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Somenewweakly singular versions of discrete nonlinear inequalities are established,which generalize some existingweakly singular
inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few
applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.

1. Introduction

Recently, alongwith the development of the theory of integral
inequalities and difference equations, many authors have
researched some discrete versions of Gronwall-Bellman type
inequalities [1–5]. Starting from the basic form,

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑛−1

∑

𝑠=0

𝑓 (𝑠) 𝑢 (𝑠) (1)

discussed originally by Pachpatte in [4], various such new
inequalities have been established, which can be used as
a powerful tool in the analysis of certain classes of finite
difference equations. Among these results, discrete weakly
singular integral inequalities also play an important role in
the study of the behavior and numerical solutions for singular
integral equations [6, 7] and the theory for parabolic equa-
tions [8–10]. For example, Dixon and McKee [7] investigated
the convergence of discretization methods for the Volterra
integral and integrodifferential equations using the following
inequality:

𝑥
𝑖
≤ 𝜓
𝑖
+𝑀ℎ

1−𝛼

𝑖−1

∑

𝑗=0

𝑥
𝑗

(𝑖 − 𝑗)
𝛼
, 𝑖 = 1, 2, . . . , 𝑁,

𝑛 > 0, 𝑁ℎ = 𝑇,

(2)

and Beesack [6] also discussed the inequality,

𝑥
𝑖
≤ 𝜓
𝑖
+𝑀ℎ

1+𝜎−𝛼𝛽

𝑖−1

∑

𝑗=0

𝑗
𝜎

𝑥
𝑗

(𝑖
𝛽
− 𝑗
𝛽
)
𝛼
, (3)

for the second kind Abel-Volterra singular integral equations.
Henry [9] presented a linear inequality

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝑘
, (4)

to investigate some qualitative properties for a parabolic
equation. In particular, to avoid the shortcoming of anal-
ysis, Medved [11–13] used a new method to discuss some
nonlinear weakly singular integral inequalities and difference
inequalities. Following Medved’s work, Ma and Yang [14]
improved his method to discuss a more general nonlinear
weakly singular integral inequality,

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡
𝜎

− 𝑠
𝜎

)
𝜇−1

𝑠
𝜏−1

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑡

0

(𝑡
𝛼

− 𝑠
𝛼

)
𝛽−1

𝑠
𝛾−1

𝑔 (𝑠) 𝑤 (𝑢 (𝑠)) 𝑑𝑠,

(5)
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and a nonlinear difference inequality [15],

𝑥
𝛼

𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝜆

𝑘
. (6)

As for other newweakly singular inequalities, recentwork can
be found, for example, in [16–25] and references therein.

In this paper, we investigate some new nonlinear discrete
weakly singular inequalities

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) , (7)

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝜎

𝑛
− 𝑡
𝜎

𝑘
)
𝜇−1

𝑡
𝜆−1

𝑘
𝜏
𝑘
𝑔
𝑘
𝑥
𝑘

+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) .

(8)

Compared to the existing result, our result is more concise
and can be used to obtain pointwise explicit bounds on
solutions of a class of more general weakly singular difference
equations of Volterra type. Finally, to illustrate the usefulness
of the result, we give some applications to Volterra type
difference equation with weakly singular kernels.

For convenience, before giving our main results, we first
cite some useful lemmas here.

Lemma 1 (discrete inequality, see [15]). Let 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛

be nonnegative real numbers and 𝑟 > 1 a real number. Then

(𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
)
𝑟

≤ 𝑛
𝑟−1

(𝐴
𝑟

1
+ 𝐴
𝑟

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑟

𝑛
) . (9)

Lemma 2 (discrete Hölder inequality, see [15]). Let 𝑎
𝑖
, 𝑏
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be nonnegative real numbers, and 𝑝, 𝑞 positive
numbers such that 1/𝑝 + 1/𝑞 = 1 (or 𝑝 = 1, 𝑞 = ∞). Then

𝑛

∑

𝑖=1

𝑎
𝑖
𝑏
𝑖
≤ (

𝑛

∑

𝑖=1

𝑎
𝑝

𝑖
)

1/𝑝

(

𝑛

∑

𝑖=1

𝑏
𝑞

𝑖
)

1/𝑞

. (10)

Lemma 3 (see [14]). Let 𝛼, 𝛽, 𝛾, and 𝑝 be positive constants.
Then

∫

𝑡

0

(𝑡
𝛼

− 𝑠
𝛼

)
𝑝(𝛽−1)

𝑠
𝑝(𝛾−1)

𝑑𝑠

=

𝑡
𝜃

𝛼

𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1] , 𝑡 ∈ 𝑅
+
,

(11)

where 𝐵[𝜉, 𝜂] = ∫

1

0

𝑠
𝜉−1

(1 − 𝑠)
𝜂−1

𝑑𝑠 (Re 𝜉 > 0,Re 𝜂 > 0) is the
well-known 𝐵-function and 𝜃 = 𝑝[𝛼(𝛽 − 1) + 𝛾 − 1] + 1.

In what follows, denote R to be the set of real numbers.
Let R

+
= (0,∞) and N = {0, 1, 2, . . .}. 𝐶(𝑋, 𝑌) denotes the

collection of continuous functions from the set 𝑋 to the set
𝑌. As usual, the empty sum is taken to be 0.

2. Some New Nonlinear Weakly Singular
Difference Inequalities

Lemma 4. Suppose that 𝜔(𝑢) ∈ 𝐶(R
+
,R
+
) is nondecreasing

with 𝑤(𝑢) > 0 for 𝑢 > 0. Let 𝑎
𝑛
, 𝑐
𝑛
be nonnegative and

nondecreasing in 𝑛. If 𝑦
𝑛
is nonnegative such that

𝑦
𝑛
≤ 𝑎
𝑛
+ 𝑐
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑘
𝜔 (𝑦
𝑘
) , 𝑛 ∈ N, (12)

then

𝑦
𝑛
≤ Ω
−1

[Ω (𝑎
𝑛
) + 𝑐
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑘
] , 0 ≤ 𝑛 ≤ 𝑀, (13)

where Ω(V) = ∫

V
V0
(1/𝜔(𝑠))𝑑𝑠, V ≥ V

0
, Ω−1 is the inverse

function of Ω, and𝑀 is defined by

𝑀 = sup{𝑖 : Ω (a
𝑖
) + 𝑐
𝑖

𝑖−1

∑

𝑘=0

𝑏
𝑘
∈ Dom (Ω

−1

)} . (14)

Assume that

(𝑆
1
) 𝛼 ∈ (0, 1], 𝛽 ∈ (0, 1) and 1 > (𝑝(𝛾 − 1) + 1)/𝛼 ≥

𝑝(𝛽 − 1) + 1 > 0 such that 1/𝑝 + 𝛼(𝛽 − 1) + 𝛾 − 1 ≥ 0;
(𝑆
2
) 𝑎
𝑛
, 𝑏
𝑛
are nonnegative functions for 𝑛 ∈ N, respec-

tively;
(𝑆
3
) 𝜔(𝑢) ∈ 𝐶(R

+
,R
+
) is nondecreasing and 𝜔(0) = 0.

Lemma 5. Suppose that [𝛼, 𝛽, 𝛾] satisfies assumption (𝑆
1
);

then for sufficiently small 𝜏
𝑘
, one has

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝑝𝑖(𝛽−1)

𝑡
𝑝𝑖(𝛾−1)

𝑘
𝜏
𝑘

≤ ∫

𝑡𝑛

0

(𝑡
𝛼

𝑛
− 𝑠
𝛼

)
𝑝𝑖(𝛽−1)

𝑠
𝑝𝑖(𝛾−1)

𝑑𝑠

=

𝑡
𝜃𝑖

n
𝛼

𝐵[

𝑝
𝑖
(𝛾 − 1) + 1

𝛼

, 𝑝
𝑖
(𝛽 − 1) + 1] .

(15)

Proof. Consider the 𝐵-function in (15). Consider

𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1]

= ∫

1

0

(1 − 𝑠)
𝑝(𝛽−1)+1−1

𝑠
(𝑝(𝛾−1)+1)/𝛼−1

𝑑𝑠

:= ∫

1

0

(1 − 𝑠)
𝑛2−1

𝑠
𝑛1−1

𝑑𝑠,

(16)

and denote 𝑓(𝑠) := (1 − 𝑠)
𝑛2−1

𝑠
𝑛1−1 for 𝑠 ∈ (0, 1), where 𝑛

1
=

(𝑝(𝛾 − 1) + 1)/𝛼 and 𝑛
2
= 𝑝(𝛽 − 1) + 1. If 𝑛

2
= 𝑛
1
, then 𝑓(𝑠)

is symmetric about 𝑠 = 1/2. According to assumption (𝑆
1
),

1 > 𝑛
1
=

𝑝 (𝛾 − 1) + 1

𝛼

> 𝑝 (𝛽 − 1) + 1 = 𝑛
2
> 0; (17)
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that is,

0 > 𝑛
1
− 1 > 𝑛

2
− 1 > −1. (18)

On the other hand, the zero-point of 𝑓󸀠(𝑠) can be obtained as
follows:

𝑠
0
=

𝑛
1
− 1

𝑛
1
+ 𝑛
2
− 2

<

1

2

. (19)

Therefore, the function 𝑓(𝑠) is decreasing on the interval
(0, 𝑠
0
] while increasing sharply on the interval [𝑠

0
, 1). Conse-

quently, for some given sufficiently small 𝜏
𝑘
, by the properties

of the left-rectangle integral formula, we have
𝑛−1

∑

𝑘=0

(1
𝛼

− 𝑡
𝛼

𝑘
)
𝑛2−1

𝑡
𝑛1−1

𝑘
𝜏
𝑘

≤ ∫

1

0

(1 − 𝑠
𝛼

)
𝑛2−1

𝑠
𝑛1−1

𝑑𝑠

= 𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1] ,

(20)

where 0 = 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 1. For the general interval

(0, 𝑡
𝑛
], we can easily obtain the corresponding result (15) by

the similar method and omit the details here.
Denote 𝑎

𝑛
= max

0≤𝑘≤𝑛,𝑘∈N𝑎𝑘 and 𝜏 = max
0≤𝑘≤𝑛−1,𝑘∈N𝜏𝑘,

where 𝜏
𝑘
is the variable time step. Next, we first discuss

inequality (7) and obtain the following result.

Theorem 6. Under assumptions (𝑆
1
), (𝑆
2
), and (𝑆

3
), if 𝑥

𝑛
is

nonnegative such that (7), then

𝑥
𝑛
≤
[

[

Ω
−1

(Ω(2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏(

𝑡
𝜃

𝑛

𝛼

)

𝑞/𝑝

×(𝐵[

𝑝 (𝛾−1)+1

𝛼

, 𝑝 (𝛽−1)+1])

𝑞/𝑝 𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
)
]

]

1/𝑞

,

(21)

for 0 ≤ 𝑛 ≤ 𝑁
1
, where Ω(𝑢) = ∫

𝑢

𝑢0

(1/𝜔
𝑞

(𝑠
1/𝑞

))𝑑𝑠, 𝑢 ≥ 𝑢
0
, Ω−1

is the inverse function of Ω, 𝜃 = 𝑝[𝛼(𝛽 − 1) + 𝛾 − 1] + 1, and
𝑁
1
is the largest integer number such that

Ω(2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏(

𝑡
𝜃

𝑛

𝛼

)

𝑞/𝑝

×(𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
∈ Dom (Ω

−1

) .

(22)

Proof. Since 𝑎
𝑛
= max

0≤𝑘≤𝑛,𝑘∈N𝑎𝑘, according to assumption
(𝑆
2
), 𝑎
𝑛
is nonnegative and nondecreasing, and 𝑎

𝑛
≥ 𝑎
𝑛
. From

(7), we have

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) . (23)

Due to assumption (𝑆
1
), take suitable indices 𝑝, 𝑞 such

that 1/𝑝 + 1/𝑞 = 1. An application of Lemma 2 yields

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
1/𝑝

𝑘
𝜏
1/𝑞

𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/𝑞

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
1/𝑝

𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/𝑞

[

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝑝(𝛽−1)

𝑡
𝑝(𝛾−1)

𝑘
𝜏
𝑘
]

1/𝑝

× [

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
)]

1/𝑞

.

(24)

By Lemma 1, it follows from the inequality above that

𝑥
𝑞

𝑛
≤ 2
𝑞−1

𝑎
𝑞

𝑛
+ 2
𝑞−1

𝜏[

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝑝(𝛽−1)

𝑡
𝑝(𝛾−1)

𝑘
𝜏
𝑘
]

𝑞/𝑝

× [

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
)] .

(25)

Considering
𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝑝(𝛽−1)

𝑡
𝑝(𝛾−1)

𝑘
𝜏
𝑘

≤ ∫

𝑡𝑛

0

(𝑡
𝛼

𝑛
− 𝑠
𝛼

)
𝑝(𝛽−1)

𝑠
𝑝(𝛾−1)

𝑑𝑠

=

𝑡
𝜃

𝑛

𝛼

𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1] ,

(26)

in which we apply Lemma 5, we have

𝑥
𝑞

𝑛
≤ 2
𝑞−1

𝑎
𝑞

𝑛
+ 2
𝑞−1

𝜏(

𝑡
𝜃

𝑛

𝛼

)

𝑞/𝑝

× (𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

× [

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
)] .

(27)

Let V
𝑛

= 𝑥
𝑞

𝑛
, 𝐴
𝑛

= 2
𝑞−1

𝑎
𝑞

𝑛
, and 𝐶

𝑛
= 2
𝑞−1

𝜏(𝑡
𝜃

𝑛
/𝛼)

𝑞/𝑝

(𝐵[(𝑝(𝛾 − 1) + 1)/𝛼, 𝑝(𝛽 − 1) + 1])
𝑞/𝑝. Obviously, 𝐴

𝑛
, 𝐶
𝑛
are

nondecreasing for 𝑛 ∈ N and 𝜔
𝑞

(V1/𝑞
𝑘

) satisfies assumption
(𝑆
3
). Equation (27) can be rewritten as

V
𝑛
≤ 𝐴
𝑛
+ 𝐶
𝑛
(

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
𝜔
𝑞

(V1/𝑞
𝑘

)) , (28)

which is similar to inequality (12). Using Lemma 4 to (28),
we have

V
𝑛
≤ [Ω
−1

(Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
)] , (29)
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for 0 ≤ 𝑛 ≤ 𝑁
1
, where Ω(𝑢) = ∫

𝑢

𝑢0

(1/𝜔
𝑞

(𝑠
1/𝑞

))𝑑𝑠, 𝑢 ≥ 𝑢
0
,

Ω
−1 is the inverse function ofΩ, and𝑁

1
is the largest integer

number such that

Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
∈ Dom (Ω

−1

) . (30)

Therefore, by 𝑥
𝑛
= V1/𝑞
𝑛

, (21) holds for 0 ≤ 𝑛 ≤ 𝑁
1
.

Remark 7. When 𝛼 = 1 and 𝛾 = 1, the inequality was
discussed by Medved [12] which is the special case of our
result. Moreover, his result holds under the assumption
“𝜔(𝑢) satisfies the condition (𝑞);” that is, “𝑒−𝑞𝑡[𝜔(𝑢)]𝑞 ≤

𝑅(𝑡)𝜔(𝑒
−𝑞𝑡

𝑢
𝑞

), where 𝑅(𝑡) is a continuous, nonnegative
function.” In our result, the condition (𝑞) is eliminated.

Corollary 8. Under assumptions (𝑆
1
) and (𝑆

2
), let ] > 0, 𝜇 >

0(] > 𝜇). If 𝑥
𝑛
is nonnegative such that

𝑥
]
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝑥
𝜇

𝑘
, (31)

then

𝑥
𝑛
≤
[

[

2
𝑞−1

𝑎
(]−𝜇)/]
𝑛

+

] − 𝜇

]
2
𝑞−1

𝜏(

𝑡
𝜃

𝑛

𝛼

)

𝑞/𝑝

×(𝐵[

𝑝 (𝛾−1) + 1

𝛼

, 𝑝 (𝛽−1)+1])

𝑞/𝑝𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘

]

]

1/(]−𝜇)𝑞

,

(32)

for 𝑛 ≥ 0.

Proof. Let 𝑦
𝑛
= 𝑥

]
𝑛
; then 𝑥

𝑛
= 𝑦
1/]
𝑛

or 𝑥𝜇
𝑛
= 𝑦
𝜇/]
𝑛

. From (31) we
have

𝑦
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝑦
𝜇/]
𝑘

. (33)

Denote 𝜔(𝑦
𝑘
) = 𝑦

𝜇/]
𝑘

. Clearly, 𝜔 satisfies assumption (𝑆
3
).

With the definition of Ω in Theorem 6, letting 𝑢
0
= 0, we

have

Ω (𝑢) = ∫

𝑢

0

𝑑𝑠

𝑠
𝜇/] =

]
] − 𝜇

𝑢
(]−𝜇)/]

, (34)

Ω
−1

(𝑢) = (

] − 𝜇

]
𝑢)

]/(]−𝜇)
, Dom (Ω

−1

) = [0,∞) . (35)

Substituting (34) and (35) into (29), we get

𝑦
𝑛
≤
[

[

2
𝑞−1

𝑎
(]−𝜇)/]
𝑛

+

] − 𝜇

]
2
𝑞−1

𝜏(

𝑡
𝜃

𝑛

𝛼

)

𝑞/𝑝

× (𝐵[

𝑝 (𝛾−1) + 1

𝛼

, 𝑝 (𝛽−1)+1])

𝑞/𝑝𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘

]

]

]/(]−𝜇)𝑞

.

(36)

In view of 𝑥
𝑛
= 𝑦
1/]
𝑛

, we can obtain (32).

Remark 9. In [15], Yang et al. investigated inequality (6).
Clearly, let 𝛼 = 1 and 𝛾 = 1 in (31), and we can get the same
formula.

Remark 10. Let ] = 2 and 𝜇 = 1; we can get the interesting
Henry’s version of the Ou-Iang-Pachpatte type difference
inequality [26]. Thus, our results are a more general discrete
analogue for such inequality.

Remark 11. Ma and Pečarić discussed the continuous case
of (2.15) in [27] and here we present the discrete version
of their result. Furthermore, the result in [27] is established
for the cases when the ordered parameter group [𝛼, 𝛽, 𝛾]

obeys distribution I or II (for details, see [27]) which makes
the application of inequality more inconvenient. Clearly, our
result is based on the concise assumption to overcome this
weakness.

Corollary 12. Under assumptions (𝑆
1
) and (𝑆

2
), if 𝑥

𝑛
is

nonnegative such that

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝑥
𝑘
, (37)

then

𝑥
𝑛
≤ 2
(𝑞−1)/𝑞

𝑎
𝑛

× exp(2
𝑞−1

𝑞

𝜏(

𝑡
𝜃

𝑛

𝛼

)

𝑞/𝑝

×(𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

,𝑝 (𝛽 − 1) + 1])

𝑞/𝑝 𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
) ,

(38)

for 𝑛 ≥ 0.

Proof. In (7), 𝜔(𝑢) = 𝑢 also satisfies assumption (𝑆
3
). Thus,

we have

Ω (𝑢) = ∫

𝑢

𝑢0

𝑑𝑠

𝑠

= ln 𝑢

𝑢
0

,

Ω
−1

(𝑢) = 𝑢
0
exp (𝑢) ,

Dom (Ω
−1

) = [0,∞) .

(39)

Similar to the computation in Corollary 8, estimate (38)
holds.

Now, we discuss inequality (8)

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝜎

𝑛
− 𝑡
𝜎

𝑘
)
𝜇−1

𝑡
𝜆−1

𝑘
𝜏
𝑘
𝑔
𝑘
𝑥
𝑘

+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) .

(40)



Abstract and Applied Analysis 5

Since there are two different parameter groups [𝜎, 𝜇, 𝜆] and
[𝛼, 𝛽, 𝛾], assumption (𝑆

1
) is revised as follows:

(𝑆
4
) 𝜎 ∈ (0, 1], 𝜇 ∈ (0, 1), 1 > (𝑝(𝜆−1)+1)/𝜎 ≥ 𝑝(𝜇−1)+

1 > 0 and 𝛼 ∈ (0, 1], 𝛽 ∈ (0, 1), 1 > (𝑝(𝛾− 1)+ 1)/𝛼 ≥

𝑝(𝛽 − 1) + 1 > 0 such that 1/𝑝 + 𝜎(𝜇 − 1) + 𝜆 − 1 ≥ 0

and 1/𝑝 + 𝛼(𝛽 − 1) + 𝛾 − 1 ≥ 0(𝑝 > 1).

Theorem 13. Under assumptions (𝑆
3
) and (𝑆

4
), suppose that

𝑔
𝑘
, 𝑏
𝑘
are nonnegative for 𝑛 ∈ N. If 𝑥

𝑛
is nonnegative such that

(8), then

𝑥
𝑛
≤ [Ω
−1

(Ω(2
𝑞−1

𝑎
𝑞

𝑛
𝑄
𝑞

𝑛
) + 2
𝑞−1

𝑄
𝑞

𝑛
𝜏(

𝑡
𝜃2

𝑛

𝛼

)

𝑞/𝑝

× (𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
)]

1/𝑞

,

(41)

for 0 ≤ 𝑛 ≤ 𝑁
2
, whereΩ andΩ−1 are defined as inTheorem 6,

𝑄
𝑛
= 2
(𝑞−1)/𝑞

× exp(2
𝑞−1

𝑞

𝜏(

𝑡
𝜃1

𝑛

𝜎

)

𝑞/𝑝

× (𝐵[

𝑝 (𝜆 − 1) + 1

𝜎

,𝑝 (𝜇−1)+1])

𝑞/𝑝 𝑛−1

∑

𝑘=0

𝑔
𝑞

𝑘
) ,

𝜃
1
= 𝑝 [𝜎 (𝜇 − 1) + 𝜆 − 1] + 1,

𝜃
2
= 𝑝 [𝛼 (𝛽 − 1) + 𝛾 − 1] + 1,

(42)

and𝑁
2
is the largest integer number such that

Ω(2
𝑞−1

𝑎
𝑞

𝑛
𝑄
𝑞

𝑛
) + 2
𝑞−1

𝑄
𝑞

𝑛
𝜏(

𝑡
𝜃2

𝑛

𝛼

)

𝑞/𝑝

× (𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
∈ Dom (Ω

−1

) .

(43)

Proof. By the definition of 𝑎
𝑛
, we have

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝜎

𝑛
− 𝑡
𝜎

𝑘
)
𝜇−1

𝑡
𝜆−1

𝑘
𝜏
𝑘
𝑔
𝑘
𝑥
𝑘

+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) .

(44)

Let

𝑃
𝑛
= 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) , (45)

which yields directly

𝑥
𝑛
≤ 𝑃
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝜎

𝑛
− 𝑡
𝜎

𝑘
)
𝜇−1

𝑡
𝜆−1

𝑘
𝜏
𝑘
𝑔
𝑘
𝑥
𝑘
. (46)

Using Corollary 12, from the inequality above, we get

𝑥
𝑛
≤ 2
(𝑞−1)/𝑞

𝑃
𝑛

× exp(2
𝑞−1

𝑞

𝜏(

𝑡
𝜃1

𝑛

𝜎

)

𝑞/𝑝

×(𝐵[

𝑝 (𝜆 − 1) + 1

𝜎

,𝑝 (𝜇 − 1)+1])

𝑞/𝑝 𝑛−1

∑

𝑘=0

𝑔
𝑞

𝑘
) ,

(47)

where 𝜃
1
= 𝑝[𝜎(𝜇 − 1) + 𝜆 − 1] + 1. Letting

𝑄
𝑛
= 2
(𝑞−1)/𝑞 exp(2

𝑞−1

𝑞

𝜏(

𝑡
𝜃1

𝑛

𝜎

)

𝑞/𝑝

× (𝐵[

𝑝 (𝜆 − 1) + 1

𝜎

, 𝑝 (𝜇 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑘=0

𝑔
𝑞

𝑘
) ,

(48)

from (47), we get

𝑢
𝑛
≤ 𝑃
𝑛
𝑄
𝑛

≤ 𝑎
𝑛
𝑄
𝑛
+ 𝑄
𝑛

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) .

(49)

Clearly, inequality (49) is similar to (7). According to
Theorem 6, we obtain

𝑥
𝑛
≤
[

[

Ω
−1

(Ω(2
𝑞−1

𝑎
𝑞

𝑛
𝑄
𝑞

𝑛
) + 2
𝑞−1

𝑄
𝑞

𝑛
𝜏(

𝑡
𝜃2

𝑛

𝛼

)

𝑞/𝑝

× (𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
)
]

]

1/𝑞

,

(50)

for 0 ≤ 𝑛 ≤ 𝑁
2
.
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Remark 14. Our result for inequality (8) is also the discrete
analogue of inequality (5). In fact, with the different choice
of the parameter groups [𝛼, 𝛽, 𝛾] and [𝜎, 𝜇, 𝜆] in [14], the
complicate results must be presented by four cases, respec-
tively. Apparently, compared to their results, our result is quite
simple.

3. Applications

In this section, we apply our results to discuss the upper
bound and the uniqueness of solutions of a Volterra type
difference equation with certain weakly singular kernels.

Example 15. Consider the following inequality:

𝑥
𝑛
≤

1

2

+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
−1/3

𝑡
−1/4

𝑘
𝜏
𝑘
𝑥
𝑘

+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
−1/3

𝑡
−1/3

𝑘
𝜏
𝑘
√𝑥
𝑘
.

(51)

Obviously, (51) is the special case of inequality (8), and we get

𝑎
𝑛
=

1

2

, 𝜎 = 1, 𝜇 =

2

3

, 𝜆 =

3

4

,

𝛼 = 1, 𝛽 =

2

3

, 𝛾 =

2

3

,

𝑔
𝑘
= 1, 𝑏

𝑘
= 1.

(52)

Next, we discuss the choice of parameter 𝑝. By assumption
(𝑆
4
), from the conditions 1 > (𝑝(𝜆−1)+1)/𝜎 ≥ 𝑝(𝜇−1)+1 > 0

and 1/𝑝 + 𝜎(𝜇 − 1) + 𝜆 − 1 ≥ 0, we have 1 < 𝑝 < 12/7. From
the conditions 1 > (𝑝(𝛾 − 1) + 1)/𝛼 ≥ 𝑝(𝛽 − 1) + 1 > 0 and
1/𝑝 + 𝛼(𝛽 − 1) + 𝛾 − 1 ≥ 0(𝑝 > 1), we have 1 < 𝑝 < 3/2.
Thus, we can take 𝑝 = 4/3; then 𝑞 = 4, 𝑞/𝑝 = 3. According to
Theorem 13, we obtain

𝑎
𝑛
=

1

2

, 𝜃
1
=

2

9

, 𝜃
2
=

1

9

,

𝐵 [

𝑝 (𝜆 − 1) + 1

𝜎

, 𝑝 (𝜇 − 1) + 1] = 𝐵 [

2

3

,

5

9

] ,

𝐵 [

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1] = 𝐵 [

5

9

,

5

9

] ,

𝑞 − 1

𝑞

=

3

4

,

2
𝑞−1

𝑞

= 2;

𝑄
𝑛
= 2
3/4 exp(2𝜏(𝑡2/9

𝑛
)

3

(𝐵 [

2

3

,

5

9

])

3

𝑛) ,

Ω (𝑢) = ∫

𝑢

0

𝑑𝑠

√𝑠

= 2√𝑢, Ω
−1

(𝑢) =

𝑢
2

4

,

2
𝑞−1

𝑎
𝑞

𝑛
𝑄
𝑞

𝑛
= 4 exp(8𝜏𝑡1/5

𝑛
𝐵
3

[

2

3

,

5

9

] 𝑛) .

(53)

Substituting the results above into (41), we can get the upper
bound of 𝑥

𝑛
and omit the details for its complicated formula.

Example 16. Consider the linear weakly singular difference
equation

𝑥
𝑛
= 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝑥
𝑘
, (54)

𝑦
𝑛
= 𝑐
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘
𝑦
𝑘
, (55)

where |𝑎
𝑛
− 𝑐
𝑛
| < 𝜖, 𝜖 is an arbitrary positive number, and the

parameter group [𝛼, 𝛽, 𝛾] satisfies assumption (𝑆
1
). From (54)

and (55), we get

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑎
𝑛
− 𝑐
𝑛

󵄨
󵄨
󵄨
󵄨
+

𝑛−1

∑

𝑘=0

(𝑡
𝛼

𝑛
− 𝑡
𝛼

𝑘
)
𝛽−1

𝑡
𝛾−1

𝑘
𝜏
𝑘
𝑏
𝑘

󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝑦
𝑘

󵄨
󵄨
󵄨
󵄨
,

(56)

which is the form of inequality (37). Applying Corollary 12,
we have
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 2
(𝑞−1)/𝑞

𝜖

× exp(2
𝑞−1

𝑞

𝜏(

𝑡
𝜃

𝑛

𝛼

)

𝑞/𝑝

× (𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1])

𝑞/𝑝

×

𝑛−1

∑

𝑘=0

𝑏
𝑞

𝑘
) ,

(57)

for 𝑛 ∈ N. If 𝑎
𝑛
= 𝑐
𝑛
, let 𝜖 → 0 and we obtain the uniqueness

of the solution of (54).
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