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Geometric (or shape) distortion may occur in the data acquisition phase in information systems, and it can be characterized by
geometric transformation model. Once the distorted image is approximated by a certain geometric transformation model, we can
apply its inverse transformation to remove the distortion for the geometric restoration. Consequently, finding a mathematical form
to approximate the distorted image plays a key role in the restoration. A harmonic transformation cannot be described by any fixed
functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to
develop an efficient method to solve such a PDE is extremely significant in the geometric restoration. In this paper, a novel wavelet-
based method is presented, which consists of three phases. In phase 1, the partial differential equation is converted into boundary
integral equation and representation by an indirect method. In phase 2, the boundary integral equation and representation are
changed to plane integral equation and representation by boundary measure formula. In phase 3, the plane integral equation and
representation are then solved by a method we call wavelet collocation. The performance of our method is evaluated by numerical
experiments.

1. Introduction

Geometric (or shape) distortion may be produced in the data
acquisition phase in pattern recognition, computer vision,
and robot vision systems, and it can be characterized by
geometric transformation model [1, 2]. An obvious example
of such a distortion can be found in a photograph taken by a
camera in a computer vision system. In the acquisition phase
shown in Figure 1, the trade mark “Coke” is printed on a
Coca-Cola bottle, due to the cylindrical shape of the bottle,
and the square shape of the trade mark has been changed.
This kind of distortion can be characterized by a geometric
transformationmodel, specifically, the biquadratic geometric
transformation model in this example [2].

An image is displayed by a set of coordinate points; hence,
a geometric transformation can be viewed as the procedure

for calculating new coordinate positions of these points under
a certain model. The geometric transformation is defined by

𝑇 : (𝑥
1
, 𝑥
2
) 󳨀→ (𝑢, V) , (1)

such that

𝑢 = 𝑢 (𝑥
1
, 𝑥
2
) , V = V (𝑥

1
, 𝑥
2
) . (2)

Through this transformation, an image in Cartesian coordi-
nates 𝑥

1
𝑂𝑥
2
is transformed into a new image in Cartesian

coordinates 𝑢𝑂V as shown in Figure 2. The properties of the
transformation 𝑇 are determined by functions 𝑢 = 𝑢(𝑥

1
, 𝑥
2
)

and V = V(𝑥
1
, 𝑥
2
); that is different functions can produce

different kinds of geometric transformations.
There aremanymodels of the geometric transformations,

which have been widely used in many disciplines [1–4]. In
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Figure 1: Example of the biquadratic geometric transformation.

our previous work, they are categorized into twomain classes
[1, 2]. If the function is fixed, we call it a fixed transformation
model; otherwise we call it an elastic transformation model.
The former consists of linear and nonlinear models including
bilinear, quadratic, biquadratic, cubic, and bicubic models,
while the latter comprises Coonsmodel and harmonicmodel.
These transformation models can be summarized as follows
[2]:

(A) fixed models:

(1) linear models
(a) translation,
(b) rotation,
(c) scaling,

(2) nonlinear models:
(a) bilinear model,
(b) quadratic model,
(c) biquadratic model,
(d) cubic model,
(e) bicubic model,

(B) elastic models

(1) coons model,
(2) harmonic model.

Generally speaking, by the fixedmodels, a standard image
can be transformed into some special shapes. An example
of the fixed transformation can be found in Figure 1. More
precisely, a fixed transformation has a certain mathematical
form to approximate it, which can be described by a fixed
class of mathematical functions. In our previous work [1, 2],
some significant forms (models) and algorithms have been
developed to handle these geometric transformations. For

example, the geometric transformation in Figure 1 can be
approximated by the biquadraticmodel, and itsmathematical
function can be written as

[
𝑢

V] = [
[1 − 𝑥1 𝑥1] 0

0 [1 − 𝑥1 𝑥1]
]

×
[
[
[

[

[
𝑋
𝑃
1

𝑋
𝑃
4

𝑋
𝑃
2

𝑋
𝑃
3

]

[
𝑌
𝑃
1

𝑌
𝑃
4

𝑌
𝑃
2

𝑌
𝑃
3

]

]
]
]

]

[
1 − 𝑥
2

𝑥
2

] ,

(3)

where 𝑋
𝑃
𝑖

and 𝑌
𝑃
𝑖

(𝑖 = 1, 2, 3, 4) denote the new coordinates
of the vertices in the quadrangle, which is a distorted image
of the trade mark “Coke” in Figure 1.

Once the distorted image is approximated by a certain
geometric transformation model, its inverse transformation
can be applied to remove the distortion for the geometric
restoration. Look at Figure 3, the original trade mark “Coke”
is shown in Figure 3(a), and its distorted images are displayed
in Figure 3(b). When the inverse biquadratic transformation
is applied to these images, the normalized images can be
produced and illustrated in Figure 3(c), which aremuchmore
easy to be recognized by a recognition system.

Consequently, finding a mathematical form to approxi-
mate the distortion of a distorted image plays a key role for
the restoration.

Unfortunately, the harmonic geometric transformation
model, which converts an image into arbitrary shape, does
not have any fixed mathematical forms. An example can
be found in Figure 4, where the image of Canadian flag is
distorted as shown in Figure 4(b). Note that the shape of
the flag is changed, which is so complex that it cannot be
described by any fixedmodel; that is, it cannot be represented
by any fixed functions in mathematics. In fact, this model
is characterized by other kinds of mathematical formula,
that is, partial differential equation. Unlike solving a fixed
mathematical formula, solving a partial differential equation
is difficult.

The harmonic transformation model is the most impor-
tant and most complicated one in the geometric transforma-
tion models. Actually, all of the other models can be in it.
The harmonic model is represented by the partial differential
equation (PDE) with boundary conditions.

LetΩ be the region of the elastic plane, where the image is
located, and let Γ be its boundary. Suppose that the functions
of the transformation of boundary Γ are 𝑢 = 𝑓(𝑥

1
, 𝑥
2
) and

V = 𝑔(𝑥
1
, 𝑥
2
). The harmonic transformation

𝑇 : (𝑥
1
, 𝑥
2
) 󳨀→ (𝑢, V) (4)

satisfies the partial differential equation:

Δ𝑢 (𝑥
1
, 𝑥
2
) = 0, (𝑥

1
, 𝑥
2
) ∈ Ω,

𝑢|
Γ
= 𝑓 (𝑥

1
, 𝑥
2
) , (𝑥

1
, 𝑥
2
) ∈ Γ,

ΔV (𝑥
1
, 𝑥
2
) = 0, (𝑥

1
, 𝑥
2
) ∈ Ω

V|
Γ
= 𝑔 (𝑥

1
, 𝑥
2
) , (𝑥

1
, 𝑥
2
) ∈ Γ,

(5)
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Figure 2: An image in Cartesian coordinates 𝑥
1
𝑂𝑥
2
is transformed into a new image in Cartesian coordinates 𝑢𝑂V by geometric

transformation 𝑇.

(a)

(b) (c)

Figure 3: Restoration of image from the biquadratic distortion by
inverse transformation.

where

Δ :
𝜕
2

𝜕𝑥
2

1

+
𝜕
2

𝜕𝑥
2

2

(6)

is Laplace’s operator; thus the above partial differential
equation is called Laplace’s equation or harmonic equation.

Accordingly, the task of the restoration is solving the
above harmonic equation.We return to the previous example
as shown in Figure 4, and the distorted image in Figure 4(b)
can be approximated by harmonic transformation. As the
corresponding harmonic equation is solved and its inverse
transformation is utilized, the restored image can be obtained
in Figure 4(c). Therefore, solving the harmonic equation (5)
plays a key role in the geometric restoration.

This paper proposes a novel approach based on wavelet
analysis to handle the harmonic transformation.

The paper is organized as follows. The existing methods
are reviewed in Section 2. The core of the proposed wavelet-
based approach is presented in Section 3. As the first step
of this method, in Section 3.1, the conversion of the partial
differential equation into boundary integral equation and
representation is discussed. Two integral methods can be
applied; here the indirectmethod is chosen and the boundary
integral equation of the first kind is produced. In Section 3.2,

the boundary measure formula, which can change the
forms of integral equation and integral representation from
boundary to the plane, is presented. Based on the new forms,
the wavelet collocation method is used to solve the equation,
which is the main task in Section 3.3. A couple of algorithms
of IEWC are provided in Section 4. The experiments are
illustrated in Section 5. Finally, the conclusions are given in
Section 6.

2. Review of the Existing Methods

Two successful approaches have been used to solve this kind
of partial differential equation, namely, finite elementmethod
[5] and finite difference method [6]. In our previous work
[2], the finite element method has been employed solving the
equation to handle the harmonic transformation, which gives
the following algorithm.

Algorithm 1 (finite element method). One has the following.

Step 1 (discrete region Ω). Divide region Ω by many small
triangular elements 𝑒

𝑖
such thatΩ ≈ ∪

𝑖
𝑒
𝑖
. For example, region

Ω in Figure 5 is divided into twenty two triangular elements
based on twelve dots, which produce a lattice Π.
Step 2 (discrete solution 𝑢). Use piecewise linear function 𝑢

ℎ

to approximate the original solution 𝑢. Because 𝑢
ℎ
is linear in

each triangular element, therefore 𝑢
ℎ
is fully determined by

the values at latticeΠ. To determine these values, replacing 𝑢
with 𝑢

ℎ
in the variational form of the equation produces a set

of linear equations

𝐾𝑢
ℎ
= 𝑓
ℎ
, (7)

where the elements in vector 𝑢
ℎ
are the values of 𝑢

ℎ
at lattice

Π, 𝐾 is a known matrix, and 𝑓
ℎ
is a right-hand side vector.

Step 3 (consider the boundary conditions). Find the boundary
dots on latticeΠ, and thereafter, the values of 𝑢

ℎ
on these dots

are assigned to satisfy boundary condition 𝑓(𝑥
1
, 𝑥
2
), which
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Figure 4: Harmonic distortion and restoration.
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Figure 5: Finite element method.

can be done by modifying the matrix 𝐾 and the right-hand
side 𝑓

ℎ
in the equations𝐾𝑢

ℎ
= 𝑓
ℎ
.

Step 4 (solve equations). Solve the linear algebraic equations
and finally obtain 𝑢|

Π
≈ 𝑢
ℎ
|
Π
= 𝑢
ℎ
, where 𝑢|

Π
indicates the

value of 𝑢 at lattice Π.
In our example, shown in Figure 5, twelve values at lattice

Π are to be determined, seven dots are on the boundary, and
the correct values of 𝑢

ℎ
at these seven boundary dots (dots

1 to 7) are given due to the boundary condition 𝑓(𝑥
1
, 𝑥
2
).

The values at remainder five inner dots (dots 8 to 12) will be
obtained by solving the linear equations.

The finite difference method is another common way to
solve partial differential equation numerically. It can change
the partial differential equation into a set of corresponding
algebraic linear equations. The details can be found in [6].

Both the finite element method and finite difference
method have some defects when they will be used in our
cases. For example, two issues of the weakness will occur
when the finite element method is applied to the harmonic
transformation.

(i) It depends on the lattice Π. In finite element method,
the values of all points at lattice Π are solved, even
though some points do not lie on the image. For
example, in Figure 5, the values of all points at lattice,
say points 8–12, are solved.However, only three points
(8–10) are the pixels of the pattern, English letter
“A.” The values of these points are required to be

transformed, while the values of the remainder two
points (11 and 12) are not required to be transformed.

On the other hand, the values of some pixels on the
pattern but not at the lattice are still unknown after
solving 𝐾𝑢

ℎ
= 𝑓
ℎ
. For example, in Figure 5, most

of the pixels of letter “A,” which are required to be
transformed, are not at the lattice. Thus, the values of
these pixels are unknown in solution of 𝑢|

Π
≈ 𝑢
ℎ
|
Π
=

𝑢
ℎ
. Consequently, the interpolation will be used to

approximate these values. In this way, the extra cost
and error will be brought in.

(ii) More attention must be paid to deal with the
boundary conditions. Specifically, for a given lattice,
we should know which dots are on the boundary
and assign them the values satisfying the boundary
conditions, as mentioned in Step 3 of Algorithm 1.
Therefore, the program code of the lattice and the
linear equations is required to be modified, when the
domain or lattice is changed.

Thus, more efficient methodmust be developed to handle
the geometric transformation. In this paper, a novel approach
called Integral Equation-Wavelet Collocation (IEWC) is pre-
sented.
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Figure 6: Diagram of the new approach.

3. Integral Equation-Wavelet Collocation
(IEWC) Approach

This is the core section of the paper; a novel approach
based on the integral equation and wavelets, called Integral
Equation-Wavelet Collocation (IEWC), is presented in this
section.

The diagram of the newmethod is shown in Figure 6.The
basic idea of the method is briefly described in Figure 6.

Phase 1. First, the partial differential equation (PDE) (Laplace’s
equation) is changed into the form of integral equation
and integral representation on boundary Γ, which are called
boundary integral equation (BIE) and boundary integral rep-
resentation (BIR), respectively. There are two ways to do so,
namely, direct method and indirect method [7, 8]. In this
paper, the indirect method is utilized. Mathematically, the
process for solving 𝑢 can be written as follows:

PDE : {Δ𝑢 (𝑥1, 𝑥2) = 0, ∀ (𝑥
1
, 𝑥
2
) ∈ Ω

𝑢|
Γ
= 𝑓 (𝑥

1
, 𝑥
2
) , ∀ (𝑥

1
, 𝑥
2
) ∈ Γ,

⇓ Boundary Integral (Indirect) Method ⇓

BIE : ∫
Γ

𝜔 (𝑦) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) , ∀ (𝑥

1
, 𝑥
2
) ∈ Γ

BIR : 𝑢 (𝑥) = ∫
Γ

𝜔 (𝑦) ⋅ ⋅ ⋅ 𝑑𝑠
𝑦
, ∀ (𝑥

1
, 𝑥
2
) ∈ 𝜔,

(8)

where 𝜔(𝑦) is a unknown function, which can be solved in
BIE and will be used in BIE. 𝑑𝑠

𝑦
indicates the curvilinear

integrate with respect to variable 𝑦 = (𝑦
1
, 𝑦
2
). The first

shortcoming, which arises in the finite element method, can
be overcome by this way.

Similarly, V can also be obtained in the same way, which
will be omitted to save the space. In the remainder of this
paper, we only discuss 𝑢.

Phase 2. In order to solve the boundary integral equation
(BIE) efficiently and to get rid of the second defect in the
finite element method, the boundary measure formula (BMF)
is used. It changes the boundary integral equation and bound-
ary integral representation into an integral equation and an
integral representation on the whole plane 𝑅2 rather than the
special boundary Γ. They are called plane integral equation
(PIE) and plane integral representation (PIR), respectively. In
this way, when Γ is changed, the program code will not to be

modified at all. In mathematics, this process can be presented
in the following:

BIE : ∫
Γ

𝜔 (𝑦) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) , ∀ (𝑥

1
, 𝑥
2
) ∈ Γ

BIR : 𝑢 (𝑥) = ∫
Γ

𝜔 (𝑦) ⋅ ⋅ ⋅ 𝑑𝑠
𝑦
, ∀ (𝑥

1
, 𝑥
2
) ∈ 𝜔

⇓ BoundaryMeasure Formula (BMF) ⇓

PIE : ∫
𝑅
2

𝜔 (𝑦) ‖𝜕Ω‖ log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) ,

∀ (𝑥
1
, 𝑥
2
) ∈ Γ

PIR : 𝑢 (𝑥) = ∫
𝑅
2

𝜔 (𝑦) ‖𝜕Ω‖ ⋅ ⋅ ⋅ 𝑑𝑠𝑦, ∀ (𝑥
1
, 𝑥
2
) ∈ 𝜔,

(9)

where ‖𝜕Ω‖ stands for the boundary measure, which will be
discussed in Section 3.2.

Phase 3. Then, wavelet collocation technique is used to solve
the plane integral equation. In the integral equation, the
integrandhas a discontinuity across boundary Γ. Hence, there
is a kind of singularity in it. Fortunately, wavelets have a
good property to approximate this kind of singularity. More
specifically, suppose that we have a function 𝑓, which has a
discontinuity across curve Γ; otherwise it is smooth. When a
standard Fourier representation is applied to approximate 𝑓
with the best𝑚 nonzero Fourier terms, 𝑓𝐹

𝑚
, we have

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

𝐹

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
≍ 𝑚
−1/2

, 𝑚 󳨀→ ∞. (10)

When a wavelet representation is used to approximate𝑓with
the best𝑚 nonzero wavelet terms, 𝑓W

𝑚
, we can obtain

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

𝑊

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
≍ 𝑚
−1
, 𝑚 󳨀→ ∞. (11)

Note that if we compare the right-hand sides of the above
two equations, that is, 𝑚−1/2 and 𝑚−1, it is clear that the rate
of the approximation is very slow when Fourier approach
is utilized, and the rate of wavelet approximation is better
than that of Fourier approximation. Moreover, until now, the
wavelet approach is the best result for a fixed nonadaptive
method [9].

The last step is the choice of the points to be transformed
in the domain and calculate the new coordinates of them by
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integral representation. The mathematical representation of
these operations can be illustrated as follows:

PIE : ∫
𝑅
2

𝜔 (𝑦) ‖𝜕Ω‖ log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) ,

∀ (𝑥
1
, 𝑥
2
) ∈ Γ

PIR : 𝑢 (𝑥) = ∫
𝑅
2

𝜔 (𝑦) ‖𝜕Ω‖ ⋅ ⋅ ⋅ 𝑑𝑠𝑦, ∀ (𝑥
1
, 𝑥
2
) ∈ 𝜔

⇓ Wavelet Collocation (WC) Technique ⇓

∑

𝑝,𝑞

ℎ
𝑗

(𝑝,𝑞)
∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦

− 𝑓 (𝑥
𝑘
) = 0, ∀ (𝑥

1
, 𝑥
2
) ∈ Γ

𝑢
𝑗
(𝑥) = ∑

𝑝,𝑞

ℎ
𝑗

(𝑝,𝑞)
∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) ⋅ ⋅ ⋅ 𝑑𝑦,

∀ (𝑥
1
, 𝑥
2
) ∈ 𝜔

⇓⇓

Solutions.

(12)

The principal advantages of our method are as follows.

(i) The algorithm is divided into two parts, integral
equation and integral representation. After solving
the plane integral equation, we can choose the pixels
to be transformed in the domain arbitrarily and use
plane integral representation to evaluate their new
coordinates. Therefore, only the pixels on the pattern
are transformed to the new coordinate space. In
Figure 2, for example, we will choose all pixels on
characters “Coke,” and find the new coordinates of
them by the integral representation.

(ii) The program code is independent of the domain
considered; that is, the program code will require no
change for the different kind of boundaries. It benefits
from the boundary measure formula. In fact, we do
not need the function of boundary Γ at all. What we
really need are the original coordinates of the pixels at
the boundary and the coordinates of the new ones.

Finally, the summary of this novel approach can be illustrated
in the following mathematical expression:

PDE : {Δ𝑢 (𝑥1, 𝑥2) = 0, ∀ (𝑥
1
, 𝑥
2
) ∈ Ω

𝑢|
Γ
= 𝑓 (𝑥

1
, 𝑥
2
) , ∀ (𝑥

1
, 𝑥
2
) ∈ Γ,

⇓⇓

Boundary Integral (Indirect) Method

⇓⇓

BIE : ∫
Γ

𝜔 (𝑦) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) , ∀ (𝑥

1
, 𝑥
2
) ∈ Γ

BIR : 𝑢 (𝑥) = ∫
Γ

𝜔 (𝑦) ⋅ ⋅ ⋅ 𝑑𝑠
𝑦
, ∀ (𝑥

1
, 𝑥
2
) ∈ 𝜔

⇓⇓

BoundaryMeasure Formula (BMF)

⇓⇓

PIE : ∫
𝑅
2

𝜔 (𝑦) ‖𝜕Ω‖ log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) ,

∀ (𝑥
1
, 𝑥
2
) ∈ Γ

PIR : 𝑢 (𝑥) = ∫
𝑅
2

𝜔 (𝑦) ‖𝜕Ω‖ ⋅ ⋅ ⋅ 𝑑𝑠𝑦, ∀ (𝑥
1
, 𝑥
2
) ∈ 𝜔

⇓⇓

Wavelet Collocation (WC) Method

⇓⇓

∑

𝑝,𝑞

ℎ
𝑗

(𝑝,𝑞)
∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦 − 𝑓 (𝑥𝑘) = 0,

∀ (𝑥
1
, 𝑥
2
) ∈ Γ

𝑢
𝑗
(𝑥) = ∑

𝑝,𝑞

ℎ
𝑗

(𝑝,𝑞)
∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) ⋅ ⋅ ⋅ 𝑑𝑦,

∀ (𝑥
1
, 𝑥
2
) ∈ 𝜔

⇓⇓

Solutions .
(13)

3.1. Boundary Integral Method. According to the boundary
integral method, the first phase of the IEWC converts the
partial differential equation (PDE) (5) which is recalled
below,

Δ𝑢 = 0, ∀𝑥 = (𝑥
1
, 𝑥
2
) ∈ Ω,

𝑢|
Γ
= 𝑓 (𝑥

1
, 𝑥
2
) , ∀𝑥 = (𝑥

1
, 𝑥
2
) ∈ Γ,

(14)

into a boundary integral equation (BIE) and a boundary
integral representation (BIR).

There are two kinds of boundary integral equations,
namely, (1) integral equation of the first kind and (2) integral
equation of the second kind.

If the equation takes the form of

∫
Γ

𝐾(𝑥, 𝑦) 𝑢 (𝑦) 𝑑𝑠
𝑦
= 𝑓 (𝑥) , ∀𝑥 = (𝑥

1
, 𝑥
2
) ∈ Γ, (15)

it is called integral equation of the first kind, where𝐾(𝑥, 𝑦) and
𝑓(𝑥) are known functions and𝑑𝑠

𝑦
indicates the integratewith

variable 𝑦 = (𝑦
1
, 𝑦
2
). Otherwise, the equation with the form

𝜆𝑢 (𝑥) − ∫
Γ

𝐾(𝑥, 𝑦) 𝑢 (𝑦) 𝑑𝑠
𝑦
= 𝑓 (𝑥) , ∀𝑥 = (𝑥

1
, 𝑥
2
) ∈ Γ

(16)

is called an integral equation of the second kind, where 𝜆 is a
known constant.

Most of the researchers work on the integral equations
of the second kind in both of the theories and applications,
because some integral equations of the first kind are quite ill-
conditioned; that is, the speed of the convergent will be slow if
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an iterative algorithm is used.However, the integral equations
of the first kind have been an increasingly popular approach
to solve various boundary value problems [7]. In this paper,
the boundary integral equations of the first kind are applied
to facilitate the use of the boundary measure formula, as well
as the further application of the wavelet collocation method.

Furthermore, there are two ways to convert the partial
differential equation (PDE), into the boundary integral equa-
tion of the first kind, namely, (1) direct method and (2) indirect
method [7, 8]. They will briefly be presented in the following.

(1) Direct Method. In this method, based on Green’s formula,

∫
Ω

∇ ⋅ F𝑑Ω = ∫
Γ

F ⋅ n𝑑𝑆, (17)

where ∇ = 𝜕/𝜕𝑥
1
+ 𝜕/𝜕𝑥

2
, F = (𝑓

1
(𝑥), 𝑓
2
(𝑥)), 𝑥 = (𝑥

1
, 𝑥
2
),

and n is the unit outer normal vector; the partial differential
equation (5) can be changed to a system with a boundary
integral equation and a boundary integral representation.
Thereafter, the following main steps are done.

Step 1. Solve the integral equation to find 𝜔 on Γ such
that

∫
Γ

𝜔 (𝑦) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦

= −𝜋𝑓 (𝑥) + ∫
Γ

𝑓 (𝑦)
𝜕

𝜕𝑛
log 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑠𝑦,

∀𝑥 = (𝑥
1
, 𝑥
2
) ∈ Γ.

(18)

Step 2. ∀𝑥 ∈ Ω, calculate 𝑢(𝑥) by formula

𝑢 (𝑥)

=
1

2𝜋
∫
Γ

(𝑓 (𝑦)
𝜕

𝜕𝑛
log 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 − 𝜔 (𝑦) log
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) 𝑑𝑠𝑦.

(19)

(2) Indirect Method. This method is based on the potential
theory, and the procedure of solving (5) is presented in the
following.

Step 1. Solve the integral equation to find 𝜔 on Γ such
that

∫
Γ

𝜔 (𝑦) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) , ∀𝑥 = (𝑥

1
, 𝑥
2
) ∈ Γ. (20)

Step 2. Calculate 𝑢(𝑥) by formula

𝑢 (𝑥) = ∫
Γ

𝜔 (𝑦) log (󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨) 𝑑𝑠𝑦, ∀𝑥 = (𝑥

1
, 𝑥
2
) ∈ Ω.

(21)

It is obvious that either the pair of (18), (19) or (20), (21)
is equivalent to (5).The latter is utilized in this paper, because
the right-hand sides of these equations are very simple and

can be solved easily. Furthermore, to ensure the uniqueness
of the solution, we tacitly assume that the interior of domain
Ω has the property of

diameter (Ω) < 1. (22)

As to the existence of the solution, [10] has proved that (20)
is equivalent to

∫
Γ

𝜔 (𝑦) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 𝑓 (𝑥) + 𝑐, ∀𝑥 ∈ Γ,

∫
Γ

𝜔 (𝑦) 𝑑𝑠
𝑦
= 𝐴,

(23)

and for arbitrary function 𝑓 and constant 𝐴, (23) has unique
solutions 𝜔 and 𝑐, which ensures that (20) is of viability (i.e.,
unique solvable).

The above discussion gives us a hint that we can first
obtain the data𝜔 from (20) and then use (21) to calculate 𝑢(𝑥)
at any pixel 𝑥 = (𝑥

1
, 𝑥
2
) in the domain Ω. Note that the pixel

𝑥 ∈ Ω is chosen arbitrarily in the integral representation,
which makes us free from the lattice built in either the finite
element method or finite difference one.

If the function of the boundary can be determined, that is,
Γ is parameterized, (20) can be changed into one-dimensional
integral equation on a closed interval. Thereafter, it can be
solved by the classical methods or periodic wavelet method
[11–16]. In this way, the program code is dependent on the
representation of curve Γ. Unfortunately, inmost of the cases,
the function of the boundary is unknown as wementioned in
Section 1. In order to develop a newmethod, which can avoid
knowing the function of boundary Γ, the boundary measure
formula is utilized in our study to change the forms of (20)
and (21) into other suitable forms.

3.2. Boundary Measure Formula. Based on the boundary
measure formula, the second phase of the IEWC converts
the boundary integral equation (BIE) and boundary integral
representation (BIR) into the plane integral equation (PIE)
and plane integral representation (PIR).

Assume thatΩ is a bounded domain in𝑅2, whose bound-
ary Γ can be presented by Lipschitz function 𝐹(𝑥

1
, 𝑥
2
) = 𝑐,

and 𝜒
Ω
denotes its characteristic function, which has value 1

if the point (𝑥
1
, 𝑥
2
) is in domain Ω; otherwise is 0. The unit

normal vector along Γ can be written as

n = ∇𝐹

|∇𝐹|
, (24)

where ∇𝐹 is the gradient of 𝐹 and |∇𝐹| stands for its
norm.They can generalize the vector-valuedmeasure and the
Radonmeasure, respectively, if𝐹 is only of bounded variation
over domain Ω [17]. Hence, the boundary measure formula
can be described below.

Theorem 2. For any integrable function 𝑓 defined on Γ, after
extending 𝑓 from Γ to 𝑅2, we have

∫
Γ

𝑓𝑑𝑠 = ∫
𝑅
2

𝑓 ‖𝜕Ω‖ 𝑑𝑥, (25)

where ‖𝜕Ω‖ = −∇𝜒
Ω
⋅ n is called boundary measure.
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Proof. In fact, we can derive

∫
Γ

𝑓𝑑𝑠 = ∫
Γ

𝑓n ⋅ n𝑑𝑠

= ∫
Ω

∇𝑓 ⋅ n𝑑𝑥 + ∫
Ω

𝑓 div n𝑑𝑥

= ∫
𝑅
2

∇𝑓 ⋅ 𝜒
Ω
n𝑑𝑥 + ∫

𝑅
2

𝑓𝜒
Ω
div n𝑑𝑥

= ∫
𝑅
2

∇𝑓 ⋅ 𝜒
Ω
n𝑑𝑥 − ∫

𝑅
2

∇ (𝑓𝜒
Ω
) ⋅ n𝑑𝑥

= −∫
𝑅
2

𝑓∇𝜒
Ω
⋅ n𝑑𝑥

= ∫
𝑅
2

𝑓 ‖𝜕Ω‖ 𝑑𝑥.

(26)

This establishes (25).

Reference [18] has proved that the gradient of the char-
acteristic functions ∇𝜒

Ω
and n can be approximated by

Daubechies scale or wavelet function in the Sobolev space
𝐻
−1
(Ω) or space𝐻1(Ω), respectively. That ensures that

𝑓 ‖𝜕Ω‖ = −𝑓∇𝜒Ω ⋅ n (27)

can be approximated byDaubechies scale or wavelet function
if 𝑓 is integrable. We will use this formula in our new
approach. It should be noted that ‖𝜕Ω‖ = −∇𝜒

Ω
⋅ n

has singularities along boundary Γ, therefore the wavelet
representation is more effective to handle this problem than
the Fourier representation due to its sparse representation
of singularities. For example, to represent an edge, a type of
singularity, with error √1/𝑁, roughly speaking, requires𝑁2
sinusoids in Fourier form but needs only about 𝑁 wavelet
items in wavelet representation. As we discussed in Section 1,
the wavelets outperform the classical method. That is the
main reason we use wavelet here.

Using the boundarymeasure formula, the boundary inte-
gral equation (20) and the boundary integral representation
(21) become the following plane integral equation and plane
integral representation:

∫
𝑅
2

𝑦

𝜔 ‖𝜕Ω‖ log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑦 = 𝑓 (𝑥) , ∀𝑥 ∈ Γ, (28)

𝑢 (𝑥) = ∫
𝑅
2

𝑦

𝜔 ‖𝜕Ω‖ log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑦, ∀𝑥 ∈ Ω. (29)

Theorem 3. Plane integral representation (29) is the solution
of partial differential equation (5), where 𝜔 is the solution of
plane integral equation (28).

Proof. The proof of this theorem is omitted in this paper to
avoid the complicated mathematics and to save space.

3.3. Wavelet Collocation Technique. Wavelet analysis has
been widely applied in image processing [19–22]. In this
paper, the wavelet theory is used in IEWCmethod, in which,

after phase 2, the plane integral equation (PIE) and plane
integral representation (PIR) have been obtained; thereafter,
in phase 3, the wavelet collocation technique is employed to
arrive the solution.

Let 𝜙 be the Daubechies scale function and

𝜙
𝑗

𝑝
(𝑡) = 2

𝑗/2
𝜙 (2
𝑗
𝑡 − 𝑝) . (30)

Based on the boundary measure formula (25), the task now
is to solve plane integral equation:

∫
𝑅
2

𝑦

𝜔 ‖𝜕Ω‖ log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑦 = 𝑓 (𝑥) , ∀𝑥 ∈ Γ. (31)

Recall that the support of the gradient of the characteristic
function∇𝜒

Ω
is a compact domain in𝑅2; in fact, it is a tubular

neighborhood of Γ. Therefore, we need only finite number of
scale functions to represent 𝜔‖𝜕Ω‖ = −𝜔∇𝜒

Ω
⋅ n. Let Λ be an

index set, and let |Λ| be the cardinal of Λ. The key point here
is solving the product 𝜔‖𝜕Ω‖ instead of solving the unknown
function𝜔. In fact, when we know 𝜔‖𝜕Ω‖, then from integral
representation (29), we can obtain 𝑢(𝑥) for any 𝑥 ∈ Ω. That
is why we use integral equation of the first kind in this paper.
As 𝜔‖𝜕Ω‖ can be approximated by

(𝜔 ‖𝜕Ω‖)
𝑗
= ∑

(𝑝,𝑞)∈Λ

ℎ
𝑗

(𝑝,𝑞)
𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) , (32)

substituting 𝜔‖𝜕Ω‖ in (28) with (𝜔‖𝜕Ω‖)𝑗 produces the error
representation 𝑒(𝑥):

𝑒 (𝑥) = ∫
𝑅
2

𝑦

(𝜔 ‖𝜕Ω‖)
𝑗 log 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦 − 𝑓 (𝑥) , ∀𝑥 ∈ Γ.

(33)

Choose |Λ| collocation points {𝑥
𝑘
} ⊂ Γ, and let 𝑒(𝑥

𝑘
) = 0, 1 ≤

𝑘 ≤ |Λ|, and then we have

𝑒 (𝑥
𝑘
) = ∫
𝑅
2

𝑦

(𝜔 ‖𝜕Ω‖)
𝑗 log 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦 − 𝑓 (𝑥𝑘) = 0,

1 ≤ 𝑘 ≤ |Λ| .

(34)

That is,

∫
𝑅
2

𝑦

(𝜔 ‖𝜕Ω‖)
𝑗 log 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦 = 𝑓 (𝑥𝑘) , 1 ≤ 𝑘 ≤ |Λ| .

(35)

That is,

∑

(𝑝,𝑞)∈Λ

ℎ
𝑗

(𝑝,𝑞)
∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦 = 𝑓 (𝑥𝑘) .

(36)

Equation (36) is a set of linear algebraic equations, which can
be rewritten in form of

𝐾ℎ = 𝑓, (37)
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from which, {ℎ𝑗
(𝑝,𝑞)

} is obtained, where matrix𝐾 with entries
of |Λ| × |Λ| is

𝐾
𝑘,(𝑝,𝑞)

= ∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦,

1 ≤ (𝑝, 𝑞) , 𝑘 ≤ |Λ| , 𝑥
𝑘
∈ Γ,

(38)

and the right hand side vector 𝑓 is

𝑓
𝑘
= 𝑓 (𝑥

𝑘
) , 1 ≤ 𝑘 ≤ |Λ| . (39)

Remark 4. Note that matrix 𝐾 does not depend on Γ, except
points {𝑥

𝑘
}
|Λ|

𝑘=1
that should be chosen on Γ. Meantime, the

right-hand side in (37) does not need the representation of
function 𝑓(𝑥), except values {𝑓(𝑥

𝑘
)}
|Λ|

𝑘=1
of the discrete pixels

{𝑥
𝑘
}
|Λ|

𝑘=1
on the boundary Γ. These points are called tiepoints.

It indicates that, in the implementation, the program code is
independent of the boundary.

Remark 5. The condition number of matrix 𝐾 may be large,
because it is from the integral equation of the first kind;
thus, usually the Tikhonov’s regularize method is used to
solve it [23]. In our new approach, linear algebraic equations
(37) are generated by the wavelet collocation technique.
Therefore, the diagonal preconditioning method [14] can be
employed to reduce the condition number of matrix 𝐾. It
leads us to use a very easy way to solve (37) instead of using
Tikhonov’s regularize method. This approach was first used
in the Galerkin method, and thereafter, in 1995, Schneider
proved that it also can be applied to the collocation method
[24].

Now we can use integral representation (29) to evaluate
the approximate value of 𝑢(𝑥) at any point 𝑥 in Ω; that is,

𝑢 (𝑥) = ∫
Γ

𝜔 log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦

= ∫
𝑅
2

𝑦

𝜔 ‖𝜕𝜔‖ log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑦

≈ ∑

(𝑝,𝑞)∈Λ

ℎ
𝑗

(𝑝,𝑞)
∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦

= 𝑢
𝑗
(𝑥) , ∀𝑥 ∈ Ω.

(40)

We use notation𝑄
(𝑝,𝑞)

(𝑥) to represent the integral expression
in (40); that is

𝑄
(𝑝,𝑞)

(𝑥) = ∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦, ∀𝑥 ∈ Ω,

(41)

and at last, we have

𝑢
𝑗
(𝑥) = ∑

(𝑝,𝑞)∈Λ

ℎ
𝑗

(𝑝,𝑞)
𝑄
(𝑝,𝑞)

, ∀𝑥 ∈ Ω. (42)

4. Algorithms of the IEWC Approach

In this section, the wavelet-based algorithms of the IEWC
approach are presented in both of the general version and
detailed version. To facilitate the implementation of the
algorithm, the computation of matrix, which will be useful
in performance of the algorithm, is also discussed in this
section.

Algorithm 6 (boundary measure and wavelet (general)). One
has the following.

Step 1. Choose the collocation points {𝑥
𝑘
}
|Λ|

𝑘=1
on Γ, and

evaluate matrixes𝐾 and 𝑓 in (37) with the formula (38).

Step 2. Solve (37) with least square method to obtain coeffi-
cients {ℎ𝑗

(𝑝,𝑞)
}
(𝑝,𝑞)∈Λ

.

Step 3. Choose a point 𝑥 in the domain needed to be
transformed to new coordinate, and calculate the coefficients
{𝑄
(𝑝,𝑞)

(𝑥)}
(𝑝,𝑞)∈Λ

with the formula (41).

Step 4. Obtain the approximation 𝑢𝑗(𝑥) using (41).

4.1. Computation of the Matrix. In the Step 1 and Step 3
above, the main cost is the computation of

∫
𝑅
2

𝑦

𝑓 (𝑥, 𝑦) 𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) 𝑑𝑦. (43)

In this subsection we will give a simple method to calculate it
approximately. Let us first introduce some notations.

Definition 7. If a quadrature formula

∫𝜙 (𝑡) 𝑓 (𝑡) 𝑑𝑡 =

𝑛

∑

𝑘=0

𝐴
𝑘
𝑓 (𝑡
𝑘
) (44)

holds for any polynomial of degree less than or equal to 2𝑛 +
1, then it is called Gauss-type quadrature with scale function
𝜙(𝑡) as its weight function, the dots {𝑡

𝑘
}, and the coefficients

{𝐴
𝑘
} are called generalized Gauss-type quadrature dots and

generalized Gauss-type quadrature weights.

Similar to the classical Gauss-type quadrature formula,
we recall that [0, 2𝑁 − 1] is the support of the scale function
𝜙; therefore, we have the following.

Proposition 8. In formula (44), the necessary and sufficient
condition for {𝑡

𝑘
} being generalizedGauss-type quadrature dots

is 𝑤
𝑛
(𝑡) = Π

𝑛

𝑘=0
(𝑡 − 𝑡
𝑘
) being orthogonal to any polynomial

𝑃
𝑛
(𝑡)(degree ≤ 𝑛) with 𝜙(𝑡) as the weight function; that is,

∫

2𝑁−1

0

𝜙 (𝑡) 𝑃
𝑛
(𝑡) 𝑤
𝑛
(𝑡) 𝑑𝑡 = 0. (45)
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(a) (b)

(c) (d)

Figure 7: Experiment 1: nonlinear harmonic and its inverse: (a) original image, (b) distorted image, (c) restored image by IEWC, and
(d) restored image by bilinear method.

Figure 8: A harmonic distorted image is approximated by piecewise
bilinear model.

Proposition 9. In formula (44), if 𝑓(𝑡) ∈ 𝐶
2𝑛+2

[0, 2𝑁 − 1],
the error of (44) is

𝑅 = ∫

2𝑁−1

0

𝜙 (𝑡) 𝑓 (𝑡) 𝑑𝑡 −

𝑛

∑

𝑘=0

𝐴
𝑘
𝑓 (𝑡
𝑘
)

=
𝑓
(2𝑛+2)

(𝜉) 𝜙 (𝜉)

(2𝑛 + 2)!
∫

2𝑁−1

0

𝑤
2

𝑛
(𝑡) 𝑑𝑡,

(46)

where 𝜉 ∈ [0, 2𝑁 − 1].

A significant task is to determine {𝑡
𝑘
} and {𝐴

𝑘
} in formula

(44). Let𝑓(𝑡) = 𝑡𝑖, 0 ≤ 𝑖 ≤ 2𝑛+1, we obtain a nonlinear system
[25]:

𝑛

∑

𝑘=0

𝐴
𝑘
𝑡
𝑖

𝑘
= ∫𝜙 (𝑡) 𝑡

𝑖
𝑑𝑡, 𝑖 = 0, . . . , 2𝑛 + 1. (47)

First, we compute the right-hand side of (47) recursively.
Suppose that 2𝑛 + 1 ≤ 𝑁 − 1, from the theory of wavelet,
we can write

𝑡
𝑖

𝑖!
=

+∞

∑

𝑘=−∞

𝑃
𝑖
(𝑘) 𝜙 (𝑡 − 𝑘) , 𝑖 = 0, . . . , 2𝑛 + 1, (48)

from which we know

𝑐
𝑚
= ∫

+∞

−∞

𝑡
𝑚

𝑚!
𝜙 (𝑡) 𝑑𝑡 = 𝑃

𝑚
(0) , (49)

and it can be computed recursively using [26]

𝑐
0
= 1

𝑐
𝑖
=

1

2𝑖 − 1

𝑖

∑

𝑟=1

𝑀
𝑟
𝑐
𝑖−𝑟

(50)

with 𝑀
𝑟
= (1/√2)Σ

𝑚
ℎ
𝑚
(𝑚
𝑟
/𝑟!), where reals ℎ

𝑘
are coeffi-

cients in 𝜙(𝑡) = √2Σℎ
𝑘
𝜙(2𝑡−𝑘). So far, the right-hand side in
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Figure 9: Comparison in Experiment 1: projection of images to the 𝑥-axis: (a) original image, (b) distorted image, (c) restored image by
IEWC, and (d) restored image by the piecewise bilinear method.

Table 1

𝑁 𝑥
1
= 𝑐

3 8.17401𝐸 − 001

4 1.00539
5 1.19390
6 1.38216

(47) is computed. Then, we solve the nonlinear system (47),
so that 2𝑛 + 2 coefficients {𝑡

𝑘
} and {𝐴

𝑘
} are obtained. For

example, when 𝑛 = 1,𝑁 = 3, 4, 5, 6, we have

𝐴
0
≈ 0, 𝐴

1
≈ 1 (51)

and obtain Table 1.
Therefore, we have a very simple formula

∫

2𝑁−1

0

𝜙 (𝑡) 𝑓 (𝑡) 𝑑𝑡 ≈ 𝑓 (𝑐) . (52)

For 𝑓 ∈ 𝐶
4, by use of spline function, we can prove that its

error, 𝜀, is

𝜀 = 𝑂 (ℎ
4
) , ℎ =

2𝑁 − 1

2𝑗
. (53)

Based on these results, we know that

1

2𝑗
𝑓(

𝑝 + 𝑐

2𝑗
,
𝑞 + 𝑐

2𝑗
) (54)

can be used to approximate

∫
𝑅
2

𝑦

𝑓 (𝑥, 𝑦) 𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) 𝑑𝑦, (55)

and we will use it in our experiments.



12 Abstract and Applied Analysis

6

4

2

0
0 200 300100

×10
4

(a) Orig𝑦-axis

0 200 300100

6

4

5

2

3

×10
4

(b) Chang 𝑦-axis

0 200 300100

6

4

2

0

×10
4

(c) Pde 𝑦-axis

0 200 300100

6

4

2

0

×10
4

(d) Bi-128 𝑦-axis

Figure 10: Comparison in Experiment 1: projection of images to the 𝑦-axis: (a) original image, (b) distorted image by harmonic
transformation, (c) restored image by IEWC, and (d) restored image by the piecewise bilinear method.

Algorithm 10 (boundary measure and wavelet (detail)).

Input {𝑥
𝑘
} ⊂ Γ and {𝑓(𝑥

𝑘
)}.

Step 1

Choose a resolution level 𝑗 and fix a rectan-
gular domain𝐷 covering {𝑥

𝑘
}.

Calculate the index set Λ = {(𝑝, 𝑞)} by
𝜙
𝑗

(𝑝,𝑞)
∩ 𝐷 ̸= {0}.

Choose any |Λ| collocation points {𝑥
𝑘
} ⊂

{𝑥
𝑘
}.

Step 2

For 𝑘 = 1 to |Λ| Do

Compute matrix elements

𝐾
𝑘,(𝑝,𝑞)

(𝑥
𝑘
) = ∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦

≈
1

2
log [(𝑥

𝑘
1

−
𝑝 + 𝑐

2𝑗
)

2

+ (𝑥
𝑘
2

−
𝑞 + 𝑐

2𝑗
)

2

] .

(56)
Obtain right-hand side {𝑓(𝑥

𝑘
)} from

{𝑓(𝑥
𝑘
)}.

End.
Step 3

Solve the linear systems𝐾ℎ = 𝑓 and obtain
ℎ = {ℎ

𝑗

(𝑝,𝑞)
}.

Step 4
Choose the points {𝑧

𝑘
}
𝑀

𝑘=1
in the domain to

be transformed to new coordinate space.
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Figure 11: Experiment 2: nonlinear harmonic and its inverse for a circle area.

Step 5

For 𝑘 = 1 to𝑀 Do:
Evaluate

𝑄
(𝑝,𝑞)

(𝑧
𝑘
) = ∫
𝑅
2

𝑦

𝜙
𝑗

𝑝
(𝑦
1
) 𝜙
𝑗

𝑞
(𝑦
2
) log 󵄨󵄨󵄨󵄨𝑧𝑘 − 𝑦

󵄨󵄨󵄨󵄨 𝑑𝑦

≈
1

2
log [(𝑧

𝑘
1

−
𝑝 + 𝑐

2𝑗
)

2

+ (𝑧
𝑘
2

−
𝑞 + 𝑐

2𝑗
)

2

] .

(57)

Calculate the new coordinate

𝑢
𝑗
(𝑧
𝑘
) = ∑

(𝑝,𝑞)∈Λ

ℎ
𝑗

(𝑝,𝑞)
𝑄
(𝑝,𝑞)

(𝑧
𝑘
) . (58)

End.

Output {𝑢𝑗(𝑧
𝑘
)}
𝑀

𝑘=1
.

5. Experiments

Experiments have been conducted to evaluate the perfor-
mances of the new approach.

A couple of numerical experiments using the wavelet-
based IEWC approach is presented in this section.

Experiment 1 (nonlinear-harmonic and its inverse). The har-
monic transformation 𝑇 : (𝑥, 𝑦) → (𝑢, V) satisfies (5), which
is recalled as follows:

Δ𝑢 (𝑥
1
, 𝑥
2
) = 0, (𝑥

1
, 𝑥
2
) ∈ Ω,

𝑢|
Γ
= 𝑓 (𝑥

1
, 𝑥
2
) , (𝑥

1
, 𝑥
2
) ∈ Γ,

ΔV (𝑥
1
, 𝑥
2
) = 0, (𝑥

1
, 𝑥
2
) ∈ Ω,

V|
Γ
= 𝑔 (𝑥

1
, 𝑥
2
) , (𝑥

1
, 𝑥
2
) ∈ Γ.

(59)

In this experiment, the equations of the boundary conditions
𝑢|
Γ
= 𝑓(𝑥

1
, 𝑥
2
), V|
Γ
= 𝑔(𝑥

1
, 𝑥
2
) and the regionΩ are specified

by the following forms:

𝑓 (𝑥
1
, 𝑥
2
) = 1.2𝑥

1
, 𝑔 (𝑥

1
, 𝑥
2
) = 𝑥
2
+ (𝑥
1
− 0.5)

2

, (60)

Ω : 0 ≤ 𝑥
1
, 𝑥

2
≤ 0.5. (61)

Geometric transform is viewed to map the location of input
image to a location in the output image; it defines how the
pixel values in the output image are to be arranged. The
distorted image coordinates can be defined by the equations

𝑢 = 𝑢 (𝑥
1
, 𝑥
2
) , V = V (𝑥

1
, 𝑥
2
) . (62)

The primary idea is to find a mathematical model for the
geometric distortion process, specifically, the equations 𝑢 =

𝑢(𝑥
1
, 𝑥
2
), V = V(𝑥

1
, 𝑥
2
) and then apply the inverse process
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Figure 12: Comparison in Experiment 2: projection of images to the 𝑥-axis: (a) original image, (b) distorted image, (c) restored image by
IEWC, and (d) restored image by the piecewise bilinear method.

to find the restored image. To determine the necessary equa-
tions, we need to identify a set of points in the original image
that matches another set of points in the distorted image.
These sets of points are called tiepoints. In this experiment,
the relationship between these tiepoints in two images is
determined by the boundary condition, which is described
in (60), and the proposed IEWCmethod can be used.

We use Figure 7 as an example, where Figure 7(a) is the
original image. As the IEWC approach is applied to solve the
harmonic transformation with the boundary condition (60),
the original image is distorted and displayed in Figure 7(b).
To achieve the restoration, then the CSIM method is used to
perform the inverse transformation, and the restored image
is illustrated in Figure 7(c). The details of the CSIM method
can be found in our previous work [1].

To quantify and clarify the advantages of IEWC over the
traditional approach, a comparison is given in Figure 8.

In the traditional approach, a harmonic distorted image is
approximated by piecewise bilinear model [27], as shown in
Figure 8. In the bilinear model, four points of each subregion
are used to generate the equation:

𝑢 = 𝑘
1
𝑥
1
+ 𝑘
2
𝑥
2
+ 𝑘
3
𝑥
1
𝑥
2
+ 𝑘
4
,

V = 𝑘
5
𝑥
1
+ 𝑘
6
𝑥
2
+ 𝑘
7
𝑥
1
𝑥
2
+ 𝑘
8
,

(63)

where 𝑘
𝑖
, 𝑖 = 1, 2, . . . , 8, are constants to be determined

by solving the eight simultaneous equations. Because we
have defined four tiepoints, thus we have eight equations,
where 𝑥

1
, 𝑥
2
, 𝑢, and V are known. Now we can solve

the eight equations for the eight unknowns 𝑘
𝑖
, so that

the necessary equations for the coordinate mapping can
be obtained. The mapping equations 𝑢 = 𝑢(𝑥

1
, 𝑥
2
), V =

V(𝑥
1
, 𝑥
2
) then are applied to all (𝑥

1
, 𝑥
2
) pairs needed. In

practice, the values of 𝑥
1
, 𝑥
2
, 𝑢, and V are not likely to
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Figure 13: Comparison in Experiment 2: projection of images to the 𝑦-axis: (a) original image, (b) distorted image, (c) restored image by
IEWC, and (d) restored image by the piecewise bilinear method.

be integers. The simplest solution is the nearest neighbor
method, where the pixel is assigned to the value of the
closest pixel in the image. The restored image which is
constructed by the classical piecewise bilinear method is pre-
sented in Figure 7(d), in which, 128 tiepoints are used on the
boundary. This method does not necessarily provide optimal
results.

To compare the above two restored images, we project
both of them, as well as the original image and the distorted
one, to the 𝑥-axis and 𝑦-axis.The results are shown in Figures
9 and 10, respectively. From these projections, it is clear that
the results of IEWC approach are better than that of the
traditional one.

Experiment 2 (nonlinear-harmonic and its inverse for a circle
area). Consider

𝑇
2
: (𝑥
1
, 𝑥
2
) 󳨀→ (𝑢, V) , Ω : 𝑥

2

1
+ 𝑥
2

2
≤ 0.4
2
,

𝑓 (𝑥
1
, 𝑥
2
) = 𝑥
1
+ 𝑥
2
,

𝑔 (𝑥
1
, 𝑥
2
) = 𝑥
2

1
− 𝑥
2

2
.

(64)

In this experiment, the domain Ω of the partial differential
equation (PDE) is a circle area. Because the area is not a
quadrilateral (four-sided polygon), it is difficult to use the
piecewise bilinear method. It is shown that the program code
of the IEWC approach is independent of the boundary form.
The results are shown in Figure 11. To compare the results, the
projections of them to the axis are shown in Figures 12 and 13.

6. Conclusions

Usually the piecewise bilinear model can be used to all
geometric degradation image regardless the different char-
acteristics of images. We have found a new model (partial
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differential equation PDE) for the transformation in our pre-
vious work [1, 2] and aim to construct an efficient algorithm
(IEWC) to solve the PDE in this paper.

In this paper, we have presented awavelet-based approach
for the harmonic transformation. Unlike the traditional
methods, in the IEWC approach, the pixels needed to be
transformed to new coordinates can be chosen arbitrarily.
Meanwhile, the program code of our method is independent
of the boundary, and we need only a set of the original
coordinates of the pixels on the boundary of the image as
well as their new coordinates in the transformed image.
To make the algorithm more efficiency, Daubechies wavelet
(scale) functions and a Gauss-type quadrature formula have
been used. Different examples have been tested with the
anticipated results.

Some further work is still under study, which is presented
below. The tiepoints are unknown and should be guessed
or calculated by some other methods. In this paper, a GA
approach has been applied to extract the outer contours and
find the tiepoints. In our further work, other GA, wavelet-
based method, local search, immune approach, and so forth
will be used to find their usage in this direction to construct
a good interpolation method.

In addition, as discussed above, there are singularities
along the boundary, which can be treated efficiently by
wavelet. More recently, Donoho [9] has constructed a tool
called curvelet to handle this kind of singularity, which is built
from Meyer wavelet basis. In our further work, the curvelet
will be utilized. In this way, the boundary measure will be
approximated by the curvelet with the same accuracy as we
use wavelet. Meantime, compared with wavelet or sinusoid
basis, fewer terms will be computed when the curvelet will be
used. It will make our algorithm more efficient.

Besides the further improvement of the algorithm, the
proposed method will be combined with other techniques
to solve more sophisticated problems. For example, when we
restore the distorted image, some blurred pictures may occur.
To obtain a clean image, which will be easier to be recognized
by a pattern recognition system, the fusion technique will be
applied.
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