
Research Article
Spatial Approximation of Nondivergent Type Parabolic PDEs
with Unbounded Coefficients Related to Finance

Fernando F. Gonçalves1,2 and Maria Rosário Grossinho1
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We study the spatial discretisation of the Cauchy problem for a multidimensional linear parabolic PDE of second order, with
nondivergent operator and unbounded time- and space-dependent coefficients.The equation free term and the initial data are also
allowed to grow. Under a nondegeneracy assumption, we consider the PDE solvability in the framework of the variational approach
and approximate in space the PDE problem’s generalised solution, with the use of finite-differencemethods.The rate of convergence
is estimated.

1. Introduction

In this paper, we study the discretisation in space of the
Cauchy problem

𝜕𝑢

𝜕𝑡
= 𝐿𝑢 + 𝑓 in [0, 𝑇] ×R

𝑑
,

𝑢 (0, 𝑥) = 𝑔 (𝑥) on R
𝑑
,

(1)

where𝐿 is the second-order partial differential operator in the
nondivergence form

𝐿 (𝑡, 𝑥) = 𝑎
𝑖𝑗
(𝑡, 𝑥)

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝑏
𝑖
(𝑡, 𝑥)

𝜕

𝜕𝑥𝑖
+ 𝑐 (𝑡, 𝑥) ,

𝑖, 𝑗 = 1, . . . , 𝑑,

(2)

with real coefficients (written with the usual summation
convention), 𝑓 and 𝑔 are given real-valued functions, and
𝑇 ∈ (0,∞) is a constant. We assume that operator 𝜕/𝜕𝑡 − 𝐿

is uniformly parabolic and allows the growth in the spatial
variables of the first- and second-order coefficients in 𝐿

(linear and quadratic growth, resp.) and of the data 𝑓 and 𝑔
(polynomial growth).

Multidimensional partial differential equation (PDE)
problems arise in Financial Mathematics and in Mathemat-
ical Physics. We are mainly motivated by the application to

a large class of stochastic models in Financial Mathemat-
ics comprising the non-path-dependent options, with fixed
exercise, written onmultiple assets (basket options, exchange
options, compound options, European options on future
contracts and foreign-exchange, and others) and also to a
particular type of path-dependent options: the Asian options
(see, e.g., [1]).

Let us consider the stochastic modelling of a multiasset
option of European type under the framework of a general
version of Black-Scholes model, where the vector of asset
appreciation rates and the volatility matrix are taken to
be time- and space-dependent, and the riskless interest
rate is a function of time. Owing to a Feynman-Kač type
formula, pricing this option can be reduced to solving the
Cauchy problem (with terminal condition) for the degenerate
second-order linear parabolic PDE of nondivergent type,
with null term and unbounded coefficients (see, e.g., [1]),

𝜕𝑉

𝜕𝑡
+
1

2
𝜎
𝑖𝑗
(𝑡, 𝑆) 𝑆

𝑖
𝑆
𝑗 𝜕
2
𝑉

𝜕𝑆𝑖𝜕𝑆𝑗
+ 𝑟 (𝑡) 𝑆

𝑖 𝜕𝑉

𝜕𝑆𝑖
− 𝑟 (𝑡) 𝑉 = 0

in [0, 𝑇] ×R
𝑑

+
,

𝑉 (𝑇, 𝑆) = 𝜙 (𝑆) on R
𝑑

+
,

(3)
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where R𝑑
+
≡ {𝑥 ∈ R𝑑 : 𝑥

𝑖
> 0, 𝑖 = 1, . . . , 𝑑}, 𝑉 is the

(unknown) option value, 𝑆𝑖 the price of the 𝑖th underlying
asset, (𝜎𝑖𝑗) the volatility matrix, 𝑟 the risk-free interest rate,
and 𝜙 the pay-off function.

Therefore, as an alternative to approximating the option
price with probabilistic numerical methods, we can approxi-
mate the solution of the corresponding PDE problem (3) with
the use of nonprobabilistic techniques.

When problem (1) is considered in connection with
option pricing, we see that the growth of the Black-Scholes
PDE coefficients is appropriately matched. Also, the general
case where the asset appreciation rate vector, the volatility
matrix, and the risk-free interest rate are variable is covered.
Finally, by imposing weak conditions on the initial data 𝑔, we
will allow the financial derivative pay-off to be specified in a
large class of functions.The free term 𝑓 is included to further
improve generality.

In this paper, we study the approximation in space (for the
time approximation, we refer to [2–4], where a general evolu-
tion equation problem of parabolic type is discretised) of the
second-order parabolic problem (1), in the challenging case
where the coefficients are unbounded (as well as the free data
𝑓 and 𝑔). The results are obtained under the strong assump-
tion that the PDE does not degenerate but by imposing weak
regularity assumptions. In order to facilitate the approach, we
avoid any numerical methods’ sophistication and make use
of basic one-step finite-difference schemes. Also, an estimate
for the rate of convergence of the discretised problem’s gener-
alised solution to the exact problem’s generalised solution is
given.

The numerical methods and possible approximation
results are strongly linked to the theory on the solvability
of the PDEs. We make use of the 𝐿2 theory of solvability
of linear PDEs in weighted Sobolev spaces. In particular,
we consider the PDE solvability in a class of weighted
Sobolev spaces used by O. G. Purtukhia (the references for
Purtukhia’s works can be found in [5]) for the treatment
of linear stochastic partial differential equations (SPDEs)
and further generalised by Gyöngy and Krylov (see [5]),
the so-called well-weighted Sobolev spaces. By constructing
discrete versions of these spaces, we set a suitable discretised
framework and investigate the spatial approximation to the
PDE generalised solution with the use of standard variational
techniques.

We emphasize some points.
Firstly, we note that many PDE problems related to

finance are Cauchy problems: initial-boundary value prob-
lems arise mostly after a localisation procedure for the
purpose of obtaining implementable numerical schemes.
Therefore, we do not find in many of these problems the
complex domain geometries which are one important rea-
son to favour other numerical methods (e.g., finite-element
methods).

Also, although the finite-difference method for approxi-
mating PDEs is a well-developed area, and the theory could
be considered reasonably complete since three decades ago,
some important research is still currently pursued (see, e.g.,
the recent works [8–10]). (We refer to [6] for a brief summary

of the method’s history, and also for the references of the
seminal works by R. Courant, K. O. Friedrichs, and H. Lewy,
and further major contributions by many others. For the
application of the finite-difference method to option pricing,
we refer to the review paper [7] for the references of the
original publications by M. Brennan and E. S. Schwartz and
further major research.)

Secondly, we observe that the usual procedure for obtain-
ing implementable numerical schemes for problem (1) is to
localise it to a bounded domain in [0, 𝑇] × R𝑑 and then
to approximate the localised problem (see, e.g., [11–13]; see
also [14], where the approximation is pursued for more
complex financial models but using the same localisation
technique). In this case, there is no need to consider weighted
functional spaces for the solvability and approximation
study, as the PDE coefficients are bounded in the truncated
domain.

An alternative procedure is to (semi)discretise problem
(1) in [0, 𝑇] × 𝑍

𝑑

ℎ
, with 𝑍

𝑑

ℎ
being the ℎ-grid on R𝑑, and

then localise the discretised problem to a bounded domain
in [0, 𝑇] × 𝑍

𝑑

ℎ
by imposing a discrete artificial boundary

condition (see, e.g., [15–17], where several types of initial-
value problems on unbounded domains are approximated;
we refer to [16, 17] for the procedure discussion). Our
study is meaningful in this latter case, as the coefficient
unboundedness remains a problem that must be dealt
with.

Finally, we remark that (i) the partial differential oper-
ators arising in finance are of nondivergent type and (ii)
we do not assume the operator coefficients to be smooth
enough to be possible to obtain an equivalent divergent
operator. Therefore, although there are definite advantages
in considering the operator in the divergent form when the
approach is variational, this is not available for the present
work.

We outline the paper. In Section 2, we establish somewell-
known facts on the solvability of linear PDEs under a general
framework and introduce the well-weighted Sobolev spaces.
In Section 3, we discretise in space problem (1), with the use
of a finite-difference scheme. We set a discrete framework
and deduce the existence and uniqueness of the discretised
problem’s generalised solution. In Section 4, we investigate
the approximation properties of the scheme and compute
a rate of convergence. In Section 5, we make a few final
comments.

2. Preliminaries and Classical Results

We establish some facts on the solvability of PDEs under a
general framework.

Let 𝑉 be a reflexive separable Banach space embedded
continuously and densely into a Hilbert space 𝐻 with inner
product (, ). Then 𝐻

∗, the dual space of 𝐻, is also continu-
ously and densely embedded into 𝑉

∗, the dual of 𝑉. Let us
use the notation ⟨, ⟩ for the duality. Let𝐻∗ be identified with
𝐻 in the usual way, by the help of the inner product.Then we
have the so-called normal triple 𝑉 → 𝐻 ≡ 𝐻

∗
→ 𝑉
∗, with

continuous and dense embeddings.
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Let us consider the Cauchy problem for an evolution
equation

𝑑𝑢

𝑑𝑡
= 𝐴 (𝑡) 𝑢 + 𝑓 (𝑡) in [0, 𝑇] , 𝑢 (0) = 𝑔, (4)

with𝑇 ∈ (0,∞) and where for every 𝑡 ∈ [0, 𝑇] 𝐴(𝑡) is a linear
operator from 𝑉 to 𝑉∗, 𝑓(𝑡) ∈ 𝑉∗, and 𝑔 ∈ 𝐻.

We assume that the operator 𝐴(𝑡) is continuous and
impose a coercivity condition, as well as some regularity on
the free data 𝑓 and 𝑔.

Assumption 1. There exist constants 𝜆 > 0,𝐾,𝑀, and𝑁 such
that

(1) ⟨𝐴(𝑡)V, V⟩ + 𝜆‖V‖2
𝑉
≤ 𝐾‖V‖2

𝐻
, ∀V ∈ 𝑉, ∀𝑡 ∈ [0, 𝑇];

(2) ‖𝐴(𝑡)V‖𝑉∗ ≤ 𝑀‖V‖𝑉, ∀V ∈ 𝑉, ∀𝑡 ∈ [0, 𝑇];

(3) ∫𝑇
0
‖𝑓(𝑡)‖

2

𝑉∗
𝑑𝑡 ≤ 𝑁 and ‖𝑔‖

𝐻
≤ 𝑁.

We define the generalised solution of problem (4).

Definition 2. One says that 𝑢 ∈ 𝐶([0, 𝑇];𝐻) is a generalised
solution of (4) on [0, 𝑇] if

(1) 𝑢 ∈ 𝐿2([0, 𝑇]; 𝑉);
(2) for every 𝑡 ∈ [0, 𝑇],

(𝑢 (𝑡) , V) = (𝑔, V) + ∫
𝑡

0

⟨𝐴 (𝑠) 𝑢 (𝑠) , V⟩ 𝑑𝑠 + ∫
𝑡

0

⟨𝑓 (𝑠) , V⟩ 𝑑𝑠

(5)

holds for all V ∈ 𝑉.

Notation 1. Let 𝑊 be a Banach space with norm ‖ ‖. We
denote by 𝐶([0, 𝑇];𝑊) the space of continuous 𝑊-valued
functions on [0, 𝑇] and by 𝐿

2
([0, 𝑇];𝑊) the space of 𝑊-

valued functions 𝑤 on [0, 𝑇] such that ‖𝑤‖𝐿2([0,𝑇];𝑊) :=

(∫
𝑇

0
‖𝑤(𝑡)‖

2
𝑑𝑡)
1/2

< ∞.

The following well-known result states that, under
Assumption 1, problem (4) has a unique generalised solution
(see, e.g., [5], where the result is stated for the more general
case of a linear stochastic evolution equation problem and
[18]).

Theorem 3. Under (1)–(3) in Assumption 1, problem (4) has a
unique generalised solution on [0, 𝑇]. Moreover

sup
𝑡∈[0,𝑇]

‖𝑢 (𝑡)‖
2

𝐻
+ ∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑉
𝑑𝑡

≤ 𝑁(
𝑔

2

𝐻
+ ∫

𝑇

0

𝑓 (𝑡)

2

𝑉∗
𝑑𝑡) ,

(6)

where𝑁 is a constant.

Let us now consider the particular PDE problem

𝑢𝑡 = 𝐿𝑢 + 𝑓 in𝑄, 𝑢 (0, 𝑥) = 𝑔 (𝑥) on R
𝑑
, (7)

where 𝐿 is the second-order operator with real coefficients

𝐿 (𝑡, 𝑥) = 𝑎
𝑖𝑗
(𝑡, 𝑥)

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝑏
𝑖
(𝑡, 𝑥)

𝜕

𝜕𝑥𝑖
+ 𝑐 (𝑡, 𝑥) , (8)

𝑄 = [0, 𝑇] × R𝑑, with 𝑇 ∈ (0,∞), and 𝑓 and 𝑔 are given
functions.We allow the growth, in the spatial variables, of the
coefficients 𝑎𝑖𝑗(𝑡, 𝑥) and 𝑏𝑖(𝑡, 𝑥), 𝑖, 𝑗 = 1, . . . , 𝑑, and of the free
data 𝑓(𝑡, 𝑥) and 𝑔(𝑥).

In order to set the framework for problem (7), we
introduce a suitable class of weighted Sobolev spaces, the so-
called well-weighted Sobolev spaces (we refer to [5] for a
complete description of this class of spaces).

Let𝑈 be a domain inR𝑑, that is, an open subset ofR𝑑. Let
𝑟 > 0, 𝜌 > 0 be smooth functions in 𝑈 and𝑚 ≥ 0 an integer.
Theweighted Sobolev space𝑊𝑚,2(𝑈; 𝑟, 𝜌) is the Banach space
of locally integrable functions V : 𝑈 → R such that for each
multi-index 𝛼, with |𝛼| ≤ 𝑚, 𝐷𝛼V exists in the weak sense,
and

‖V‖𝑊𝑚,2(𝑈;𝑟,𝜌) := ( ∑

|𝛼|≤𝑚

∫
𝑈

𝑟
2
𝜌
|𝛼|
𝐷
𝛼V


2

𝑑𝑥)

1/2

< ∞. (9)

Endowed with the inner product which generates the above
norm

(V, 𝑤)𝑊𝑚,2(𝑈;𝑟,𝜌) := ∑

|𝛼|≤𝑚

∫
𝑈

𝑟
2
𝜌
2|𝛼|

𝐷
𝛼V𝐷𝛼𝑤𝑑𝑥, (10)

for all V, 𝑤 ∈ 𝑊
𝑚,2

(𝑈; 𝑟, 𝜌),𝑊𝑚,2(𝑈; 𝑟, 𝜌) is a Hilbert space.

Remark 4. Setting the weight functions 𝑟 = 𝜌 = 1, for all
𝑥 ∈ 𝑈, we obtain the particular case of the Sobolev spaces
𝑊
𝑚,2

(𝑈).

Notation 2. In the sequel, when 𝑈 = R𝑑 we drop the
argument in the function space notation. For instance, we
denote𝑊𝑚,2(R𝑑; 𝑟, 𝜌) =: 𝑊𝑚,2(𝑟, 𝜌).

We make some assumptions on the behaviour of the
weight functions 𝑟 and 𝜌 (see [5]).

Assumption 5. Let 𝑚 ≥ 0 be an integer and 𝑟 > 0, 𝜌 > 0

smooth functions on R𝑑. There exists a constant𝐾 such that

(1) |𝐷𝛼𝜌| ≤ 𝐾𝜌
1−|𝛼|, for all multi-indexes 𝛼 such that

|𝛼| ≤ 𝑚 − 1 if𝑚 ≥ 2;
(2) |𝐷𝛼𝑟| ≤ 𝐾(𝑟/𝜌

|𝛼|
), for all multi-indexes 𝛼 such that

|𝛼| ≤ 𝑚.

Remark 6. In (1) in Assumption 5, if 𝑚 < 2 nothing is
required.

Example 7. The following functions (taken from [5], citing O.
G. Purtukhia) satisfy Assumption 5:

(1) 𝑟(𝑥) = (1 + |𝑥|
2
)
𝛽, 𝛽 ∈ R; 𝜌(𝑥) = (1 + |𝑥|

2
)
𝛾, 𝛾 ≤ 1/2;

(2) 𝑟(𝑥) = exp(±(1 + |𝑥|2)𝛽), 0 ≤ 𝛽 ≤ 1/2; 𝜌(𝑥) = (1 +

|𝑥|
2
)
𝛾, 𝛾 ≤ 1/2 − 𝛽;
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(3) 𝑟(𝑥) = (1 + |𝑥|
2
)
𝛽, 𝛽 ∈ R; 𝜌(𝑥) = ln𝛾(2 + |𝑥|2), 𝛾 ∈ R;

(4) 𝑟(𝑥) = (1 + |𝑥|
2
)
𝛽 ln𝜇(2 + |𝑥|

2
), 𝛽 ≥ 0, 𝜇 ≥ 0; 𝜌(𝑥) =

(1 + |𝑥|
2
)
𝛾, 𝛾 ≤ 1/2;

(5) 𝑟(𝑥) = (1 + |𝑥|
2
)
𝛽 ln𝜇(2 + |𝑥|

2
), 𝛽 ≥ 0, 𝜇 ≥ 0; 𝜌(𝑥) =

ln𝛾(2 + |𝑥|2), 𝛾 ≥ 0;

(6) 𝜌(𝑥) = exp(−(1 + |𝑥|2)𝛾), 𝛾 ≥ 0; each weight function
𝑟(𝑥) in examples (1)–(5).

Now, we switch our point of view and consider the
functions 𝑤 : 𝑄 → R as mappings of 𝑡 into certain spaces
of functions of 𝑥 we make precise below such that, for all
𝑡 ∈ [0, 𝑇], 𝑥 ∈ R𝑑, (𝑤(𝑡))(𝑥) := 𝑤(𝑡, 𝑥).

We impose a coercivity condition and make some
assumptions on the growth and regularity of the operator’s
coefficients and also on the regularity of the free data 𝑓 and 𝑔
(see [5], where the assumptions aremade for themore general
case of an SPDE problem).

Assumption 8. Let 𝑟 > 0, 𝜌 > 0 be smooth functions on R𝑑

and𝑚 ≥ 0 an integer.

(1) There exists a constant 𝜆 > 0 such that
∑
𝑑

𝑖,𝑗=1
𝑎
𝑖𝑗
(𝑡, 𝑥)𝜉

𝑖
𝜉
𝑗

≥ 𝜆𝜌
2
(𝑥)|𝜉|
2, for all 𝑡 ≥ 0,

𝑥 ∈ R𝑑, and 𝜉 ∈ R𝑑.

(2) The coefficients of 𝐿 are measurable functions in
[0, 𝑇] ×R𝑑. The derivatives in 𝑥 of the coefficients 𝑎𝑖𝑗
up to order𝑚∨1 and of the coefficients 𝑏𝑖 and 𝑐 up to
order𝑚 exist for any 𝑡 ∈ [0, 𝑇]. Moreover, there exists
a constant𝐾 such that


𝐷
𝛼

𝑥
𝑎
𝑖𝑗
≤ 𝐾𝜌
2−|𝛼|

∀ |𝛼| ≤ 𝑚 ∨ 1,


𝐷
𝛼

𝑥
𝑏
𝑖
≤ 𝐾𝜌
1−|𝛼|

,
𝐷
𝛼

𝑥
𝑐
 ≤ 𝐾 ∀ |𝛼| ≤ 𝑚,

(11)

for all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R𝑑, with 𝐷𝛼
𝑥
denoting the |𝛼|th

partial derivative operator with respect to 𝑥.

(3) Consider 𝑓 ∈ 𝐿
2
([0, 𝑇];𝑊

𝑚−1,2
(𝑟, 𝜌)) and 𝑔 ∈

𝑊
𝑚,2

(𝑟, 𝜌).

Notation 3. In the above assumption, 𝑝 ∨ 𝑞 := max(𝑝, 𝑞),
with 𝑝, 𝑞 integers. Also, for 𝑚 = 0 we use the notation
𝑊
−1,2

(𝑟, 𝜌) := (𝑊
1,2
(𝑟, 𝜌))

∗, where (𝑊1,2(𝑟, 𝜌))∗ is the dual
of𝑊1,2(𝑟, 𝜌).

We define the generalised solution of problem (7).

Definition 9. One says that 𝑢 ∈ 𝐶([0, 𝑇];𝑊
0,2
(𝑟, 𝜌)) is a

generalised solution of (7) on [0, 𝑇] if

(1) 𝑢 ∈ 𝐿2([0, 𝑇];𝑊1,2(𝑟, 𝜌));

(2) for every 𝑡 ∈ [0, 𝑇],

(𝑢 (𝑡) , 𝜑)

= (𝑔, 𝜑) + ∫

𝑡

0

{− (𝑎
𝑖𝑗
(𝑠)𝐷𝑥𝑖𝑢 (𝑠) , 𝐷𝑥𝑗𝜑)

+ (𝑏
𝑖
(𝑠)𝐷𝑥𝑖𝑢 (𝑠) − 𝐷𝑥𝑗𝑎

𝑖𝑗
(𝑠)𝐷𝑥𝑖𝑢 (𝑠) , 𝜑)

+ (𝑐 (𝑠) 𝑢 (𝑠) , 𝜑) + ⟨𝑓 (𝑠) , 𝜑⟩ } 𝑑𝑠

(12)

holds for all 𝜑 ∈ 𝐶
∞

0
.

Notation 4. The notation ( , ) in the above definition stands
for the inner product in 𝑊

0,2
(𝑟, 𝜌). Also, we denote 𝐶∞

0
:=

𝐶
∞

0
(R𝑑).

Remark 10. Note that as an alternative to the infinite differ-
entiability of 𝜑 in (2) it can be required that 𝜑 ∈ 𝑊

1,2
(𝑟, 𝜌).

Finally, we state a result on the existence and uniqueness
of the solution of problem (7). This result can be obtained
from the general result in abstract spaces by using the suitable
triple of spaces (see, e.g., [5], where the result is proved for the
more general case of an SPDE problem).

Theorem11. Under (1)-(2) inAssumption 5, with𝑚+1 in place
of𝑚, with𝑚 ≥ 0 being an integer, and (1)–(3) in Assumption 8,
problem (7) admits a unique generalised solution 𝑢 on [0, 𝑇].
Moreover

𝑢 ∈ 𝐶 ([0, 𝑇] ;𝑊
𝑚,2

(𝑟, 𝜌)) ∩ 𝐿
2
([0, 𝑇] ;𝑊

𝑚+1,2
(𝑟, 𝜌)) ,

sup
0≤𝑡≤𝑇

‖𝑢 (𝑡)‖
2

𝑊𝑚,2(𝑟,𝜌)
+ ∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑊𝑚+1,2(𝑟,𝜌)
𝑑𝑡

≤ 𝑁(
𝑔

2

𝑊𝑚,2(𝑟,𝜌)
+ ∫

𝑇

0

𝑓 (𝑡)

2

𝑊𝑚−1,2(𝑟,𝜌)
𝑑𝑡) ,

(13)

with𝑁 being a constant.

3. The Discrete Framework

We now proceed to the discretisation of problem (7) in the
spatial variable. We set a suitable discrete framework with
the use of a finite-difference scheme and, by showing that
discretised problem can be cast into the general problem
(4), we prove an existence and uniqueness result for the
discretised problem’s generalised solution.

We emphasize that this study mirrors the study of
problem (7), in the sense that the framework we now set is
a discrete version of the framework set for problem (7), and
the techniques used for proving the existence and uniqueness
results are the same for both problems.

Define the ℎ-grid on R𝑑, with ℎ ∈ (0, 1],

𝑍
𝑑

ℎ
= {𝑥 ∈ R

𝑑
: 𝑥 = ℎ

𝑑

∑

𝑖=1

𝑒𝑖𝑛𝑖, 𝑛𝑖 = 0, ±1, ±2, . . .} , (14)
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where 𝑒𝑖, for 𝑖 = 1, 2, . . . , 𝑑, is the unit vector inR𝑑 whose 𝑖th
entry is 1.

For every 𝑥 ∈ 𝑍
𝑑

ℎ
, denote

𝜕
+

𝑖
𝑢 = 𝜕
+

𝑖
𝑢 (𝑡, 𝑥) = ℎ

−1
(𝑢 (𝑡, 𝑥 + ℎ𝑒𝑖) − 𝑢 (𝑡, 𝑥)) ,

𝜕
−

𝑖
𝑢 = 𝜕
−

𝑖
𝑢 (𝑡, 𝑥) = ℎ

−1
(𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥 − ℎ𝑒𝑖))

(15)

the forward and backward difference quotients in space,
respectively. Define the discrete operator

𝐿ℎ (𝑡, 𝑥) = 𝑎
𝑖𝑗
(𝑡, 𝑥) 𝜕

−

𝑗
𝜕
+

𝑖
+ 𝑏
𝑖
(𝑡, 𝑥) 𝜕

+

𝑖
+ 𝑐 (𝑡, 𝑥) . (16)

We consider the discrete problem

𝑢𝑡 = 𝐿ℎ𝑢 + 𝑓ℎ in 𝑄 (ℎ) , 𝑢 (0, 𝑥) = 𝑔ℎ (𝑥) on 𝑍
𝑑

ℎ
,

(17)

where𝑄(ℎ) = [0, 𝑇] ×𝑍
𝑑

ℎ
, with 𝑇 ∈ (0,∞), and 𝑓ℎ and 𝑔ℎ are

functions such that 𝑓ℎ : 𝑄(ℎ) → R and 𝑔ℎ : 𝑍
𝑑

ℎ
→ R.

Consider functions V : 𝑍𝑑
ℎ
→ R. We introduce the space

𝑙
0,2
(𝑟), the discrete version of the weighted Sobolev space

𝑊
0,2
(𝑟, 𝜌),

𝑙
0,2
(𝑟) := {V : ‖V‖𝑙0,2(𝑟) < ∞} , (18)

where the norm ‖V‖𝑙0,2(𝑟) is given by

‖V‖𝑙0,2(𝑟) = ( ∑

𝑥∈𝑍𝑑
ℎ

𝑟
2
(𝑥) |V (𝑥)|2ℎ𝑑)

1/2

. (19)

We define, for any V, 𝑤 ∈ 𝑙
0,2
(𝑟), the inner product

(V, 𝑤)𝑙0,2(𝑟) = ∑

𝑥∈𝑍𝑑
ℎ

𝑟
2
(𝑥) V (𝑥)𝑤 (𝑥) ℎ

𝑑
, (20)

which induces the norm.
The inner product space 𝑙0,2(𝑟) has a good structure: it can

be easily shown that it is complete, therefore a Hilbert space.
For functions 𝑤 : 𝑍

𝑑

ℎ
→ R, we introduce also the

discrete version of the weighted Sobolev space𝑊1,2(𝑟, 𝜌), the
space 𝑙1,2(𝑟, 𝜌) defined by

𝑙
1,2
(𝑟, 𝜌) = {𝑤 : ‖𝑤‖𝑙1,2(𝑟,𝜌) < ∞} , (21)

with norm

‖𝑤‖
2

𝑙1,2(𝑟,𝜌)
:= ‖𝑤‖

2

𝑙0,2(𝑟)
+

𝑑

∑

𝑖=1

𝜌𝜕
+

𝑖
𝑤


2

𝑙0,2(𝑟)
. (22)

We endow 𝑙
1,2
(𝑟, 𝜌) with the inner product, inducing the

norm,

(𝑤, 𝑧)𝑙1,2(𝑟,𝜌) = (𝑤, 𝑧)𝑙0,2(𝑟) +

𝑑

∑

𝑖=1

(𝜌𝜕
+

𝑖
𝑤, 𝜌𝜕
+

𝑖
𝑧)
𝑙0,2(𝑟)

, (23)

for any functions 𝑤, 𝑧 ∈ 𝑙1,2(𝑟, 𝜌).

We want to show that the discrete framework we have set
is a particular case of the general framework considered in
Section 2.

It can be easily checked that 𝑙1,2(𝑟, 𝜌) is a reflexive and
separable Banach space, continuously and densely embedded
into the Hilbert space 𝑙0,2(𝑟).

As 𝑙1,2(𝑟, 𝜌), endowed with the inner product (, )𝑙1,2(𝑟,𝜌), is
clearly a Hilbert space therefore it is reflexive, and the proof
for the separability is trivial.The continuity of the embedding
follows immediately from ‖V‖𝑙0,2(𝑟) ≤ ‖V‖𝑙1,2(𝑟,𝜌), for all V ∈

𝑙
1,2
(𝑟, 𝜌). Finally, the denseness can be checked by noticing

that, for an arbitrary function 𝑤 ∈ 𝑙
0,2
(𝑟), and 𝐵 a ball in 𝑍𝑑

ℎ
,

the function 𝑧 defined by

𝑧 (𝑥) = {
𝑤 (𝑥) , 𝑥 ∈ 𝐵,

0, otherwise,
(24)

belongs obviously to 𝑙1,2(𝑟, 𝜌) and that, for any given 𝜀 > 0,
‖𝑤 − 𝑧‖𝑙0,2(𝑟) < 𝜀 if the diameter of 𝐵 is chosen sufficiently
large.

As in the previous section, we switch our viewpoint and
consider the functions 𝑧 : 𝑄(ℎ) → R as mappings of 𝑡
into certain spaces of functions of 𝑥, defined by (𝑧(𝑡))(𝑥) :=
𝑧(𝑡, 𝑥), for all 𝑡 ∈ [0, 𝑇] and for all𝑥 ∈ 𝑍

𝑑

ℎ
. For these functions,

we consider the space 𝐶([0, 𝑇]; 𝑙0,2(𝑟)) of continuous 𝑙0,2(𝑟)-
valued functions on [0, 𝑇] and the spaces

𝐿
2
([0, 𝑇] ; 𝑙

𝑚,2
(𝑟, 𝜌))

= {𝑧 : [0, 𝑇] → 𝑙
𝑚,2

(𝑟, 𝜌) : ∫

𝑇

0

‖𝑧 (𝑡)‖
2

𝑙𝑚,2(𝑟,𝜌)
𝑑𝑡 < ∞} ,

(25)

with𝑚 = 0, 1.

Notation 5. We identify 𝑙0,2(𝑟, 𝜌) with 𝑙0,2(𝑟).

Remark 12. Clearly, if 𝑢 ∈ 𝐶([0, 𝑇]; 𝑙
0,2
(𝑟)) then

sup
𝑡∈[0,𝑇]

‖𝑢(𝑡)‖𝑙0,2(𝑟) < ∞.

We make some assumptions on the regularity of the data
𝑓ℎ and 𝑔ℎ in (17).

Assumption 13. Let 𝑟 > 0 be a smooth function on R𝑑. We
assume

(1) 𝑓ℎ ∈ 𝐿
2
([0, 𝑇]; 𝑙

0,2
(𝑟));

(2) 𝑔ℎ ∈ 𝑙
0,2
(𝑟).

Remark 14. In Assumption 13, (1) can be replaced with
the weaker assumption 𝑓ℎ ∈ 𝐿

2
([0, 𝑇]; (𝑙

1,2
(𝑟, 𝜌))

∗
), where

(𝑙
1,2
(𝑟, 𝜌))

∗ denotes the dual space of 𝑙1,2(𝑟, 𝜌).

Remark 15. We note that |𝜕+
𝑖
𝑎
𝑖𝑗
| ≤ 𝐾𝜌 can be obtained from

(2) in Assumption 8. In fact, by the mean-value theorem,

𝜕
+

𝑖
𝑎
𝑖𝑗
(𝑡, 𝑥)


=

ℎ
−1
(𝑎
𝑖𝑗
(𝑡, 𝑥 + ℎ𝑒𝑖) − 𝑎

𝑖𝑗
(𝑡, 𝑥))



=



𝜕

𝜕𝑥𝑖
𝑎
𝑖𝑗
(𝑡, 𝑥 + 𝜏𝑒𝑖)


,

(26)
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for some 𝜏 such that 0 < 𝜏 < ℎ.Thus |(𝜕/𝜕𝑥𝑖)𝑎𝑖𝑗| ≤ 𝐾𝜌 implies
|𝜕
+

𝑖
𝑎
𝑖𝑗
| ≤ 𝐾𝜌.

We define the generalised solution of problem (17).

Definition 16. One says that 𝑢 ∈ 𝐶([0, 𝑇]; 𝑙
0,2
(𝑟)) ∩ 𝐿

2

([0, 𝑇]; 𝑙
1,2
(𝑟, 𝜌)) is a generalised solution of (17) if, for every

𝑡 ∈ [0, 𝑇],

(𝑢 (𝑡) , 𝜑) = (𝑔ℎ, 𝜑)

+ ∫

𝑡

0

{− (𝑎
𝑖𝑗
(𝑠) 𝜕
+

𝑖
𝑢 (𝑠) , 𝜕

+

𝑗
𝜑)

+ (𝑏
𝑖
(𝑠) 𝜕
+

𝑖
𝑢 (𝑠) − 𝜕

+

𝑗
𝑎
𝑖𝑗
(𝑠) 𝜕
+

𝑖
𝑢 (𝑠) , 𝜑)

+ (𝑐 (𝑠) 𝑢 (𝑠) , 𝜑) + ⟨𝑓ℎ (𝑠) , 𝜑⟩ } 𝑑𝑠

(27)

holds for all 𝜑 ∈ 𝑙
1,2
(𝑟, 𝜌).

Notation 6. In the above definition, ( , ) denotes the inner
product in 𝑙0,2(𝑟). We keep this convention for the remainder
of present section.

Finally, we prove an existence and uniqueness result
for the solution of the discrete problem (17). This result
shows that the scheme is stable, that is, that, informally, the
discrete problem’s solution remains bounded independent of
the space-step ℎ. The result is obtained as a consequence of
Theorem 3, remaining only to prove that, under the discrete
framework we constructed, (1)-(2) in Assumption 1 hold.

Theorem 17. Under (1)-(2) in Assumption 8 and (1)-(2) in
Assumption 13, problem (17) has a unique generalised solution
𝑢 in [0, 𝑇]. Moreover

sup
0≤𝑡≤𝑇

‖𝑢 (𝑡)‖
2

𝑙0,2(𝑟)
+ ∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑙1,2(𝑟,𝜌)
𝑑𝑡

≤ 𝑁(
𝑔ℎ


2

𝑙0,2(𝑟)
+ ∫

𝑇

0

𝑓ℎ (𝑡)

2

𝑙0,2(𝑟)
𝑑𝑡) ,

(28)

with𝑁 a constant independent of ℎ.

Proof. Let 𝐿ℎ(𝑠) : 𝑙
1,2
(𝑟, 𝜌) → (𝑙

1,2
(𝑟, 𝜌))

∗, for every 𝑠 ∈

[0, 𝑇]. We define

⟨𝐿ℎ (𝑠) 𝜓, 𝜑⟩ := − (𝑎
𝑖𝑗
(𝑠) 𝜕
+

𝑖
𝜓, 𝜕
+

𝑗
𝜑)

+ (𝑏
𝑖
(𝑠) 𝜕
+

𝑖
𝜓 − 𝜕
+

𝑗
𝑎
𝑖𝑗
(𝑠) 𝜕
+

𝑖
𝜓, 𝜑)

+ (𝑐 (𝑠) 𝜓, 𝜑) ,

(29)

for all 𝑠 ∈ [0, 𝑇], 𝜑, 𝜓 ∈ 𝑙
1,2
(𝑟, 𝜌).

It suffices to prove that the following properties hold:

(1) ∃𝐾, 𝜆 > 0 constants: ⟨𝐿ℎ(𝑠)𝜓, 𝜓⟩ + 𝜆‖𝜓‖
𝑙1,2(𝑟,𝜌)

≤

𝐾‖𝜓‖
𝑙0,2(𝑟)

,
(2) ∃𝐾 constant: ⟨𝐿ℎ(𝑠)𝜓, 𝜑⟩| ≤ 𝐾‖𝜓‖

𝑙1,2(𝑟,𝜌)
⋅ ‖𝜑‖
𝑙1,2(𝑟,𝜌)

,

for all 𝑠 ∈ [0, 𝑇], 𝜑, 𝜓 ∈ 𝑙
1,2
(𝑟, 𝜌).

For the first property, owing to (1) and (2) in Assump-
tion 8, we have

⟨𝐿ℎ (𝑠) 𝜓, 𝜓⟩ = −∑

𝑖,𝑗

∑

𝑥

𝑟
2
𝑎
𝑖𝑗
(𝑠) 𝜕
+

𝑖
𝜓𝜕
+

𝑗
𝜓ℎ
𝑑

+∑

𝑖

∑

𝑥

𝑟
2
(𝑏
𝑖
(𝑠) − 𝜕

+

𝑗
𝑎
𝑖𝑗
(𝑠)) 𝜕
+

𝑖
𝜓𝜓ℎ
𝑑

+∑

𝑥

𝑟
2
𝑐 (𝑠) 𝜓𝜓ℎ

𝑑

≤ − 𝜆∑

𝑖

∑

𝑥

𝑟
2𝜌𝜕
+

𝑖
𝜓


2
ℎ
𝑑

+ 2𝐾∑

𝑖

∑

𝑥

𝑟
2
𝜌
𝜕
+

𝑖
𝜓𝜓

 ℎ
𝑑
+ 𝐾∑

𝑥

𝑟
2𝜓


2
ℎ
𝑑

= − 𝜆∑

𝑖

𝜌𝜕
+

𝑖
𝜓


2

𝑙0,2(𝑟)

+ 2𝐾∑

𝑖

∑

𝑥

𝑟
2
𝜌
𝜕
+

𝑖
𝜓𝜓

 ℎ
𝑑
+ 𝐾

𝜓

2

𝑙0,2(𝑟)
,

(30)

where the variable 𝑥 ∈ 𝑍
𝑑

ℎ
is omitted,∑

𝑥
denotes the summa-

tion over𝑍𝑑
ℎ
, and∑

𝑖
,∑
𝑗
the summation over {1, 2, . . . , 𝑑}. We

use Cauchy’s inequality on the second term in estimate (30)
and obtain

⟨𝐿ℎ (𝑠) 𝜓, 𝜓⟩ ≤ − 𝜆∑

𝑖

𝜌𝜕
+

𝑖
𝜓


2

𝑙0,2(𝑟)
+ 𝜀𝐾∑

𝑖

∑

𝑥

𝑟
2𝜌𝜕
+

𝑖
𝜓


2
ℎ
𝑑

+
𝐾

𝜀
∑

𝑖

∑

𝑥

𝑟
2𝜓


2
ℎ
𝑑
+ 𝐾

𝜓

2

𝑙0,2(𝑟)

= − 𝜆∑

𝑖

𝜌𝜕
+

𝑖
𝜓


2

𝑙0,2(𝑟)
− 𝜆

𝜓

2

𝑙0,2(𝑟)

+ 𝜀𝐾∑

𝑖

𝜌𝜕
+

𝑖
𝜓


2

𝑙0,2(𝑟)

+
𝐾

𝜀

𝜓

2

𝑙0,2(𝑟)
+ (𝐾 + 𝜆)

𝜓

2

𝑙0,2(𝑟)

≤ − 𝜆
𝜓

2

𝑙1,2(𝑟,𝜌)
+ 𝐾

𝜓

2

𝑙0,2(𝑟)
,

(31)

with 𝜆 > 0,𝐾 constants, by taking 𝜀 sufficiently small. The
first property is proved.

The second property follows from (2) in Assumption 8
and Cauchy-Schwarz inequality

⟨𝐿ℎ (𝑠) 𝜓, 𝜑⟩
 =



−∑

𝑖,𝑗

∑

𝑥

𝑟
2
𝑎
𝑖𝑗
(𝑠) 𝜕
+

𝑖
𝜓𝜕
+

𝑗
𝜑ℎ
𝑑

+∑

𝑖

∑

𝑥

𝑟
2
𝑏
𝑖
(𝑠) 𝜕
+

𝑖
𝜓𝜑ℎ
𝑑

−∑

𝑖,𝑗

∑

𝑥

𝑟
2
𝜕
+

𝑗
𝑎
𝑖𝑗
(𝑠) 𝜕
+

𝑖
𝜓𝜑ℎ
𝑑
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+∑

𝑥

𝑟
2
𝑐 (𝑠) 𝜓𝜑ℎ

𝑑



≤ 𝐾∑

𝑖,𝑗

∑

𝑥

𝑟
2 
𝜌
2
𝜕
+

𝑖
𝜓𝜕
+

𝑗
𝜑

ℎ
𝑑

+ 𝐾∑

𝑖

∑

𝑥

𝑟
2 𝜌𝜕
+

𝑖
𝜓𝜑

 ℎ
𝑑
+ 𝐾∑

𝑥

𝑟
2 𝜓𝜑

 ℎ
𝑑

≤ 𝐾∑

𝑖

𝜌𝜕
+

𝑖
𝜓
𝑙0,2(𝑟)∑

𝑗


𝜌𝜕
+

𝑗
𝜑
𝑙0,2(𝑟)

+ 𝐾∑

𝑖

𝜌𝜕
+

𝑖
𝜓
𝑙0,2(𝑟)

𝜑
𝑙0,2(𝑟)

+ 𝐾
𝜓
𝑙0,2(𝑟)

𝜑
𝑙0,2(𝑟)

≤ 𝐾
𝜓
𝑙1,2(𝑟,𝜌) ⋅

𝜑
𝑙1,2(𝑟,𝜌),

(32)

where the same writing conventions are kept.
Owing toTheorem 3 the result follows.

4. Approximation Results

In this section, we study the approximation properties of
scheme (17). We begin by investigating the consistency of the
scheme and prove that the difference quotients approximate
the partial derivatives (with accuracy of order 1). In addition,
we estimate the rate of convergence of the difference quotients
to the partial derivatives.

The result is obtained by using a Sobolev inequality,
under stronger regularity assumptions, and imposing that the
weights 𝜌 are bounded from below by a positive constant. In
practice, the latter restriction amounts to assuming that the
weights 𝜌 are increasing functions of |𝑥|, which is precisely
the case we are interested in.

Also, we note that the way we set our discrete framework,
in strong connection with the framework for problem (7),
plays a crucial role in obtaining the convergence rate.

Theorem 18. Let 𝑟 > 0 and 𝜌 > 0 be functions on R𝑑

and 𝑚 an integer strictly greater than 𝑑/2. Assume that (1)-
(2) in Assumption 5 are satisfied and also that 𝜌(𝑥) ≥ 𝐶 on
R𝑑, with 𝐶 > 0 being a constant. Let 𝑢(𝑡) ∈ 𝑊

𝑚+2,2
(𝑟, 𝜌),

V(𝑡) ∈ 𝑊
𝑚+3,2

(𝑟, 𝜌), for all 𝑡 ∈ [0, 𝑇]. Then there exists a
constant𝑁 independent of ℎ such that

(1) ∑
𝑥∈𝑍𝑑
ℎ

𝑟
2
(𝑥)|𝑢𝑥𝑖(𝑡, 𝑥) − 𝜕

+

𝑖
𝑢(𝑡, 𝑥)|

2
𝜌
2
(𝑥)ℎ
𝑑

≤ ℎ
2
𝑁

‖𝑢(𝑡)‖
2

𝑊𝑚+2,2(𝑟,𝜌)
,

(2) ∑
𝑥∈𝑍𝑑
ℎ

𝑟
2
(𝑥)|V𝑥𝑖𝑥𝑗(𝑡, 𝑥) − 𝜕

−

𝑗
𝜕
+

𝑖
V(𝑡, 𝑥)|2𝜌4(𝑥)ℎ𝑑 ≤ ℎ

2
𝑁

‖V(𝑡)‖2
𝑊𝑚+3,2(𝑟,𝜌)

,

for all 𝑡 ∈ [0, 𝑇].

Remark 19. The following remarks will be used in the proof
of the theorem.

(1) Under the conditions of the theorem, function 𝑢(𝑡)

(function V(𝑡)) has a modification in 𝑥 which is con-
tinuously differentiable in 𝑥 up to order 2 (up to order
3), and the derivatives equal the weak derivatives, for
every 𝑡 ∈ [0, 𝑇]. This can be proved by Sobolev’s
embedding of 𝑊𝑚,2(𝐵) into 𝐶𝑛(𝐵), for balls 𝐵 in R𝑑,
if 𝑚 > 𝑑/2 + 𝑛 (see, e.g., [18, 19]). We consider these
modifications in the theorem’s proof.

(2) Note that if 𝑈, 𝑉 are open subsets of R𝑑 with 𝑉 ⊂ 𝑈

and 𝑤 ∈ 𝑊
𝑚,2

(𝑈) then 𝑤 ∈ 𝑊
𝑚,2

(𝑉). Also, if 𝑤 ∈

𝑊
𝑚,2

(𝑈) and 𝜁 ∈ 𝐶∞
0
(𝑈) then 𝜁 ∈ 𝑊𝑚,2(𝑈) and 𝜁𝑤 ∈

𝑊
𝑚,2

(𝑈) (see, e.g., [18, 19]).

Proof of Theorem 18. Let us prove (1). We define a suitable
geometric setting and then obtain an estimate for

𝑟
2
(𝑥)

𝑢𝑥𝑖 (𝑡, 𝑥) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥)



2
𝜌
2
(𝑥) , (33)

with 𝑥 ∈ 𝑍
𝑑

ℎ
, using Sobolev’s inequality on a fixed ball.

Let us consider 𝑑-cells

𝑅ℎ = {(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
) ∈ R

𝑑
: 𝑥
𝑖

ℎ
< 𝑥
𝑖
< 𝑥
𝑖

ℎ
+ ℎ,

𝑖 = 1, 2, . . . , 𝑑} ,

(34)

with 𝑥ℎ = (𝑥
1

ℎ
, 𝑥
2

ℎ
, . . . , 𝑥

𝑑

ℎ
) ∈ 𝑍
𝑑

ℎ
fixed. Consider the particular

𝑑-cell, where ℎ = 1 and 𝑥1 = (0, 0, . . . , 0), and denote it
by 𝑅0
1
. Now, take open balls 𝐵ℎ such that 𝐵ℎ ⊃ 𝑅ℎ, with the

vertices {𝑥𝑖
ℎ
, 𝑥
𝑖

ℎ
+ ℎ, 𝑖 = 1, 2, . . . , 𝑑} lying on the limiting

sphere. Denote by 𝐵0
1
the ball containing 𝑅0

1
.

For every 𝑥ℎ ∈ 𝑍
𝑑

ℎ
, taking in mind (1) in Remark 19, we

have, by the mean-value theorem,

𝜕
+

𝑖
𝑢 (𝑡, 𝑥ℎ) = ℎ

−1
(𝑢 (𝑡, 𝑥ℎ + ℎ𝑒𝑖) − 𝑢 (𝑡, 𝑥ℎ))

= 𝑢𝑥𝑖 (𝑡, 𝑥ℎ + 𝜃ℎ𝑒𝑖) ,

(35)

𝑢𝑥𝑖 (𝑡, 𝑥ℎ) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥ℎ)

 =
𝑢𝑥𝑖 (𝑡, 𝑥ℎ) − 𝑢𝑥𝑖 (𝑡, 𝑥ℎ + 𝜃ℎ𝑒𝑖)



≤ ℎ

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + 𝜃


ℎ𝑒𝑖)


,

(36)

for some 0 < 𝜃

< 𝜃 < 1. Clearly,


𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + 𝜃


ℎ𝑒𝑖)


≤ sup
𝑥∈𝑅
ℎ

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥)
 , (37)
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and then, from (36) and (37),

𝑢𝑥𝑖 (𝑡, 𝑥ℎ) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥ℎ)



2
≤ ℎ
2 sup
𝑥∈𝑅
ℎ

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥)

2
. (38)

We change variable in order to have the supremum in (38)
calculated over the fixed 𝑑-cell 𝑅0

1
:

sup
𝑥∈𝑅
ℎ

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥)
 = sup
𝑥∈𝑅0
1

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)
 . (39)

As

sup
𝑥∈𝑅0
1

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)

2
≤ sup
𝑥∈𝐵0
1

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)

2
, (40)

from (38)–(40) we immediately obtain

𝑟
2
(𝑥ℎ)

𝑢𝑥𝑖 (𝑡, 𝑥ℎ) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥ℎ)



2
𝜌
2
(𝑥ℎ)

≤ ℎ
2 sup
𝑥∈𝑅0
1

(𝑟
2
(𝑥ℎ + ℎ𝑥)

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)

2
𝜌
2
(𝑥ℎ + ℎ𝑥))

≤ ℎ
2 sup
𝑥∈𝐵0
1

(𝑟
2
(𝑥ℎ + ℎ𝑥)

𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)

2
𝜌
2
(𝑥ℎ + ℎ𝑥)) .

(41)

Now, taking in mind (2) in Remark 19, we have for 𝑚 >

𝑑/2 by using Sobolev’s inequality

sup
𝑥∈𝐵0
1

𝑟 (𝑥ℎ + ℎ𝑥) 𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥) 𝜌 (𝑥ℎ + ℎ𝑥)

2

≤ 𝑁 ∑

|𝛼|≤𝑚

∫
𝐵0
1

𝐷
𝛼

𝑥
(𝑟 (𝑥ℎ + ℎ𝑥) 𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥) 𝜌

× (𝑥ℎ + ℎ𝑥))

2
𝑑𝑥,

(42)

with 𝑁 being a constant independent of ℎ. Observe that the
Leibniz formula

𝐷
𝛼

𝑥
(𝑟𝑢𝑥𝑖𝑥𝑖𝜌)

 =



∑

𝛽≤𝛼

(
𝛼

𝛽
)𝐷
𝛽
(𝑟𝜌)𝐷

𝛼−𝛽

𝑥
𝑢𝑥𝑖𝑥𝑖



=



∑

𝛽≤𝛼

(
𝛼

𝛽
)(∑

𝛾≤𝛽

(
𝛽

𝛾
)𝐷
𝛾
𝑟𝐷
𝛽−𝛾

𝜌)𝐷
𝛼−𝛽

𝑥
𝑢𝑥𝑖𝑥𝑖



(43)

holds (the arguments of 𝑟, 𝜌 and 𝑢𝑥𝑖𝑥𝑖 are omitted). Also,
keeping the same convention, owing to Assumption 5

𝐷
𝛾
𝑟
 ≤ 𝐾𝑟𝜌

−|𝛾|
,


𝐷
𝛽−𝛾

𝜌

≤ 𝐾𝜌
1−(|𝛽|−|𝛾|)

, (44)

with 𝐾 a constant, and then


∑

𝛾≤𝛽

(
𝛽

𝛾
)𝐷
𝛾
𝑟𝐷
𝛽−𝛾

𝜌



≤ 𝑁∑

𝛾≤𝛽

(
𝛽

𝛾
) 𝑟𝜌
−|𝛾|

𝜌
1−(|𝛽|−|𝛾|)

≤ 𝑁𝑟𝜌
1−|𝛽|

,

(45)

with𝑁 a constant. From (42)–(45), we get

sup
𝑥∈𝐵0
1

𝑟 (𝑥ℎ + ℎ𝑥) 𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥) 𝜌 (𝑥ℎ + ℎ𝑥)

2

≤ 𝑁 ∑

|𝛼|≤𝑚

∑

𝛽≤𝛼

∫
𝐵0
1

𝑟
2
(𝑥ℎ + ℎ𝑥)


𝜌
1−|𝛽|

(𝑥ℎ + ℎ𝑥)


2

×

𝐷
𝛼−𝛽

𝑥
𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)



2

𝑑𝑥.

(46)

Note also that, owing to Hölder inequality and to the
hypotheses on function 𝜌, the integral in (46) can be esti-
mated by

∫
𝐵0
1

𝑟
2
(𝑥ℎ + ℎ𝑥)

×

𝜌
1−|𝛽|

(𝑥ℎ + ℎ𝑥)𝐷
𝛼−𝛽

𝑥
𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)



2

𝑑𝑥

≤ 𝑁∫
𝐵0
1

𝑟
2
(𝑥ℎ + ℎ𝑥)


𝜌
2+(|𝛼|−|𝛽|)

(𝑥ℎ + ℎ𝑥)

×𝐷
𝛼−𝛽

𝑥
𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)



2

𝑑𝑥

⋅ sup
𝑥∈𝐵0
1


𝜌
−1−|𝛼|

(𝑥ℎ + ℎ𝑥)


2

≤ 𝑁∫
𝐵0
1

𝑟
2
(𝑥ℎ + ℎ𝑥)


𝜌
2+(|𝛼|−|𝛽|)

(𝑥ℎ + ℎ𝑥)

×𝐷
𝛼−𝛽

𝑥
𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)



2

𝑑𝑥.

(47)

Thus, from (46) and (47),

sup
𝑥∈𝐵0
1

𝑟 (𝑥ℎ + ℎ𝑥) 𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥) 𝜌 (𝑥ℎ + ℎ𝑥)

2

≤ 𝑁 ∑

|𝛼|≤𝑚

∑

𝛽≤𝛼

∫
𝐵0
1

𝑟
2
(𝑥ℎ + ℎ𝑥)

×

𝜌
2+(|𝛼|−|𝛽|)

(𝑥ℎ + ℎ𝑥)

⋅𝐷
𝛼−𝛽

𝑥
𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)



2

𝑑𝑥

≤ 𝑁 ∑

|𝛼|≤𝑚

∫
𝐵0
1

𝑟
2
(𝑥ℎ + ℎ𝑥)

×

𝜌
2+|𝛼|

(𝑥ℎ + ℎ𝑥)𝐷
𝛼

𝑥
𝑢𝑥𝑖𝑥𝑖 (𝑡, 𝑥ℎ + ℎ𝑥)



2

𝑑𝑥
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≤ 𝑁 ∑

|𝛼|≤𝑚+2

∫
𝐵0
1

𝑟
2
(𝑥ℎ + ℎ𝑥)

×

𝜌
|𝛼|
(𝑥ℎ + ℎ𝑥)𝐷

𝛼

𝑥
𝑢 (𝑡, 𝑥ℎ + ℎ𝑥)



2

𝑑𝑥

= 𝑁 ∑

|𝛼|≤𝑚+2

∫
𝐵
ℎ

𝑟
2
(𝑥)


𝜌
|𝛼|
(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)



2

ℎ
−𝑑
ℎ
2|𝛼|

𝑑𝑥

≤ 𝑁 ∑

|𝛼|≤𝑚+2

∫
𝐵
ℎ

𝑟
2
(𝑥)


𝜌
|𝛼|
(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)



2

ℎ
−𝑑
𝑑𝑥.

(48)

Finally, owing to the particular geometry of the frame-
work we have set, from (41) and (48) we obtain

∑

𝑥∈𝑍𝑑
ℎ

𝑟
2
(𝑥)

𝑢𝑥𝑖 (𝑡, 𝑥) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥)



2
𝜌
2
(𝑥) ℎ
𝑑

≤ 𝑁ℎ
2

∑

|𝛼|≤𝑚+2

∑

𝑥
ℎ
∈𝑍𝑑
ℎ

∫
𝐵
ℎ(𝑥ℎ)

𝑟
2
(𝑥)


𝜌
|𝛼|
(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)



2

𝑑𝑥

≤ 𝑁ℎ
2

∑

|𝛼|≤𝑚+2

∑

𝑥
ℎ
∈𝑍𝑑
ℎ

∫
𝑅
ℎ(𝑥ℎ)

𝑟
2
(𝑥)


𝜌
|𝛼|
(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)



2

𝑑𝑥

≤ ℎ
2
𝑁‖𝑢 (𝑡)‖

2

𝑊𝑚+2,2(𝑟,𝜌)
,

(49)

where 𝐵ℎ(𝑥ℎ) := 𝐵ℎ, 𝑅ℎ(𝑥ℎ) := 𝑅ℎ, and the proof for (1) is
complete.

The proof for (2) follows the same steps.

Finally, owing to the stability and consistency properties
of the scheme (Theorems 17 and 18, resp.), we prove the
convergence of the discrete problem’s solution to the PDE
problem’s solution and compute a rate of convergence. The
accuracy obtained is of order 1.

Theorem 20. Let 𝑟 > 0 and 𝜌 > 0 be functions on R𝑑

and 𝑚 an integer strictly greater than 𝑑/2. Assume that the
hypotheses of Theorems 11 and 17 are satisfied and that 𝜌(𝑥) ≥
𝐶 on R𝑑, with 𝐶 > 0 being a constant. Denote by 𝑢 the
solution of problem (7) in Theorem 11 and by 𝑢ℎ the solution
of problem (17) in Theorem 17. Assume additionally that 𝑢 ∈

𝐿
2
([0, 𝑇];𝑊

𝑚+3,2
(𝑟, 𝜌)). Then

sup
0≤𝑡≤𝑇

𝑢 (𝑡) − 𝑢ℎ (𝑡)

2

𝑙0,2(𝑟)
+ ∫

𝑇

0

𝑢 (𝑡) − 𝑢ℎ (𝑡)

2

𝑙1,2(𝑟,𝜌)
𝑑𝑡

≤ ℎ
2
𝑁∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑊𝑚+3,2(𝑟,𝜌)
𝑑𝑡

+ 𝑁(
𝑔 − 𝑔ℎ


2

𝑙0,2(𝑟)
+ ∫

𝑇

0

𝑓 (𝑡) − 𝑓ℎ (𝑡)

2

𝑙0,2(𝑟)
𝑑𝑡) ,

(50)

with𝑁 being a constant independent of ℎ.

Remark 21. Under the conditions of the above theorem, there
are modifications in 𝑥 such that the data 𝑓(𝑡) and 𝑔 are

continuous in 𝑥, for every 𝑡 ∈ [0, 𝑇] (see Remark 19). We will
consider these modifications in the proof of the theorem.

Proof of Theorem 20. From (7) and (17), we have that 𝑢 − 𝑢ℎ
satisfies the problem

(𝑢 − 𝑢ℎ)𝑡 = 𝐿ℎ (𝑢 − 𝑢ℎ) + (𝐿 − 𝐿ℎ) 𝑢 + (𝑓 − 𝑓ℎ) in 𝑄 (ℎ)

(𝑢 − 𝑢ℎ) (0, 𝑥) = (𝑔 − 𝑔ℎ) (𝑥) on 𝑍
𝑑

ℎ
.

(51)

Taking in mind Remark 21, we see clearly that 𝑓 − 𝑓ℎ ∈

𝐿
2
([0, 𝑇]; 𝑙

0,2
(𝑟)) and 𝑔 − 𝑔ℎ ∈ 𝑙

0,2
(𝑟).

With respect to the term (𝐿 − 𝐿ℎ)𝑢, note that if 𝑢(𝑡) ∈

𝑊
𝑚+3,2

(𝑟, 𝜌), for all 𝑡 ∈ [0, 𝑇],

∑

𝑥∈𝑍𝑑
ℎ

𝑟
2
(𝑥)

(𝐿 − 𝐿ℎ) (𝑡) 𝑢 (𝑡)

2
ℎ
𝑑

= ∑

𝑥∈𝑍𝑑
ℎ

𝑟
2
(𝑥)



𝑎
𝑖𝑗
(𝑡, 𝑥) (

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗
− 𝜕
−

𝑗
𝜕
+

𝑖
)𝑢 (𝑡, 𝑥)

+𝑏
𝑖
(𝑡, 𝑥) (

𝜕

𝜕𝑥𝑖
− 𝜕
+

𝑖
)𝑢 (𝑡, 𝑥)



2

ℎ
𝑑

≤ ℎ
2
𝑁‖𝑢 (𝑡)‖

2

𝑊𝑚+3,2(𝑟,𝜌)
< ∞,

(52)

owing to (2) in Assumption 8 and to Theorem 18. Thus
(𝐿 − 𝐿ℎ)(𝑡)𝑢(𝑡) ∈ 𝑙

0,2
(𝑟), for every 𝑡 ∈ [0, 𝑇]. Moreover,

as by assumption 𝑢 ∈ 𝐿
2
([0, 𝑇];𝑊

𝑚+3,2
(𝑟, 𝜌)), we obtain

immediately (𝐿 − 𝐿ℎ)𝑢 ∈ 𝐿
2
([0, 𝑇]; 𝑙

0,2
(𝑟)).

We have shown that problem (51) satisfies the hypotheses
of Theorem 17, therefore holding the estimate

sup
0≤𝑡≤𝑇

𝑢 (𝑡) − 𝑢ℎ (𝑡)

2

𝑙0,2(𝑟)
+ ∫

𝑇

0

𝑢 (𝑡) − 𝑢ℎ (𝑡)

2

𝑙1,2(𝑟,𝜌)
𝑑𝑡

≤ 𝑁(
𝑔 − 𝑔ℎ


2

𝑙0,2(𝑟)
+ ∫

𝑇

0

𝑓 (𝑡) − 𝑓ℎ (𝑡)

2

𝑙0,2(𝑟)
𝑑𝑡

+∫

𝑇

0

(𝐿 − 𝐿ℎ) (𝑡) 𝑢 (𝑡)

2

𝑙0,2(𝑟)
𝑑𝑡) .

(53)

Owing again to (2) in Assumption 8 and to Theorem 18, the
result follows.

The following result is an immediate consequence of
Theorem 20.

Corollary 22. Let the hypotheses of Theorem 20 be satisfied,
and denote by 𝑢 the solution of (7) in Theorem 11 and by 𝑢ℎ
the solution of (17) in Theorem 17. If there is a constant 𝑁
independent of ℎ such that

𝑔 − 𝑔ℎ

2

𝑙0,2(𝑟)
+ ∫

𝑇

0

𝑓 (𝑡) − 𝑓ℎ (𝑡)

2

𝑙0,2(𝑟)
𝑑𝑡

≤ ℎ
2
𝑁(

𝑔

2

𝑊𝑚,2(𝑟,𝜌)
+ ∫

𝑇

0

𝑓 (𝑡)

2

𝑊𝑚−1,2(𝑟,𝜌)
𝑑𝑡)

(54)
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then

sup
0≤𝑡≤𝑇

𝑢 (𝑡) − 𝑢ℎ (𝑡)

2

𝑙0,2(𝑟)
+ ∫

𝑇

0

𝑢 (𝑡) − 𝑢ℎ (𝑡)

2

𝑙1,2(𝑟,𝜌)
𝑑𝑡

≤ ℎ
2
𝑁(∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑊𝑚+3,2(𝑟,𝜌)
𝑑𝑡 +

𝑔

2

𝑊𝑚,2(𝑟,𝜌)

+∫

𝑇

0

𝑓 (𝑡)

2

𝑊𝑚−1,2(𝑟,𝜌)
𝑑𝑡) .

(55)

5. Conclusions

In this paper, we investigated the finite-difference spatial
approximation of the Cauchy problem for a second-order
linear parabolic PDE, in the framework of the variational
approach.

By considering a suitable class of weighted Sobolev
spaces, and its zero and first-order discrete versions, we could
deal with the growth in space of the PDE coefficients (as
well as with the spatial growth of the free data 𝑓 and 𝑔).
Moreover, as the framework and techniques used to study the
discrete problem mirror the framework and techniques for
the corresponding continuous problem we could estimate a
rate of convergence.

The approximationwas studied under the strong assump-
tion that the PDE does not degenerate. But the framework
we used is broadly the appropriate framework for a future
investigation of the related degenerate case.

Other possible further research directions include the
use of splitting-up methods (see [10]), following Richardson’s
idea to accelerate numerical schemes, and also the use of
techniques reducing the volume of computational work (e.g.,
sparse grid techniques), in order to deal with the computa-
tional challenge posed by the possible high dimensionality of
the problem.
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