛾 ≤ 𝛽. Equation (1) has no solution
𝑥(𝑡) which satisfies

𝑥 (𝑡) > 0 𝑧

(𝑡) < 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (98)

if there exists 𝜑 > 0 and a function 𝜁(𝑡) satisfying 𝜂(𝑡) ≥ 𝜎(𝑡)

such that one of the following conditions holds.

(i) 𝜏(𝑡) ≤ 𝑡 < 𝜁(𝑡) and

lim inf
𝑡→∞

∫
𝜁(𝑡)

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒
(
𝜏0 + 𝑝

𝛽

0
𝜑

𝜏0
)

𝛽/𝛾

(99)

if 𝛽 = 𝛾, and (91) holds if 𝛽 > 𝛾.
(ii) 𝑡 ≤ 𝜏(𝑡) < 𝜁(𝑡) and

lim inf
𝑡→∞

∫
𝜏
−1
(𝜁(𝑡))

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒
(
𝜏0 + 𝑝

𝛽

0
𝜑

𝜏0
)

𝛽/𝛾

(100)

if 𝛽 = 𝛾, and (91) holds if 𝛽 > 𝛾.

5. Oscillation Criteria If (4) Holds

As we explained before, it follows from Lemma 5 that if (3)
holds, then the criteria from Section 3 are in fact oscillation
criteria. If (3) fails and (4) holds, then the set of all possible
eventually positive solutions is more comprehensive andmay
contain also solution which satisfy 𝑧


(𝑡) < 0 eventually.

Hence to ensure oscillation of (1) in the case (4) we have
to eliminate both cases; criteria from both Sections 3 and
4 apply. For example, in the half-linear case 𝛽 = 𝛾, (1) is
oscillatory if either conditions

(4) , (43) , and (92) hold if 𝜏 (𝑡) ≥ 𝑡, (101)

or

(4) , (45) and (90) hold if 𝜏 (𝑡) ≤ 𝑡; (102)

see the example below.
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Example 19. Consider the equation

(𝑡
3/2

(𝑥 (𝑡) + 𝑝0𝑥 (𝛼𝑡))

)


+
𝑎

√𝑡
𝑥 (𝜇𝑡) = 0, 𝑎 > 0. (103)

We have 𝛾 = 𝛽 = 1, 𝜏(𝑡) = 𝛼𝑡, 𝜎(𝑡) = 𝜇𝑡, 𝑟(𝑡) = 𝑡
3/2, 𝑞(𝑡) =

𝑎𝑡
−1/2, 𝑞(𝜏(𝑡)) = 𝑎(𝛼𝑡)

−1/2. We will apply Corollaries 9 and 16
with 𝜂(𝑡) = 𝜆1𝑡, 𝜁(𝑡) = 𝜆2𝑡, 𝜆1 ≤ 𝜇 ≤ 𝜆2 and 𝜑 = 𝛼

1/2. We
have 𝑄(𝑡) = 𝑞(𝑡). Since

∫ 𝑟
−1/𝛾

(𝑡) d𝑡 = ∫ 𝑡
−3/2d𝑡 = −2𝑡

−1/2
, (104)

condition (4) holds. Next we have

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡1) = −2𝑎 (√𝜆1𝑡

−1
− √𝑡1𝑡

−1/2
) ,

𝑄
⋆

𝜁
(𝑡; 𝜑) = −2𝑎𝑡

−1/2
( lim
𝑡→∞

𝑡
−1/2

− (𝜆2𝑡)
−1/2

)

= 2𝑎𝜆
−1/2

𝑡
−1
.

(105)

Consequently, if 𝜆1 < 1 ≤ 𝛼 < 𝜆2, then (43) and (92) give

lim inf
𝑡→∞

∫
𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) d𝑠

= −2𝑎√𝜆1 ln
1

𝜆1
+ 2𝑎√𝑡1 (1 − √𝜆1) lim

𝑡→∞

√𝑡

= ∞,

lim inf
𝑡→∞

∫
𝜏
−1
(𝜁(𝑡))

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) d𝑠 = 2𝑎

√𝜆2

ln 𝜆2

𝛼
.

(106)

If 𝜆1 < 𝛼 ≤ 1 < 𝜆2, then (45) and (90) give

lim inf
𝑡→∞

∫
𝑡

𝜏−1(𝜂(𝑡))
𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡1) d𝑠

= −2𝑎√𝜆1 ln
𝛼

𝜆1
+ 2𝑎√𝑡1(1 − √

𝜆1

𝛼
) lim
𝑡→∞

√𝑡

= ∞,

lim inf
𝑡→∞

∫
𝜁(𝑡)

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) d𝑠 = 2𝑎

√𝜆2

ln 𝜆2.

(107)

Hence, (103) is oscillatory if

𝜆1 < 1 ≤ 𝛼 < 𝜆2,
2𝑎

√𝜆2

ln 𝜆2

𝛼
>
1

𝑒
(1 +

𝑝0

√𝛼
) (108)

or

𝜆1 < 𝛼 ≤ 1 < 𝜆2,
2𝑎

√𝜆2

ln 𝜆2 >
1

𝑒
(1 +

𝑝0

√𝛼
) . (109)

The function 𝑔(𝜆2) = 𝜆
−1/2

2
ln(𝜆2/𝛼) is positive on the

interval (𝛼,∞) and it follows fromLemma 1 that themaximal

value of 𝑔(𝜆2) is 2/(𝑒√𝛼) at the point 𝛼𝑒2. Hence, (103) is
oscillatory if

𝑎 > 𝑎crit.

:=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

√𝛼

4
(1 +

𝑝0

√𝛼
) for 𝛼 ≥ 1, 𝜇 ≤ 𝛼𝑒

2
,

1

4
(1 +

𝑝0

√𝛼
) for 𝛼 ≤ 1, 𝜇 ≤ 𝑒

2
,

√𝜇

2𝑒 ln(
𝜇

𝛼
)

(1 +
𝑝0

√𝛼
) for 𝛼 ≥ 1, 𝜇 ≥ 𝛼𝑒

2
,

√𝜇

2𝑒 ln 𝜇
(1 +

𝑝0

√𝛼
) for 𝛼 ≤ 1, 𝜇 ≥ 𝑒

2
.

(110)

6. Conclusion

In the paper we derived asymptotic results for neutral quasi-
linear equation (1). Note that this equation covers several
types of second-order differential equations studied in the
literature, namely, the linear and half-linear second-order
differential equations.

Using the comparison method we derived sufficient con-
ditions for nonexistence of eventually positive solutions with
various asymptotic behaviors. Additional assumptions (such
as (3)) or suitable combinations of the results yield oscillation
criteria for this equation. The novelty of the presented
results is in the fact that we used parametrized versions of
inequalities used typically in comparison theory of neutral
differential equations. Despite the fact that we introduced
three parameters (𝑙, 𝜑, and 𝜂), the results remain simple and
effective. We have shown on several examples that effective
oscillation criteria can be formulated for particular equations
by establishing the optimal values for these parameters.
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