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The lightlike hypersurfaces in semi-Euclidean space are of special interest in RelativityTheory. In particular, the singularities of these
lightlike hypersurfaces provide goodmodels for the study of different horizon types. And we obtain some geometrical propositions
of the canal hypersurfaces of Lorentzian surfaces. We introduce the notions of flatness for these hypersurfaces and study their
singularities.

1. Introduction

The extrinsic differential geometry of submanifolds in 4-
dimensional semi-Euclidean space is of special interest in
Relativity Theory. In particular the lightlike hypersurfaces,
which can be constructed as lightlike ruled hypersurfaces
over Lorentzian surfaces in anti-de Sitter space, provide
good models for the study of different horizon types of
black holes, such as Kerr black hole, Cauchy black hole,
and Schwarzschild black hole [1–8]. Hiscock described that
the horizon was constituted by lightlike hypersurfaces and
lightlike wave front was lightlike hypersurface [6]; Dąbrowski
et al. have studied the null (lightlike) strings form the photon
sphere, moving in the single spacetime of general relativity,
including lightlike hypersurfaces [1, 3, 4]. The authors gave
the null string evolution in Schwarzschild spacetime by
the solutions of null string equations, which are also the
null geodesic equations of general relativity appended by an
additional stringy constant [3, 4]. In the view of geometry, the
null string (null curve) in lightlike surfaces is null geodesic
[9]. In this sense, the singularities of lightlike hypersurfaces
are deeply related to the shapes of horizons.

M. Kossowski introduced a Gauss map on its associated
spacelike surface, obtaining in this way interesting conclu-
sions on the lightlike hypersurfaces which parallel the known
results for surfaces in Euclidean 3-space concerning their

contactswith themodel surfaces [10].Whenworking in semi-
Euclidean space, we observe that the properties associated
with the contacts of a given submanifold with null cone
and lightlike hyperplanes have a special relevance from the
geometrical viewpoint. In [11–13], the current authors and
so forth pursued with this line by describing the invariant
geometric properties of Lorentzian surfaces of codimension
two in semi-Euclidean space that arise from their contacts
with null cone. For this purpose, the task of this paper is to
study some local properties of these Lorentzian surfaces in
semi-Euclidean (𝑛 + 1)-space.

Canal hypersurfaces, which are generated by surfaces
with codimension 2 along fixed direction, are envelopes of
families of hyperspheres. In three-dimensional space, canal
surfaces were considered in many classical texts on differ-
ential geometry [14]. Since the property of a hypersurface
to be a canal hypersurface is conformally invariant, canal
hypersurfaces in a multidimensional Euclidean space were
investigated in many papers, such as [15, 16]. However, in
all these works the authors did not note the singularities of
canal hypersurface in semi-Euclidean space. In this paper,
we analyze the geometric meaning of the canal hypersurfaces
from the view point of singularity. And we obtain the
conclusion that the canal hypersurfaces have the similar
singularities as Lorentzian surfaces.
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The remainder of this paper is organized as follows. In
Section 2, we give some basic notions about Lorentzian sur-
faces and lightlike hypersurfaces. Meanwhile, the Lorentzian
Gauss-Kronecker curvatures of Lorentzian surfaces are also
introduced. In Section 3, we describe Lorentzian distance-
squared functions, whose discriminant sets and wave front
sets are just right of the given lightlike hypersurfaces. In
Section 4, we discuss the contact between lightlike hyper-
surfaces and null cone by Montald’s theorem. We give an
example about the classification of singularities to lightlike
hypersurfaces generated by Lorentzian surfaces in anti-de
Sitter space in Section 5. In the last section, we consider
some geometric properties of canal hypersurfaces, which are
generated by Lorentzian surfaces in anti-de Sitter 3-space
and the conclusion that the types of singularity of canal
hypersurfaces are the same as the Lorentzian surfaces.

We will assume throughout the whole paper that all man-
ifolds andmaps are𝐶∞ unless the contrary is explicitly stated.

2. Preliminaries

Einstein formulated general relativity as a theory of space,
time, and gravitation in semi-Euclidean space in 1915. How-
ever, this subject has remained dormant for much of its
history because its understanding requires advanced math-
ematics knowledge. Since the end of the twentieth century,
semi-Euclidean geometry has been an active area of math-
ematical research, and it has been applied to a variety of
subjects related to differential geometry and general relativity.
In this section, we illustrated some basic knowledge of semi-
Euclidean space.

Let R𝑛+1 = {(𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) | 𝑥
𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑛}

be an (𝑛 + 1)-dimensional vector space. For any vectors
x = (𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
) and y = (𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
) in R𝑛+1, the

pseudoscalar product of x and y is defined by

⟨x, y⟩ = −𝑥
0
𝑦
0
− 𝑥
1
𝑦
1
+

𝑛

∑

𝑖=2

𝑥
𝑖
𝑦
𝑖
. (1)

The space (R𝑛+1, ⟨, ⟩) is called semi-Euclidean (𝑛 + 1)-
dimensional space with index two, denoted byR𝑛+1

2
. A vector

x ∈ R𝑛+1
2

\ {0} is called spacelike, lightlike, or timelike, if ⟨x, x⟩
is positive, zero, or negative, respectively. There exist some
special submanifolds in R𝑛+1

2
, such as unit pseudo-𝑛-sphere

S𝑛
2
, anti de Sitter 𝑛-spaceH𝑛

1
, null coneΛ𝑛

1
, and Lorentz torus

𝑆
1

𝑡
× 𝑆
𝑛−1

𝑠
, which have the same definitions as in [17].

Definition 1. Let X : 𝑈 → H𝑛
1
be an embedding, where 𝑈 ⊂

R𝑛−1 is an open subset; if there exists 𝑖 such that X(𝑢),X
𝑢𝑖
(𝑢)

is timelike vector andX
𝑢𝑗
(𝑢) (𝑗 ̸= 𝑖) is spacelike vector, we call

𝑀 = X(𝑈) Lorentzian surface in anti-de Sitter space.

Without loss of generality, we only consider 𝑖 = 1; the
other cases are the same. We construct a unit spacelike nor-
mal vector

N (𝑢) =

X (𝑢) ∧ X
𝑢1
(𝑢) ∧ ⋅ ⋅ ⋅ ∧ X

𝑢𝑛−1
(𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩
X (𝑢) ∧ X

𝑢1
(𝑢) ∧ ⋅ ⋅ ⋅ ∧ X

𝑢𝑛−1
(𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

, (2)

and the vectors X(𝑢) ± N(𝑢) are lightlike. Since
{X
𝑢1
(𝑢), . . . ,X

𝑢𝑛−1
(𝑢)} is a basis of 𝑇

𝑝
𝑀, so the system

{X(𝑢),X
𝑢1
(𝑢), . . . ,X

𝑢𝑛−1
(𝑢),N(𝑢)} provides a basis for R𝑛+1

2
.

We define a map L± : 𝑈 → 𝑆
1

𝑡
× 𝑆
𝑛−1

𝑠
by

L
±

(𝑢) =
̃X (𝑢) ± N (𝑢), (3)

which is called the lightcone Gauss indicatrix of X(𝑢). We
have shown that 𝜋𝑡 : 𝑇

𝑝
𝑀 ⊕ 𝑁

𝑝
𝑀 → 𝑇

𝑝
𝑀 and 𝜋

𝑛

:

𝑇
𝑝
𝑀 ⊕ 𝑁

𝑝
𝑀 → 𝑁

𝑝
𝑀 [11]. Under the identification of

𝑈 and 𝑀, the derivative 𝑑X(𝑢
0
) can be identified to the

identity mapping id
𝑇𝑝𝑀

on the tangent space 𝑇
𝑝
𝑀, where

𝑝 = X(𝑢
0
). This means that 𝑑L±(𝑢

0
) = id

𝑇𝑝𝑀
± 𝑑N(𝑢

0
).

Thus, 𝑑L±(𝑢
0
) can be regarded as a linear transformation on

the tangent space 𝑇
𝑝
𝑀. We call the linear transformation

𝑆
±

𝑝
(𝑢) = −𝑑

𝑝
(L±(𝑢)) : 𝑇

𝑝
𝑀 → 𝑇

𝑝
𝑀 the Lorentzian shape

operator of 𝑀 at 𝑝 = X(𝑢
0
). We denote the eigenvalue of 𝑆±

𝑝

by 𝑘±, which is called a Lorentzian principal curvature of 𝑀
at point 𝑝. The Lorentzian Gauss-Kronecker curvature of𝑀 is
defined as 𝐾±

𝑙
(𝑢)(𝑝) = det 𝑆±

𝑝
(𝑢).

Definition 2. A point 𝑝 = X(𝑢) is an umbilic point if all the
principal curvatures coincide at 𝑝.𝑀 is called totally umbilic
surface if all points on𝑀 are umbilics.

Supposing 𝑀 = X(𝑈) is totally umbilic, we have the
following propositions by simple computation.

Proposition 3. If X(𝑈) is totally umbilic, we have the follow-
ing classification.

(1) Suppose that 𝑘± ̸= 0.

(a) If 0 ≤ |𝑘
±

+ 1| < 1, then𝑀 is a part of an anti-de
Sitter space. In particular, if 𝑘± = −1, then𝑀 is
a part of a small anti-de Sitter space.

(b) If |𝑘± + 1| > 1, then𝑀 is a part of unit pseudo-𝑛-
sphere.

(2) Suppose 𝑘± = 0. Then𝑀 is a part of hyperhorosphere.

Proposition 4. Let X(𝑈) be a Lorentzian surface in anti-de
Sitter space, the lightcone Gauss indicatrix is constant if and
only if there exists a unique lightlike hyperplane 𝐻𝑃(n, −1) in
R𝑛+1
2

, such that the 𝑀 = X(𝑈) is a part of H𝑛
1
∩ 𝐻𝑃(n, −1),

where n = L±(𝑢).

Since X
𝑢1

is timelike vector, X
𝑢𝑖
(𝑖 = 2, . . . , 𝑛 − 1) is

spacelike vector, and semi-Riemannian metric on𝑀 = X(𝑈)
defined by 𝑑𝑠

2

= Σ
𝑛−1

𝑖=1
𝛿
𝑖
𝑔
𝑖𝑗
𝑑𝑢
𝑖
𝑑𝑢
𝑗
[18, 19], where 𝑔

𝑖𝑗
=

⟨X
𝑢𝑖
(𝑢),X

𝑢𝑗
(𝑢)⟩, 𝛿

1
= −1, and 𝛿

𝑖
= 1, for any 𝑖 = 2, . . . , 𝑛 −

1, we have a Lorentzian second fundamental invariant with
respect to the vectors X(𝑢), N(𝑢) defined by ℎ

𝑖𝑗
(X,N)(𝑢) =

⟨−L±
𝑢𝑖

(𝑢),X
𝑢𝑗
(𝑢)⟩, for any 𝑢 ∈ 𝑈.

Proposition 5. The Lorentzian Weingarten formulas with re-
spect to X(𝑢), N(𝑢) are as follows.

(1) L±
𝑢𝑖

= −∑
𝑛

𝑗=1
𝛿
𝑖
ℎ
𝑗±

𝑖
X
𝑢𝑗
,
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(2) 𝜋𝑡 ∘ L±
𝑢𝑖

= −∑
𝑛

𝑗=1
𝛿
𝑖
ℎ
𝑗±

𝑖
X
𝑢𝑗
, where ℎ𝑗±

𝑖
= ℎ
±

𝑖𝑘
𝑔
𝑘𝑗, 𝑔𝑘𝑗 =

𝑔
−1

𝑘𝑗
.

Proof. There exist real numbers 𝜆, 𝜇, Γ𝑗±
𝑖

such that L±
𝑢𝑖

=

𝜆X(𝑢) + 𝜇N(𝑢) + ∑
𝑛−1

𝑗=1
Γ
𝑗±

𝑖
X
𝑢𝑗
. Since ⟨𝜋𝑛 ∘ L±

𝑢𝑖

,X
𝑢𝑗
⟩ = 0, we

have

−ℎ
𝑖𝑘
= ⟨L
±

𝑢𝑖

,X
𝑢𝑘
⟩ =

𝑛−1

∑

𝑗=1

Γ
𝑗±

𝑖
⟨X
𝑢𝑗
,X
𝑢𝑘
⟩ =

𝑛−1

∑

𝑗=1

Γ
𝑗

𝑖
𝛿
𝑗
𝑔
𝑗𝑘
. (4)

Hence, we have ℎ
𝑗±

𝑖
= ∑

𝑛−1

𝑘=1
ℎ
±

𝑖𝑘
𝑔
𝑘𝑗

=

−∑
𝑛−1

𝑘=1
∑
𝑛−1

𝑚=1
Γ
𝑚±

𝑖
𝛿
𝑖
𝑔
𝑚𝑘
𝑔
𝑘𝑗

= −𝛿
𝑖
Γ
𝑗±

𝑖
; the formula (2) fol-

lows the conclusion of item (1).

As a corollary of the Proposition 5, we have an explicit
expression of the Lorentzian Gauss-Kronecker curvature by
Riemannian metric and the second fundamental invariant.

Corollary 6. Under the same notations as in the above propo-
sition, the Lorentzian Gauss-Kronecker curvature is given by
𝐾
±

𝑙
(𝑢) = det(ℎ±

𝑖𝑗
)/ det(𝑔

𝑘𝑚
).

Proof. By the above proposition, the representation matrix
of the Lorentzian shape operator with respect to the basis
{X
𝑢1
,X
𝑢2
, . . . ,X

𝑢𝑛−1
} is ℎ𝑗±
𝑖
(N) = (ℎ

±

𝑖𝛽
)(𝑔
𝛽𝑗

). It follows from
this fact that
𝐾
±

𝑙
(𝑢) = det 𝑆±

𝑝
(X (𝑢) ,N (𝑢)) = det (−𝑑L±)

= − det Γ𝑗±
𝑖

= det ℎ𝑗±
𝑖

= det ℎ±
𝑖𝑗
𝑔
𝑗𝑘

=

det (ℎ±
𝑖𝑗
)

det (𝑔
𝑘𝑚
)

.

(5)

So we complete the proof.

Since ⟨−L±(𝑢),X
𝑢𝑗
(𝑢)⟩ = 0, we have ℎ

±

𝑖𝑗
= ⟨L±(𝑢),

X
𝑢𝑖𝑢𝑗

(𝑢)⟩. Therefore, the Lorentzian second fundamental
invariant depends on the values L±(𝑢

0
), X
𝑢𝑖𝑢𝑗

(𝑢
0
). By the

above corollary, the Lorentzian Gauss-Kronecker curvature
depends only on L±(𝑢

0
), X
𝑢𝑖
(𝑢
0
), X
𝑢𝑖𝑢𝑗

(𝑢
0
). It is independent

on the choice of the normal vector field N(𝑢).

Definition 7. Let 𝑀 = X(𝑢) be a Lorentzian surface in
anti-de Sitter space and let N(𝑢) be its spacelike normal
vector; a hypersurface 𝐿𝐻±

𝑀
defined by 𝐿𝐻±

𝑀
(𝑢, 𝜇) = X(𝑢) +

𝜇(
̃X(𝑢) ± N(𝑢)) is called 𝐿𝐻

±

𝑀
the lightlike hypersurface

along𝑀.

3. Lorentzian Distance-Squared Function

To describe the existence of singularities of lightlike hyper-
surfaces, we should construct contact functions, whose wave
front set is the singularity set of lightlike hypersurfaces. In this
section, we introduce some notions of Lorentzian distance-
squared functions on Lorentzian surfaces in anti-de Sitter
space, which can supply the contact relationship between
Lorentzian surfaces and standard spherical surfaces. Mean-
while, we obtain the Lorentzian distance-squared functions
as Morse family.

A function𝐺 : 𝑀×R𝑛+1
2

→ R on the Lorentzian surface
is given by

𝐺 (𝑢,𝜆) = ⟨X (𝑢) − 𝜆,X (𝑢) − 𝜆⟩ , (6)

which is called Lorentzian distance-squared function on 𝑀.
For any fixed 𝜆

0
∈ R𝑛+1
2

, we write 𝑔
𝜆0
(𝑢) = 𝐺(𝑢,𝜆

0
) and have

the following propositions by simple computing.

Proposition 8. Let𝑀 be a Lorentzian surface in anti-de Sitter
space and let 𝐺 : 𝑀 × R𝑛+1

2
→ R be Lorentzian distance-

squared function on 𝑀. Suppose that 𝜆
0

̸= 𝑝
0
= X(𝑢

0
). Then

we have

(1) 𝑔
𝜆0
(𝑝
0
) = 𝜕𝑔

𝜆0
/𝜕𝑢
0
= ⋅ ⋅ ⋅ = 𝜕𝑔

𝜆0
/𝜕𝑢
𝑛−1

= 0 if and
only if 𝑝

0
− 𝜆
0
= 𝜇(

̃X(𝑢
0
) ± N(𝑢

0
)) for 𝜇 ∈ R \ {0}.

(2) 𝑔
𝜆0
(𝑝
0
) = 𝜕𝑔

𝜆0
/𝜕𝑢
0

= ⋅ ⋅ ⋅ = 𝜕𝑔
𝜆0
/𝜕𝑢
𝑛−1

=

det Hess(𝑔
𝜆0
)(𝑢
0
) = 0 if and only if 𝑝

0
− 𝜆
0

=

𝜇(
̃X(𝑢
0
) ± N(𝑢

0
)) for 𝜇 ∈ R \ {0} and 𝐾±

𝑙
(𝑢
0
) = 0.

Proposition 9. Let 𝜆
0

∈ R𝑛+1
2

and let 𝑀 be a Lorentzian
surface without any umbilic point satisfying 𝐾±

𝑙
(𝑢) ̸= 0. Then

𝑀 ⊂ Λ
𝑛

1𝜆0

if and only if 𝜆
0
is an isolated singular value of the

lightlike hypersurface 𝐿𝐻
𝑀
and 𝐿𝐻

𝑀
⊂ Λ
𝑛

1𝜆0

.

Proof. By definition, 𝑀 ⊂ Λ
𝑛

1𝜆0

if and only if 𝑔
𝜆0
(𝑢) = 0,

for any 𝑢 ∈ 𝑈, where 𝑔
𝜆0
(𝑢) = 𝐺(𝑢,𝜆

0
) is the Lorentzian

distance-squared function on 𝑀. It follows from Proposi-
tion 8 that there exists a smooth function 𝜌 : 𝑈 → R such
that X(𝑢) = 𝜆

0
+ 𝜌(𝑢)(

̃X(𝑢) ± N(𝑢)). Therefore,

𝐿𝐻
𝑀
(𝜇, 𝜌) = 𝜆

0
+ (𝜇 + 𝜌 (𝑢)) (

̃X (𝑢) ± N (𝑢)) . (7)

Hence, we have 𝐿𝐻
𝑀
(𝜇, 𝜌) ⊂ Λ

𝑛

1𝜆0

. Moreover, we get that

𝜕𝐿𝐻
𝑀

𝜕𝜇

=
̃X (𝑢) ± N (𝑢),

𝜕𝐿𝐻
𝑀

𝜕𝑢
𝑖

= 𝜌
𝑢𝑖
(

̃X (𝑢) ± N (𝑢)) + (𝜌 + 𝜇) (
̃X (𝑢) + N (𝑢))

𝑢𝑖

(8)

for any 𝑖 = 1, 2 . . . , 𝑛 − 1, and from above formulas, we can
obtain

𝜕𝐿𝐻
𝑀

𝜕𝜌

∧

𝜕𝐿𝐻
𝑀

𝜕𝑢
1

∧ ⋅ ⋅ ⋅ ∧

𝜕𝐿𝐻
𝑀

𝜕𝑢
𝑛−1

= (𝜌 + 𝜇)
𝑛−1

(
̃X (𝑢) ± N (𝑢)) ∧ (

̃X (𝑢) ± N (𝑢))
𝑢1

∧ ⋅ ⋅ ⋅ ∧ (
̃X (𝑢) ± N (𝑢))

𝑢𝑛−1

.

(9)
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Therefore, we have X(𝑢) − 𝜆
0
= 𝜌(𝑢)(

̃X(𝑢) ± N(𝑢)), since
X(𝑢) − 𝜆

0
is lightlike, X

𝑢1
is a timelike vector, and X

𝑢𝑖
(𝑖 =

2, . . . , 𝑛 − 1) is spacelike vector. X(𝑢) − 𝜆
0
, X
𝑢1
, . . . ,X

𝑢𝑛−1
are

linearly independent. Therefore,

(X (𝑢) − 𝜆
0
) ∧ X
𝑢1
∧ ⋅ ⋅ ⋅ ∧ X

𝑢𝑛−1

= 𝜇
𝑛

(𝑢) (
̃X (𝑢) ± N (𝑢)) ∧ (

̃X (𝑢) ± N (𝑢))
𝑢1

∧ ⋅ ⋅ ⋅ ∧ (
̃X (𝑢) ± N (𝑢))

𝑢𝑛−1

̸= 0,

(10)

so 𝜕𝐿𝐻
𝑀
/𝜕𝜌 ∧ 𝜕𝐿𝐻

𝑀
/𝜕𝑢
1
∧ ⋅ ⋅ ⋅ ∧ 𝜕𝐿𝐻

𝑀
/𝜕𝑢
𝑛−1

= 0 if and
only if 𝜇+𝜌(𝑢) = 0 under the assumption that𝐾

𝑙
(𝑢) ̸= 0. This

means that 𝜆
0
is an isolated singularity of 𝐿𝐻±

𝑀
.

Since we only consider local properties, we may assume
that𝑀 = R𝑛. As the definitions in [11], it follows that

Σ
∗
(𝐺) = {(𝑢, 𝜆) ∈ (𝑈 ×R

𝑛+1

, 0) |

𝐺 (𝑢, 𝜆) =

𝜕𝐺

𝜕𝑢
1

(𝑢, 𝜆) = ⋅ ⋅ ⋅ =

𝜕𝐺

𝜕𝑢
𝑘

(𝑢, 𝜆) = 0} .

(11)

The set Σ
∗
(𝐺) is defined as the wave front set of 𝐺. Also, we

can write Σ
∗
(𝐺) as

D
𝐺
= {X (𝑢) + 𝜇L

±

(𝑢) , 𝜇 ∈ R} . (12)

Thus, a singular point of the lightlike hypersurface satisfied
𝜆
0
= X(𝑢

0
) + 𝜇
0
(

̃X(𝑢
0
) ± N(𝑢

0
)).

Definition 10. Let 𝐺 be a Morse family, a map germ L
𝐺

:

(Σ
∗
(𝐺), 0) → 𝑃𝑇

∗R𝑛+1
2

, which satisfied L
𝐺
(𝑞, 𝑥) = (𝑥,

[(𝜕𝐺/𝜕𝑞
1
)(𝑞, 𝑥) : ⋅ ⋅ ⋅ : (𝜕𝐺/𝜕𝑞

𝑘
)(𝑞, 𝑥)]), is called Legendrian

immersion germ.

Let 𝜋 : 𝑃𝑇
∗R𝑛+1
2

→ R𝑛+1
2

be the projective cotangent
bundle over an 𝑛-dimensional manifold in R𝑛+1

2
. This fibra-

tion can be considered as a Legendrian fibration with the
canonical contact structure 𝐾 on 𝑃𝑇

∗R𝑛+1
2

. Let us consider
the tangent bundle 𝜏 : 𝑇𝑃𝑇

∗R𝑛+1
2

→ 𝑃𝑇
∗R𝑛+1
2

and 𝑑𝜋 :

𝑇𝑃𝑇
∗R𝑛+1
2

→ 𝑇R𝑛+1
2

. The property 𝛼(𝑉) = 0 does not
depend on the choice of representative of the class [𝛼]. Thus
we can define the canonical contact structure on 𝑃𝑇

∗R𝑛+1
2

by 𝐾 = {X ∈ 𝑇𝑃𝑇
∗R𝑛+1
2

| 𝜏(𝑋)(𝑑𝜋(𝑋)) = 0}. For a local
coordinate neighbourhood in R𝑛+1

2
, we have a trivialization

𝑃𝑇
∗

𝑈 ≅ 𝑈 × 𝑃(R𝑛)
∗ and we call ((𝑥

1
, . . . , 𝑥

𝑛
), [𝜉
1

:

⋅ ⋅ ⋅ : 𝜉
𝑛
]) homogeneous coordinates, where [𝜉

1
: ⋅ ⋅ ⋅ : 𝜉

𝑛
]

are homogeneous coordinates of the dual projective space
𝑃(R𝑛)

∗. It is known that any Legendrian fibration is locally
equivalent to 𝜋 : 𝑃𝑇

∗R𝑛+1
2

→ R𝑛+1
2

[20].

Proposition 11. All Legendrian submanifold germs in
𝑃𝑇
∗R𝑛+1
2

are constructed by the above method.

Proposition 12. Let 𝐺 be the Lorentzian distance-squared
function on 𝑀. For any point (𝑢,𝜆) ∈ 𝐺

−1

(0), 𝐺 is a Morse
family around (𝑢,𝜆).
Proof. Denote X(𝑢) = (𝑋

0
(𝑢), 𝑋

1
(𝑢), . . . , 𝑋

𝑛
(𝑢)) and 𝜆 =

(𝜆
0
, 𝜆
1
, . . . , 𝜆

𝑛
). By definition, we have

𝐺 (𝑢,𝜆) = −(𝑋
0
(𝑢) − 𝜆

0
)
2

− (𝑋
1
(𝑢) − 𝜆

1
)
2

+

𝑛

∑

𝑖=2

(𝑋
𝑖
(𝑢) − 𝜆

𝑖
)
2

.

(13)

We now prove that the mapping Δ
∗

𝐺 = {𝐺, 𝜕𝐺/𝜕𝑢
0
,

. . . , 𝜕𝐺/𝜕𝑢
𝑛−1

} is nonsingular at (𝑢,𝜆) ∈ 𝐺
−1

(0). Indeed, the
Jacobian matrix of Δ∗𝐺 is given by

(

(

(

(

2(𝑋
0
(𝑢) − 𝜆

0
) 2 (𝑋

1
(𝑢) − 𝜆

1
) ⋅ ⋅ ⋅ −2 (𝑋

𝑛
(𝑢) − 𝜆

𝑛
)

2𝑋
0𝑢0

(𝑢) 2𝑋
1𝑢0

(𝑢) ⋅ ⋅ ⋅ −2𝑋
𝑛𝑢0

(𝑢)

A
...

...
...

...
2𝑋
0𝑢𝑛−1

(𝑢) 2𝑋
1𝑢𝑛−1

(𝑢) ⋅ ⋅ ⋅ −2𝑋
𝑛𝑢𝑛−1

(𝑢)

)

)

)

)

, (14)

where the matrix A is given by

(

(

2⟨X − 𝜆,X
𝑢0
⟩ ⋅ ⋅ ⋅ 2 ⟨X − 𝜆,X

𝑢𝑛
⟩

2 (⟨X
𝑢0
,X
𝑢0
⟩ + ⟨X − 𝜆,X

𝑢0𝑢0
⟩) ⋅ ⋅ ⋅ 2 (⟨X

𝑢0
,X
𝑢𝑛
⟩ + ⟨X − 𝜆,X

𝑢𝑛𝑢0
⟩)

...
...

...

2 (⟨X
𝑢𝑛
,X
𝑢0
⟩ + ⟨X − 𝜆,X

𝑢0𝑢𝑛
⟩) ⋅ ⋅ ⋅ 2 (⟨X

𝑢𝑛
,X
𝑢𝑛
⟩ + ⟨X − 𝜆,X

𝑢𝑛𝑢𝑛
⟩)

)

)

, (15)



Abstract and Applied Analysis 5

andX
𝑢𝑖𝑢𝑗

(𝑢) = 𝜕
2X(𝑢)/𝜕

𝑢𝑖
𝜕
𝑢𝑗
(𝑢). SinceX(𝑢) is an immersion,

the rank of the matrix

(

(

2X
0𝑢0

(𝑢) 2X
1𝑢0

(𝑢) −2X
2𝑢0

(𝑢) ⋅ ⋅ ⋅ −2X
𝑛𝑢0

(𝑢)

2X
0𝑢1

(𝑢) 2X
1𝑢1

(𝑢) −2X
2𝑢1

(𝑢) ⋅ ⋅ ⋅ −2X
𝑛𝑢1

(𝑢)

...
...

...
...

2X
0𝑢𝑛−1

(𝑢) 2X
1𝑢𝑛−1

(𝑢) −2X
2𝑢𝑛−1

(𝑢) ⋅ ⋅ ⋅ −2X
𝑛𝑢𝑛−1

(𝑢)

)

)

(16)

is equal to 𝑛 − 1 and X(𝑢) − 𝜆 is lightlike, so that it is linearly
independent of tangent vectorX

𝑢0
, . . . ,X

𝑢𝑛−1
.Thismeans that

the rank of B is equal to 𝑛, where

B =
(

(

2(𝑋
0
(𝑢) − 𝜆

0
) 2 (𝑋

1
(𝑢) − 𝜆

1
) ⋅ ⋅ ⋅ −2 (𝑋

𝑛
(𝑢) − 𝜆

𝑛
)

2𝑋
0𝑢0

(𝑢) 2𝑋
1𝑢0

(𝑢) ⋅ ⋅ ⋅ −2𝑋
𝑛𝑢0

(𝑢)

...
...

...
...

2𝑋
0𝑢𝑛−1

(𝑢) 2𝑋
1𝑢𝑛−1

(𝑢) ⋅ ⋅ ⋅ −2𝑋
𝑛𝑢𝑛−1

(𝑢)

)

)

. (17)

Therefore, the Jacobi matrix of Δ
∗

𝐺 is nonsingularity at
(𝑢,𝜆) ∈ 𝐺

−1

(0).

4. Contact with Null Cone

In this section, we gave the singularities of lightlike hyper-
surfaces are stable, whose types are not changed with small
disturbance under the view of K-equivalent and P-K-
equivalent. Before we start to consider the contact between
lightlike hypersurfaces and null cone, we briefly review the
theory of contact due to Montaldi [21, 22]. Let𝑋

𝑖
and 𝑌

𝑖
(𝑖 =

1, 2) be submanifolds in R𝑛 with dim𝑋
1

= dim𝑋
2
and

dim𝑌
1
= dim𝑌

2
. We say that the contact of 𝑋

1
and 𝑌

1
at

𝑦
1
is of the same type as the contact of 𝑋

2
and 𝑌

2
at 𝑦
2
if

there is a diffeomorphism germ 𝜙 : (R𝑛, 𝑦
1
) → (R𝑛, 𝑦

2
)

such that 𝜙(𝑋
1
) = 𝑋

2
and 𝜙(𝑌

1
) = 𝑌
2
. In this case, we write

𝐾(𝑋
1
, 𝑌
1
; 𝑦
1
) = 𝐾(𝑋

2
, 𝑌
2
; 𝑦
2
). In his paper [21], Montaldi

gives a characterization of the notion of contact by using the
terminology of singularity theory.

Theorem 13 (see [21]). Let 𝑋
𝑖
and 𝑌

𝑖
(𝑖 = 1, 2) be subman-

ifolds of R𝑛 with dim𝑋
1
= dim𝑋

2
and dim𝑌

1
= dim𝑌

2
.

Let 𝑔
𝑖
: (𝑋
𝑖
, 𝑥
𝑖
) → (R𝑛, 𝑦

𝑖
) be immersion germs and let

𝑓
𝑖
: (R𝑛, 𝑦

𝑖
) → (R𝑝, 0) be submersion germs with (𝑌

𝑖
, 𝑦
𝑖
) =

(𝑓
−1

𝑖
(0), 𝑦
𝑖
). Then 𝐾(𝑋

1
, 𝑌
1
; 𝑦
1
) = 𝐾(𝑋

2
, 𝑌
2
; 𝑦
2
) if and only if

𝑓
1
∘ 𝑔
1
and 𝑓

2
∘ 𝑔
2
areK-equivalent.

For the K-equivalent among smooth map germs, con-
sidering the function G : R𝑛+1

2
× R𝑛+1
2

→ R by G(X,𝜆) =

⟨X − 𝜆,X − 𝜆⟩ and denoting g
𝜆0
(X) = G(X,𝜆

0
), we have

g−1
𝜆0

(0) = Λ
𝑛

1
. For 𝑝

0
= X(𝑢

0
), we can take the vector

𝜆
0
= X(𝑢

0
) + 𝜇
0
(

̃X(𝑢
0
) ± N(𝑢

0
)). Then g

𝜆0
∘ X(𝑢

0
) = G ∘

(X × idR𝑛+1
2

) = 𝐺(𝑢
0
,𝜆
0
) = 0 and the relations are ((𝜕g

𝜆0
∘

X)/𝜕𝑢
𝑖
)(𝑝
0
) = (𝜕𝐺/𝜕𝑢

𝑖
)(𝑝
0
,𝜆
0
) = 0 (𝑖 = 1, 2, . . . , 𝑛 − 1).

This means that the lightcone g−1
𝜆0

(0) = Λ
𝑛

1𝜆0

is tangent to𝑀

at 𝑝
0
. In this case, we call each Λ

𝑛

1𝜆0

a tangent null cone of
𝑀 at 𝑝

0
. We denote by E

𝑛
the local ring of function germs

(R𝑛, 0) → (R, 0) with the unique maximal ideal

M
𝑛
= {ℎ ∈ E

𝑛
| ℎ (0) = 0} . (18)

Let 𝐹, 𝐺 : (R𝑘 × R𝑛, 0) → (R, 0) be function germs.
We say that 𝐹, 𝐺 are P-K-equivalent if there exists a diffe-
omorphism germ 𝜓 : (R𝑘 × R𝑛, 0) → (R𝑘 × R𝑛, 0) of the
form𝜓(𝑞, 𝑥) = (𝜓

1
(𝑞, 𝑥), 𝜓

2
(𝑥)) for (𝑞, 𝑥) ∈ (R𝑘×R𝑛, 0) such

that 𝜓∗(⟨𝐹⟩E𝑘+𝑛) = ⟨𝐺⟩E𝑘+𝑛
, where 𝜓∗ : E

𝑘+𝑛
→ E
𝑘+𝑛

is the
pullbackR-algebra isomorphism defined by 𝜓∗(ℎ) = ℎ ∘ 𝜓.

We apply the tools for the study of the contact theory. Let
L±
𝑖
: 𝑈 → Λ

𝑛

1
be two null cone LegendrianGaussmap germs

of Lorentzian surface germs X
𝑖
: 𝑈 → H𝑛

1
(𝑖 = 1, 2). We say

thatL±
1
andL±

2
areA-equivalent if there exist diffeomorphism

germs 𝜑 : (𝑈, (𝑢
11
, . . . , 𝑢

1𝑛
)) → (𝑈, (𝑢

21
, . . . , 𝑢

2𝑛
)) and 𝜙 :

(R𝑛+1
2

,𝜆
1
) → (R𝑛+1

2
,𝜆
2
) such that 𝜙 ∘ L±

1
= L±
2
∘ 𝜑.

Let 𝐹 : (R𝑘 × R𝑛, 0) → (R, 0) be a function germ,
𝐹 is K-versal deformation of 𝑓 = 𝐹 | R𝑘 × {0} if
𝜀
𝑘
= 𝑇
𝑒
(𝐾)(𝑓)+⟨(𝜕𝐹/𝜕𝑥

1
)|R𝑘×{0}, . . . , (𝜕𝐹/𝜕𝑥𝑛)|R𝑘×{0}⟩, where

𝑇
𝑒
(𝐾)(𝑓) = ⟨𝜕𝑓/𝜕𝑞

1
, . . . , 𝜕𝑓/𝜕𝑞

𝑘
⟩
𝜀𝑘
. The main result in the

theory [22] is as follows.

Theorem 14 (see [22]). Let 𝐹, 𝐺 : (R𝑘 × R𝑛, 0) → (R, 0) be
Morse families. Then
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(1) L
𝐹
andL

𝐺
are Legendrian equivalent if and only if 𝐹

and 𝐺 areP-K-equivalent.
(2) L

𝐹
is Legendrian stable if and only if 𝐹 is a K-versal

deformation of 𝐹 | R𝑘 × {0}.

Since 𝐹 and 𝐺 are function germs on the common
space, by the uniqueness result of the versal deformation of
a function germ, we have the following classification results
of Legendrian stable germs. For a map germ 𝑓 : (R𝑛, 0) →

(R𝑝, 0), we give the local ring of 𝑓 by 𝑄(𝑓) = 𝜀
𝑛
/𝑓(M

𝑝
).

Proposition 15. Let 𝐹 and 𝐺 : (R𝑘 × R𝑛, 0) → (R, 0)

be Morse families. Suppose that L
𝐹
and L

𝐺
are Legendrian

stable. Then the following conditions are equivalent.

(1) (𝑊(L
𝐹
), 0) and (𝑊(L

𝐺
), 0) are diffeomorphic as

germs.
(2) L

𝐹
andL

𝐺
are Legendrian equivalent.

(3) 𝑄(𝑓) and 𝑄(𝑔) are isomorphic as R-algebras, where
𝑓 = 𝐹 | R𝑘 × {0} and 𝑔 = 𝐺 | R𝑘 × {0}.

Let 𝐺
𝑖
: 𝑈 × R𝑛+1

2
→ R be the Lorentzian distance-

squared function germs of X
𝑖
(𝑖 = 1, 2). We denote 𝑔

𝑖𝜆𝑖
(𝑢) =

𝐺
𝑖
(𝑢,𝜆
𝑖
), then 𝑔

𝑖𝜆𝑖
= g
𝜆𝑖

∘ X
𝑖
. By Theorem 13, we know

𝐾(𝑋
1
, Λ
𝑛

1𝜆1

;𝜆
1
) = 𝐾(𝑋

2
, Λ
𝑛

1𝜆2

;𝜆
2
) if and only if𝑔

1𝜆1
and𝑔
2𝜆2

areK-equivalent. Therefore, we can denote the local ring of
the function 𝑔

𝜆0
: 𝑈 → R, we remark that we can explicitly

write the local ring as follows:

𝑄 (X, (𝑢
1
, . . . , 𝑢

𝑛
)) =

𝐶
∞

𝑢0

(𝑈)

(⟨X (𝑢) ,
̃X (𝑢
0
) + N (𝑢

0
)⟩)

−1

𝐶
∞

𝑢0
(𝑈)

,

(19)

where 𝐶
∞

𝑢0

(𝑈) is the local ring of function germs with the
maximal idealM(𝑢) in [12].

Theorem 16 (see [12]). Let X
𝑖

: 𝑈
𝑖

→ H𝑛
1
(𝑖 = 1, 2)

be Lorentzian surface germs such that the corresponding Leg-
endrian lift germs are Legendrian stable. Then the following
conditions are equivalent.

(1) The lightlike hypersurface germs 𝐿𝐻±
𝑀1

and 𝐿𝐻
±

𝑀2

are
A-equivalent.

(2) 𝐺
1
and 𝐺

2
areP-K-equivalent.

(3) 𝑔
1𝜆1

and 𝑔
2𝜆2

areK-equivalent.
(4) 𝐾(𝑋

1
, Λ
𝑛

1𝜆1

;𝜆
1
) = 𝐾(𝑋

2
, Λ
𝑛

1𝜆2

;𝜆
2
).

(5) 𝑄(X
1
) and 𝑄(X

2
) are isomorphic asR-algebras.

Proof. Since the Lorentzian distance-squared function is
a Morse family of functions, conditions (1) and (2) are
equivalent. Moreover, 𝐿𝐻±

𝑀𝑖

is Lagrangian stable, 𝐺
𝑖
is the

R-versal deformation of 𝑔
𝑖𝜆𝑖
; by the uniqueness result of the

R-versal deformation, condition (2) implies condition (3).
By definition, we know condition (3) implies condition (2).
It follows from Theorem 13 that conditions (3) and (4) are

equivalent. As the same way, we can obtain conditions (5)
and (1) as equivalent by Proposition 15, so we complete the
proof.

Given a Lorentzian surface X : 𝑈 → H𝑛
1
, we call

(X−1(Λ𝑛
1𝜆
), 𝑢
0
) the tangent indicatrix germ of X, where

𝜆 = X(𝑢
0
) + 𝜇

0
(

̃X(𝑢
0
) ± N(𝑢

0
)) and 𝜇

0
= ∓(1/𝑘

𝑖
) (𝑖 =

1, 2, . . . , 𝑛 − 1).

Corollary 17. The lightlike hypersurface germs 𝐿𝐻
𝑀1

and
𝐿𝐻
𝑀2

are A-equivalent, then tangent indicatrix germs
(X−1
1
, 𝑢
1
) and (X−1

2
, 𝑢
2
) are diffeomorphic as set germs.

Proof. The tangent indicatrix germ of X
𝑖
is the zero level set

of 𝑔
𝑖,𝜆𝑖

SinceK-equivalent among function germs preserves
the zero-level sets of function germs, the assertion follows
Theorem 16.

5. Singularities of Lightlike
Hypersurfaces in R4

2

In this section, we study the classification of singularities of
3-dimensional lightlike hypersurfaces, which are generated
by Lorentzian surface in anti-de Sitter 3-space, also, we
consider the space of Lorentzian embeddings Emb

𝐿
(𝑈,H3
1
)

withWhitney𝐶∞-topology, where𝑈 ⊂ R2 is an open subset.
As the choose of the standard arguments in [11], we consider
a function G : R4

2
× R4
2
→ R by G(k,𝜆) = ⟨k − 𝜆, k − 𝜆⟩

and claim that G
𝜆
(k) is a submersion at k ̸=𝜆 for any fixed

𝜆 ∈ R4
2
. Given X ∈ Emb

𝐿
(𝑈,H3
1
), we have 𝐺 = G ∘ (X× idR4

2

).
We have the 𝑙-jet extension 𝑗

𝑙

1
𝐺 : 𝑈 × R4

2
→ 𝐽

𝑙

(𝑈,R)

defined by 𝑗
𝑙

1
𝐺(𝑢,𝜆) = 𝑗

𝑙

𝑔
𝜆
(𝑢). Consider the trivialization

𝐽
𝑙

(𝑈,R) = 𝑈×R× 𝐽
𝑙

(2, 1). For any submanifold𝑄 ⊂ 𝐽
𝑙

(2, 1),
we denote 𝑄 = 𝑈 × R × 𝑄. Then we have the following
proposition [12, 17].

Proposition 18. Let 𝑄 be a submanifold of 𝐽𝑙(2, 1).
Consider

𝑇
𝑄
= {X ∈ 𝐸𝑚𝑏

𝐿
(𝑈,H
3

1
) | 𝑗
𝑙

1
𝐺 is transversal to 𝑄} (20)

is a residual subset of 𝐸𝑚𝑏
𝐿
(𝑈,H3
1
). If𝑄 is a closed subset, then

𝑇
𝑄
is open.

On the other hand, we have a stratification given by the set
ofK-orbits in 𝐽𝑙(2, 1)\𝑊𝑙(2, 1) (for the definition of𝑊𝑙(2, 1)
and additional properties refer to [12]).

Theorem 19. There exists an open dense subset O ⊂

𝐸𝑚𝑏
𝐿
(𝑈,H3
1
) such that for any X ⊂ O, the germ of the

Legendrian lift of the corresponding lightlike hypersurface𝐿𝐻±
𝑀

at each point is Legendrian stable.

Proposition 20. There exists an open dense subset O ⊂

𝐸𝑚𝑏
𝐿
(𝑈,H3
1
) such that for any X ⊂ O, the germ of the cor-

responding lightlike hypersurface 𝐿𝐻±
𝑀
at any point (𝑥, 𝑦, 𝑢) ∈

𝑈×R isA-equivalent to one of the map germs𝐴
𝑘
(1 ≤ 𝑘 ≤ 4)

or𝐷±
4
, where
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Figure 1: Cuspidal edge.

Figure 2: Swallowtail.

(𝐴
1
) 𝑓(𝑢
1
, 𝑢
2
, 𝑢
3
) = (𝑢

1
, 𝑢
2
, 𝑢
3
, 0) (embedding),

(𝐴
2
) 𝑓(𝑢
1
, 𝑢
2
, 𝑢
3
) = (3𝑢

2

1
, 2𝑢
3

1
, 𝑢
2
, 𝑢
3
) (cuspidal edge) (Fig-

ure 1),
(𝐴
3
) 𝑓(𝑢
1
, 𝑢
2
, 𝑢
3
) = (4𝑢

3

1
+ 2𝑢
1
𝑢
2
, 3𝑢
4

1
+ 𝑢
2

1
𝑢
2
, 𝑢
2
, 𝑢
3
)

(swallowtail) (Figure 2),

(𝐴
4
) 𝑓(𝑢
1
, 𝑢
2
, 𝑢
3
) = (5𝑢

4

1
+ 3𝑢
2
𝑢
2

1
+ 2𝑢
1
𝑢
3
, 4𝑢
5

1
+ 2𝑢
3

1
𝑢
2
+

𝑢
2

1
𝑢
3
, 𝑢
1
, 𝑢
2
) (butterfly),

(𝐷
+

4
) 𝑓(𝑢
1
, 𝑢
2
, 𝑢
3
) = (2𝑢

2

1
+ 2𝑢
2

2
+ 𝑢
1
𝑢
2
𝑢
3
, 3𝑢
2

1
+ 𝑢
2
𝑢
3
, 3𝑢
2

2
+

𝑢
1
𝑢
3
, 𝑢
3
) (purse) (Figure 3),

(𝐷
−

4
) 𝑓(𝑢
1
, 𝑢
2
, 𝑢
3
) = (2𝑢

3

1
− 2𝑢
1
𝑢
2

2
+ 𝑢
2

1
𝑢
3
+ 𝑢
2

2
𝑢
3
, 𝑢
2

2
− 3𝑢
2

1
−

2𝑢
1
𝑢
3
, 𝑢
1
𝑢
3
− 𝑢
2
𝑢
3
, 𝑢
3
) (pyramid) (Figure 4).

By using the generic normal forms of generating families
and Corollary 17, we have the following corollary.

Figure 3: Purse.

Figure 4: Pyramid.

Corollary 21. There exists an open dense subset O ⊂

𝐸𝑚𝑏
𝐿
(𝑈,H3
1
) such that for any X ⊂ O, the germ of the cor-

responding tangent indicatrix at any point (𝑥
0
, 𝑦
0
) ∈ 𝑈 is

diffeomorphic to one of the germs in the following lists.

(1) {(𝑥, 𝑦) ∈ (R2, 0) | 𝑥
3

+ 𝑦
2

= 0} (ordinary cusp);
(Figure 5),

(2) {(𝑥, 𝑦) ∈ (R2, 0) | 𝑥
4

± 𝑦
2

= 0} (tacnode or point);
(Figure 6),

(3) {(𝑥, 𝑦) ∈ (R2, 0) | 𝑥
5

+ 𝑦
2

= 0} (rhamphoid cusp);
(Figure 7),

(4) {(𝑥, 𝑦) ∈ (R2, 0) | 𝑥
3

− 𝑥𝑦
2

= 0} (three lines);
(Figure 8),

(5) {(𝑥, 𝑦) ∈ (R2, 0) | 𝑥3 + 𝑦
3

= 0} (a line).
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1.0

0.5

0.0

−0.5

−1.0

y

x

−1.0 −0.8 −0.6 −0.4 −0.2

Figure 5: Ordinary cusp.

x

y

1.0

0.5

−0.5

−1.0

−1.0 −0.5 0.0 0.5 1.0

Figure 6: Tacnode.

6. Canal Hypersurface of Lorentzian Surface

Canal hypersurfaces, which are generated by surfaces with
codimension 2 along fixed direction, are envelopes of families
of hyperspheres. Since the property of a hypersurface is
to be a canal hypersurface is conformally invariant, canal
hypersurfaces in a multidimensional Euclidean space were
investigated in many papers, such as [15, 16]. In this sec-
tion, we mainly consider the canal hypersurfaces in semi-
Euclidean space with index 2. Let X(𝑈) be a Lorentzian
surface; the Mongle form is as follows:

X (𝑢
1
, 𝑢
2
) = {𝑢

1
, 𝑢
2
, 𝑓
1
(𝑢
1
, 𝑢
2
) , 𝑓
2
(𝑢
1
, 𝑢
2
)} . (21)

1.0

0.5

0.0

−0.5

−1.0

y

x

−1.0 −0.8 −0.6 −0.3

Figure 7: Rhamphoid cusp.

x

y

1.0

0.5

−0.5

−1.0

−1.0 −0.5 0.0 0.5 1.0

Figure 8: Three lines.

The second fundamental form of𝑀 = X(𝑈) is characterized
by two quadratic forms. Their functional coefficients will be
denoted by (𝑎, 𝑏, 𝑐) and (𝑒, 𝑓, 𝑔), respectively [15].

We have the following function:

Δ (𝑢) =

1

4

det(

−𝑎 −2𝑏 𝑐 0

𝑒 2𝑓 𝑔 0

0 𝑎 2𝑏 𝑐

0 𝑒 2𝑓 𝑔

)(𝑢) . (22)

The Gaussian curvature of𝑀 is

𝐾 (𝑢) = (𝑎𝑐 − 𝑏
2

+ 𝑒𝑔 − 𝑓
2

) (𝑢) , (23)
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and the matrix is

𝛼 (𝑢) = (

𝑎 𝑏 𝑐

𝑒 𝑓 𝑔
) (𝑢) , (24)

where 𝑎 = 𝜕
2

𝑓
1
/𝜕𝑢
1
𝜕𝑢
1
, 𝑏 = 𝜕

2

𝑓
1
/𝜕𝑢
1
𝜕𝑢
2
, 𝑐 = 𝜕

2

𝑓
1
/𝜕𝑢
2
𝜕𝑢
2
,

𝑒 = 𝜕
2

𝑓
2
/𝜕𝑢
1
𝜕𝑢
1
, 𝑓 = 𝜕

2

𝑓
2
/𝜕𝑢
1
𝜕𝑢
2
, and 𝑔 = 𝜕

2

𝑓
2
/𝜕𝑢
2
𝜕𝑢
2
.

Definition 22. Let X(𝑈) be a Lorentzian surface in anti-de
Sitter space and let N(𝑢) be its spacelike normal vector; a
hypersurface defined as 𝐶𝑀 = X(𝑢) + 𝜀VN(𝑢) ∈ R4

2
is called

canal hypersurface of X(𝑈), where 𝜀 is a sufficiently small
positive real number chosen such that 𝐶𝑀 is embedded in
R4
2
.

We denote by X̂ the natural embedding of 𝐶𝑀 inR4
2
and

by (𝑢,N(𝑢)) the point X(𝑢) + 𝜀N(𝑢) ∈ 𝐶𝑀. From Looijenga’s
theorem [15], there is a residual subset of embeddings X :

𝑈 󳨅→ R4
2
, for which the family of height functions 𝐻 :

𝑈 × Λ
3

1
→ R by 𝐻(𝑢, k) = ⟨X(𝑢), k⟩ is locally stable as a

family of function on 𝑀 with parameters on Λ
3

1
. Moreover,

the corresponding family ℎ(X̂) on the canal hypersurface is
also generic. In fact the singularities of ℎ(X) and ℎ(

̂X) are
tightly related [16].

Thus, for a generic X, those may be one of the following
types:Morse (𝐴

1
), fold (𝐴

2
), cusp (𝐴

3
), swallowtail (𝐴

4
), and

elliptic or hyperbolic umbilic (𝐷±
4
). Moreover, the singulari-

ties of the lightcone Gauss indicatrix L± : 𝐶𝑀 → 𝑆
1

𝑡
× 𝑆
𝑛−1

𝑠

can be described in terms as follows [15].

Lemma 23 (see [15]). Given a critical point (𝑢, v) ∈ 𝐶𝑀 of the
height function ℎV, we have the following.

(1) 𝑢 is a nondegenerate critical point of ℎV if and only if
(𝑢, k) is a regular point of L±.

(2) 𝑢 is a degenerate critical point of ℎV if and only if (𝑢, k)
is singular point of L±.

Let K
𝑐
: 𝐶𝑀 → R be the Gaussian curvature function

on 𝐶𝑀. The parabolic set, K
𝑐
(0) of 𝐶𝑀 is the singular set

of L±. It can be shown that for a generic embedding of 𝑀,
K
𝑐
(0) is a regular surface except by a finite number of points

(𝑢, k), which are singularities of typeΣ2,0 ofL± or equivalently
umbilic points (𝐷±

4
) of ℎV [16].

Let p : 𝐶𝑀 → 𝑀 be the natural projection of 𝐶𝑀
onto (i.e., p(𝑢, k) = 𝑢). The image of the set of parabolic
pointsK

𝑐
(0) by 𝑝 is the set Δ ≤ 0.

Theorem24. (1) IfΔ(𝑢) > 0, then 𝑢 is a nondegenerate critical
point of ℎV for any v ∈ 𝑁

𝑋(𝑢)
𝑀.

(2) If Δ(𝑢) < 0, then there are exactly two vectors v
1
, v
2
∈

𝑁
𝑋(𝑢)

𝑀, such that 𝑢 is a degenerate critical point of ℎV𝑖 , 𝑖 =
1, 2.

(3) If Δ(𝑢) = 0, then there is a unique vector w ∈ 𝑁
𝑋(𝑢)

𝑀

such that 𝑢 is a degenerate critical point of ℎ
𝑤
.

Proof. Let X(𝑢
1
, 𝑢
2
) = {𝑢

1
, 𝑢
2
, 𝑓
1
(𝑢
1
, 𝑢
2
), 𝑓
2
(𝑢
1
, 𝑢
2
)} be the

local expression of the embedding in Monge’s form and let
the height function in k-direction be

ℎV (𝑢1, 𝑢2) = V
1
𝑢
1
+ V
2
𝑢
2
+ V
3
𝑓
1
(𝑢
1
, 𝑢
2
) + V
4
𝑓
2
(𝑢
1
, 𝑢
2
) ,

(25)

where k = (V
1
, V
2
, V
3
, V
4
) ∈ R4
2
. If (0, 0) is a critical point of the

height function ℎV, then k = (0, 0, V
3
, V
4
) and the determinant

of the Hessian matrix of ℎV at (0, 0) is given by

detH (ℎV) (0, 0) = (𝑎𝑐 − 𝑏
2

) V2
3
+ (𝑎𝑔 + 𝑐𝑒 − 2𝑏𝑓) V

3
V
4

+ (𝑒𝑔 − 𝑓
2

) V2
4
,

(26)

where (𝑎, 𝑏, 𝑐), (𝑒, 𝑓, 𝑔) are the above coefficients. Now,

Δ = (𝑎𝑐 − 𝑏
2

) (𝑒𝑔 − 𝑓
2

) −

1

4

(𝑎𝑔 + 𝑐𝑒 − 2𝑏𝑓)
2 (27)

and the equation H(ℎV)(0, 0) = 0 has two, one, or zero
solutions as Δ < 0, Δ = 0, or Δ > 0, respectively.

When 𝑢 is a degenerate critical point of ℎV, the hyperplane
HV, orthogonal to k, has a higher order contact with 𝑀 at
X(𝑢). Therefore, we will say that k is a binormal vector of𝑀
at X(𝑢) andHV can be an osculating hyperplane [20].

At each point of K−1
𝑐
(0) − Σ

2

(L±), there is a unique
principal direction of zero curvature for 𝐶𝑀. This direction
is tangent to the surfaceK−1

𝑐
(0) on a curve made of points of

type Σ1,1(L±). This curve is in turn tangent to a zero principal
direction of curvature at isolated points [16].

Proposition 25. The image of zero principal directions of cur-
vature inK−1

𝑐
(0)−Σ

2

(L±) under p|K−1
𝑐
(0)−Σ

2
(L±) are asymptotic

directions on𝑀.

Proof. For the curvature vector 𝜂(𝜃) is given by

𝜂 (𝜃) = (

1

2

(𝑎 − 𝑐) cos 2𝜃 + 𝑏 sin 2𝜃) 𝑒
3

+ (

1

2

(𝑒 − 𝑔) cos 2𝜃 + 𝑓 sin 2𝜃) 𝑒
4
+H,

(28)

whereH = (1/2)(𝑎+𝑐)𝑒
3
+(1/2)(𝑒+𝑔)𝑒

4
is themean curvature

vector; we can choose local coordinates for𝑀 such that

𝛼 (𝑢) = (

𝑎 𝑏 𝑐

0 0 1
) (𝑢) . (29)

This choice will imply that 𝑒
1
= (1, 0, 0, 0) ∈ 𝑇𝐶𝑀 is the zero

curvature direction and 𝑇 ∘ p(𝑢, k) ⋅ 𝑒
1
= 𝑒
1
∈ 𝑇X(𝑢)𝑀. Then,

it follows easily that 𝜂(0) and (𝜕N(𝑢)/𝜕𝜃)(0) are parallel.

Therefore, we can have the singularities of canal hyper-
surfaces in the following theorem.

Theorem 26. The canal hypersurfaces have the same singu-
larities as Lorentzian surfaces in anti-de Sitter apace, so we
can easily obtain the singularities of canal hypersurfaces as in
Section 5.
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