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The analytical solutions for the diffusion equations on Cantor sets with the nondifferentiable terms are discussed by using the local
fractional functional method, which is a coupling method for local fractional Fourier series and Laplace transform.

1. Introduction

The local fractional calculus [1, 2], as a new branch of
fractional calculus, was successfully applied to describe the
fractal problems from science and engineering. For example,
the local fractional Fokker-Planck equation [3], the local frac-
tional diffusion equations defined on Cantor sets [4, 5], the
local fractional wave equation defined on Cantor sets [6, 7],
the local fractional Korteweg-de Vries equation [8], the local
fractional Schrödinger equation [9], local fractional Navier-
Stokes equations on cantor sets [10], the local fractional
Laplace equation [11], the local fractional heat-conduction
equation [12–16], the local fractional differential equations
arising in the fractal forest gap [17], and others [18–21] were
discussed.

In this paper, we consider the local fractional diffusion
equations defined on Cantor sets [5] given by

𝑢
2𝛼

𝑥𝑥
=

1

𝑎
2𝛼

𝑢
𝛼

𝑡
, (1)

subject to the initial-boundary conditions

𝜕
𝛼
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𝛼
𝑢 (0, 𝑡) = 𝑔 (𝑡) , 𝑢 (0, 𝑡) = 𝑓 (𝑡) ,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑙) = 0,

(2)

where the local fractional partial derivatives denote

𝑢
𝛼

𝑡
=

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

, 𝑢
2𝛼
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=

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝛼
𝜕𝑦
𝛼

, (3)

and 𝑢(𝑥, 𝑡), 𝑔(𝑡), and 𝑓(𝑡) are the local fractional continuous
functions. In the high-speed railway healthy monitor system,
the problems of diffusion equations with the nondifferen-
tiable terms always exist in fault diagnosing of high-speed
trains and their control systems, so we solve this by the local
fractional diffusion equations defined on Cantor sets. The
local fractional function decomposition method structured
in [11, 22], which is a coupling method of the local fractional
Fourier series [21, 22] and the Yang-Laplace transform [14, 16,
18, 22], was used to solve the inhomogeneous local fractional
wave equations defined on Cantor sets. The main aim of this
paper is to discuss the local fractional diffusion equations
defined on Cantor sets by the local fractional functional
method.

The paper is organized as follows. In Section 2 the basic
theory of the local fractional calculus and the Yang-Laplace
transform were given. In Section 3, the local fractional func-
tionalmethod is analyzed. Section 4 presents the applications
for the local fractional diffusion equations defined on Cantor
sets. Finally, the conclusions are given in Section 5.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 803693, 6 pages
http://dx.doi.org/10.1155/2014/803693

http://dx.doi.org/10.1155/2014/803693


2 Abstract and Applied Analysis

2. Preliminaries

In this section, we present the basic theory of the local
fractional calculus and the local fractional Laplace transform.

Definition 1 (see [1, 5–7]). The local fractional derivative of
𝑓(𝑥) at 𝑥 = 𝑥

0
is given as follows:

𝐷
𝛼

𝑥
𝑓 (𝑥
0
) =

𝑑
𝛼

𝑑𝑥
𝛼
𝑓 (𝑥)








𝑥=𝑥0

= 𝑓
(𝛼)

(𝑥)

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼

,

(4)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(𝛼 + 1)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

The local fractional partial derivative of order 𝛼 is defined
as follows [1]:

𝜕
𝛼

𝜕𝑥
𝛼
𝑓 (𝑥, 𝑦)








𝑥=𝑥0

= 𝑓
(𝛼)

(𝑥, 𝑦)
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𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥, 𝑦) − 𝑓 (𝑥

0
, 𝑦))

(𝑥 − 𝑥
0
)
𝛼

,

(5)

and the local fractional partial derivative of high order [1] is

𝜕
𝑘𝛼

𝑓 (𝑥, 𝑦)

𝑥
𝑘𝛼

=

𝑘 times
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𝛼
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𝛼
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𝛼
⋅ ⋅ ⋅

𝜕
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𝛼

𝑓 (𝑥, 𝑦) ,

(6)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(𝛼 + 1)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

Definition 2 (see [1, 8–12]). Let us consider a partition of the
interval [𝑎, 𝑏], which is denoted as (𝑡

𝑗
, 𝑡
𝑗+1

), 𝑗 = 0, . . . , 𝑁 − 1,
𝑡
0

= 𝑎 and 𝑡
𝑁

= 𝑏 with Δ𝑡
𝑗

= 𝑡
𝑗+1

− 𝑡
𝑗
and Δ𝑡 =

max{Δ𝑡
0
, Δ𝑡
1
, . . .}. Local fractional integral of 𝑓(𝑥) in the

interval [𝑎, 𝑏] is defined as follows:
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1
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∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼
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1
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𝑗
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𝑗
)

𝛼

.

(7)

Definition 3 (see [1, 5, 11, 16, 21]). TheMittag Leffler, sine and
cosine functions defined on Cantor sets are given as follows:

𝐸
𝛼
(𝑥
𝛼
) =

∞

∑

𝑘=0

𝑥
𝛼𝑘

Γ (1 + 𝑘𝛼)

,
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𝛼
𝑥
𝛼
=

∞

∑

𝑘=0

(−1)
𝑘 𝑥
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,
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𝛼
𝑥
𝛼
=

∞

∑
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𝑘 𝑥

2𝛼𝑘

Γ (1 + 2𝛼𝑘)

,

(8)

for 𝑥 ∈ 𝑅, 0 < 𝛼 < 1.

Definition 4 (see [11, 20–22]). Let𝑓(𝑥) be 2𝑙-periodic. For 𝑘 ∈

𝑍, local fraction Fourier series of 𝑓(𝑥) is given as

𝑓 (𝑥) =

𝑎
0

2

+

∞

∑

𝑘=1

(𝑎
𝑛
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𝜋
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𝛼
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𝑛
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𝛼

𝜋
𝛼
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𝛼

𝑙
𝛼

) , (9)

where the local fraction Fourier coefficients are as follows:

𝑎
𝑛
=

2

𝑙
𝛼
∫

𝑙

0

𝑓 (𝑥) cos
𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙
𝛼

(𝑑𝑥)
𝛼
,

𝑏
𝑛
=

2

𝑙
𝛼
∫

𝑙

0

𝑓 (𝑥) sin
𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙
𝛼

(𝑑𝑥)
𝛼
.

(10)

Definition 5 (see [14, 16, 18, 22]). Let (1/Γ(1 +

𝛼)) ∫

∞

0
|𝑓(𝑥)|(𝑑𝑥)

𝛼
< 𝑘 < ∞. The local fractional Laplace

transform of 𝑓(𝑥) is given as

�̃�
𝛼
{𝑓 (𝑥)} = 𝑓

�̃�,𝛼

𝑠
(𝑠) =

1

Γ (1 + 𝛼)

∫

∞

0

𝐸
𝛼
(−𝑠
𝛼
𝑥
𝛼
) 𝑓 (𝑥) (𝑑𝑥)

𝛼
,

0 < 𝛼 ≤ 1.

(11)

The inverse formula local fractional Laplace transform of
𝑓(𝑥) is given as [14, 16, 18, 22]

𝑓 (𝑥) = �̃�
−1

𝛼
{𝑓
𝐿,𝛼

𝑠
(𝑠)}

=

1

(2𝜋)
𝛼
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼
(𝑠
𝛼
𝑥
𝛼
) 𝑓
�̃�,𝛼

𝑠
(𝑠) (𝑑𝑠)

𝛼
,

(12)

where𝑓(𝑥) is local fractional continuous, 𝑠𝛼 = 𝛽
𝛼
+𝑖
𝛼
∞
𝛼 and

Re(𝑠) = 𝛽 > 0.

There is the following formula [14, 16, 18, 22]:

�̃�
𝛼
{𝑦
(2𝛼)

(𝑥)} = 𝑠
2𝛼
�̃�
𝛼
{𝑦 (𝑥)} − 𝑠

𝛼
𝑦 (0) − 𝑓

(𝛼)
(0) . (13)

The basic properties of the local fractional calculus and the
local fractional Laplace transform were listed in [1, 14, 16, 18,
22].

3. Analysis of the Local Fractional
Functional Method

In this section, we introduce the local fractional functional
method for the local fractional diffusion equations defined
on Cantor sets [11, 22].

Let us consider the nondifferentiable decomposition
of the function with the nondifferentiable systems
{sin
𝛼
𝑛
𝛼
(𝜋𝑡/𝑙)

𝛼
}. There are the following functional

coefficients of (1) and (2), which are given as follows:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝐴
𝑛
(𝑥) sin

𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

,

𝑔 (𝑡) =

∞

∑

𝑛=1

𝐶
𝑛
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𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

,

𝑓 (𝑡) =

∞

∑

𝑛=1

𝐷
𝑛
sin
𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

,

(14)
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where

𝐴
𝑛
(𝑥) =

2

𝑙
𝛼
∫

1

0

𝑢 (𝑥, 𝑡) sin
𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

(𝑑𝑡)
𝛼
,

𝐶
𝑛
=

2

𝑙
𝛼
∫

1

0

𝑔 (𝑡) sin
𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

(𝑑𝑡)
𝛼
,

𝐷
𝑛
=

2

𝑙
𝛼
∫

1

0

𝑓 (𝑡) sin
𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

(𝑑𝑡)
𝛼
.

(15)

If we submit (14) into (1) and (2), then we have

𝑑
2𝛼

𝑑𝑥
2𝛼

𝐴
𝑛
(𝑥) =

1

𝑎
2𝛼

𝐴
𝑛
(𝑥) (

𝑛𝜋

𝑙

)

𝛼

,

𝐴
(𝛼)

𝑛
(0) = 𝐶

𝑛
,

𝐴
𝑛
(0) = 𝐷

𝑛
.

(16)

Taking the local fractional Laplace transform of (16) gives

�̃�
𝛼
{

𝑑
2𝛼

𝑑𝑥
2𝛼

𝐴
𝑛
(𝑥)} = 𝑠

2𝛼
�̃�
𝛼
{𝐴
𝑛
(𝑥)} − 𝑠

𝛼
𝐴
𝑛
(0) − 𝐴

(𝛼)

𝑛
(0) ,

(17)

which leads to

𝑠
2𝛼
�̃�
𝛼
{𝐴
𝑛
(𝑥)} − 𝑠

𝛼
𝐷
𝑛
− 𝐶
𝑛
=

1

𝑎
2𝛼

(

𝑛𝜋

𝑙

)

𝛼

�̃�
𝛼
{𝐴
𝑛
(𝑥)} .

(18)

We can rewrite (18) as

𝐴
𝑛
(𝑠)

= �̃�
𝛼
{𝐴
𝑛
(𝑥)}

=

𝑠
𝛼
𝐷
𝑛
+ 𝐶
𝑛

𝑠
2𝛼

− (1/𝑎
2𝛼
) (𝑛𝜋/𝑙)

𝛼

=

𝐷
𝑛

𝑠
𝛼
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
+

(𝐶
𝑛
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷
𝑛
)

𝑠
2𝛼

− (1/𝑎
2𝛼
) (𝑛𝜋/𝑙)

𝛼

=

𝐷
𝑛

𝑠
𝛼
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2

+ 𝑃(

1

𝑠
𝛼
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
−

1

𝑠
𝛼
+ (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
) ,

(19)

where

𝑃 =

𝐶
𝑛
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷
𝑛

(1/𝑎
𝛼
) (𝑛𝜋/𝑙)

𝛼/2
. (20)

The inverse formula local fractional Laplace transform of (19)
gives

𝐴
𝑛
(𝑥)

= �̃�
−1

𝛼
{𝐴
𝑛
(𝑠)}

=

1

(2𝜋)
𝛼
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼
(𝑠
𝛼
𝑥
𝛼
) 𝐴
𝑛
(𝑠) (𝑑𝑠)

𝛼

=

1

(2𝜋)
𝛼

× ∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼
(𝑠
𝛼
𝑥
𝛼
) {

𝐷
𝑛

𝑠
𝛼
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2

+ 𝑃(

1

𝑠
𝛼
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2

−

1

𝑠
𝛼
+(1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
)} (𝑑𝑠)

𝛼

= 𝐷
𝑛
𝐸
𝛼
(

1

𝑎
𝛼
(

𝑛𝜋

𝑙

)

𝛼/2

𝑥
𝛼
) + 𝑃𝐸

𝛼
(

1

𝑎
𝛼
(

𝑛𝜋

𝑙

)

𝛼/2

𝑥
𝛼
)

− 𝑃𝐸
𝛼
(−

1

𝑎
𝛼
(

𝑛𝜋

𝑙

)

𝛼/2

𝑥
𝛼
) ,

(21)

where

𝑃 =

𝐶
𝑛
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷
𝑛

(1/𝑎
𝛼
) (𝑛𝜋/𝑙)

𝛼/2
. (22)

Hence, the solution of (1) reads as follows:

𝑢 (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝐴
𝑛
(𝑥) sin

𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

=

∞

∑

𝑛=1

𝐷
𝑛
𝐸
𝛼
(

1

𝑎
𝛼
(

𝑛𝜋

𝑙

)

𝛼/2

𝑥
𝛼
) sin
𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

+

∞

∑

𝑛=1

𝑃𝐸
𝛼
(

1

𝑎
𝛼
(

𝑛𝜋

𝑙

)

𝛼/2

𝑥
𝛼
) sin
𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

−

∞

∑

𝑛=1

𝑃𝐸
𝛼
(−

1

𝑎
𝛼
(

𝑛𝜋

𝑙

)

𝛼/2

𝑥
𝛼
) sin
𝛼
𝑛
𝛼
(

𝜋𝑡

𝑙

)

𝛼

,

(23)

where

𝑃 =

𝐶
𝑛
− (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷
𝑛

(1/𝑎
𝛼
) (𝑛𝜋/𝑙)

𝛼/2
. (24)

4. The Exact Solutions for Local Fractional
Diffusion Equations Defined on Cantor Sets

In this section we give two examples for initial boundary
problems for local fractional diffusion equations defined on
Cantor sets.
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Example 6. The initial-boundary values of (1) read as follows:

𝜕
𝛼

𝜕𝑥
𝛼
𝑢 (0, 𝑡) = sin (𝑡

𝛼
) , 𝑢 (0, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝜋) = 0.

(25)

Making use of (14), we obtain the following formulas:

sin (𝑡
𝛼
) =

∞

∑

𝑛=1

𝐶
𝑛
sin
𝛼
𝑛
𝛼
𝑡
𝛼
,

0 =

∞

∑

𝑛=1

𝐷
𝑛
sin
𝛼
𝑛
𝛼
𝑡
𝛼
,

(26)

which lead to the following parameters:

𝐶
𝑛
= 1, 𝑛 = 1,

𝐶
𝑛
= 0, 𝑛 > 1,

𝐷
𝑛
= 0, 𝑛 ≥ 1.

(27)

Therefore, (23) gives the nondifferentiable solution of (1) with
initial-boundary values (25)

𝑢 (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝐴
𝑛
(𝑥) sin

𝛼
𝑛
𝛼
𝑡
𝛼

=

∞

∑

𝑛=1

𝐷
𝑛
𝐸
𝛼
(

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑛
𝛼
𝑡
𝛼
+

∞

∑

𝑛=1

𝑃𝐸
𝛼
(

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑛
𝛼
𝑡
𝛼

−

∞

∑

𝑛=1

𝑃𝐸
𝛼
(−

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑛
𝛼
𝑡
𝛼

= 𝑎
𝛼
𝐸
𝛼
(

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑡
𝛼
− 𝑎
𝛼
𝐸
𝛼
(−

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑡
𝛼
.

(28)

When 𝑎 = 1, we get the nondifferentiable solution

𝑢 (𝑥, 𝑡) = 𝐸
𝛼
(𝑥
𝛼
) sin
𝛼
𝑡
𝛼
− 𝐸
𝛼
(−𝑥
𝛼
) sin
𝛼
𝑡
𝛼
, (29)

and its graph is shown in Figure 1.

Example 7. We present the initial-boundary values of (1) as

𝜕
𝛼

𝜕𝑥
𝛼
𝑢 (0, 𝑡) = sin (𝑡

𝛼
) , 𝑢 (0, 𝑡) = sin (𝑡

𝛼
) ,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝜋) = 0.

(30)
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Figure 1: The solution of (1) with initial-boundary value (25) when
𝑎 = 1 and 𝛼 = ln 2/ ln 3.

Using the relation (14), we get

0 =

∞

∑

𝑛=1

𝐶
𝑛
sin
𝛼
𝑛
𝛼
𝑡
𝛼
,

sin (𝑡
𝛼
) =

∞

∑

𝑛=1

𝐷
𝑛
sin
𝛼
𝑛
𝛼
𝑡
𝛼
,

(31)

which reduce to
𝐶
𝑛
= 0, 𝑛 ≥ 1,

𝐷
𝑛
= 1, 𝑛 = 1,

𝐷
𝑛
= 0, 𝑛 > 1.

(32)

Using (23), we hence have the nondifferentiable solution of
(1) with initial-boundary values (30), which is given as

𝑢 (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝐴
𝑛
(𝑥) sin

𝛼
𝑛
𝛼
𝑡
𝛼

=

∞

∑

𝑛=1

𝐷
𝑛
𝐸
𝛼
(

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑛
𝛼
𝑡
𝛼
+

∞

∑

𝑛=1

𝑃𝐸
𝛼
(

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑛
𝛼
𝑡
𝛼

−

∞

∑

𝑛=1

𝑃𝐸
𝛼
(−

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑛
𝛼
𝑡
𝛼

= 𝐸
𝛼
(

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑡
𝛼
− 𝑎
𝛼
𝐸
𝛼
(

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑡
𝛼

+ 𝑎
𝛼
𝐸
𝛼
(−

1

𝑎
𝛼
𝑥
𝛼
) sin
𝛼
𝑡
𝛼
.

(33)

For 𝑎 = 1, the nondifferentiable solution rewrites as follows:

𝑢 (𝑥, 𝑡) = 𝐸
𝛼
(−𝑥
𝛼
) sin
𝛼
𝑡
𝛼
, (34)

and its graph is illustrated in Figure 2.
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Figure 2:The solution of (1) with initial-boundary value (30) when
𝑎 = 1 and 𝛼 = ln 2/ ln 3.

5. Conclusions

Local fractional calculus was applied to describe the phys-
ical problems because of nondifferentiable characteristics.
In this work, the initial-boundary value problems for the
diffusion equation on Cantor sets within the local fractional
derivatives were investigated by using the local fractional
functional method, which is a coupling method for local
fractional Fourier series and Laplace transform based upon
the nondifferentiable decomposition of the function with
the nondifferentiable systems. The two examples are given
to express the efficiency of the presented method and their
graphs are also obtained. The results of this paper could pro-
vide the theory support to the problems diffusion equations
with the nondifferentiable terms in health monitor of high-
speed trains and their control systems.
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