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Low rank matrices approximations have been used in link prediction for networks, which are usually global optimal methods and
lack of using the local information. The block structure is a significant local feature of matrices: entities in the same block have
similar values, which implies that links are more likely to be found within dense blocks. We use this insight to give a probabilistic
latent variable model for finding missing links by convex nonnegative matrix factorization with block detection. The experiments
show that this method gives better prediction accuracy than original method alone. Different from the original low rank matrices
approximations methods for link prediction, the sparseness of solutions is in accord with the sparse property for most real complex
networks. Scaling to massive size network, we use the block information mapping matrices onto distributed architectures and give
a divide-and-conquer prediction method.The experiments show that it gives better results than common neighbors method when
the networks have a large number of missing links.

1. Introduction

As a fundamental problem in the network researches, link
prediction attempts to estimate the likelihood of relationship
between two individuals by the study of observed links
and the property of nodes. Researches on the problem
can benefit a variety of fields. For example, researchers in
different areas can efficiently find their cooperative partners
or assistants. Security agencies can more precisely focus their
efforts on probable relationships in malicious networks. In
social networks, people can find companions based on the
prediction of their surrounding networks.

The natural framework of link prediction methods is
the similarity-based algorithm. Simple similarity-basedmea-
sures such as neighborhood-based measures, for example,
Adamic-Adar score [1] and common neighbors [2], require
consideration of the local structure of the networks. Recently,
a considerable amount of work which draws attention to
community structure and scalable proximity estimation [3,
4] gives good prediction accuracy. Some similarity-based
measures such as the path based methods, for example, Katz
[5] and Rooted PageRank [6, 7], which focus on the global
structure of the networks, are more effective but have a

high computational complexity. A new measure based on
neighbor communities has a good performance with a low
complexity [8]. Maximum likelihood estimation, such as
hierarchical structure model [3] and stochastic block model
[9, 10], presuppose some organizing principles of the network
structure. Some algorithms, such as probabilistic relational
models [11], probabilistic entity-relationship models [12],
and stochastic relational models [13], learn the underlying
structure from the observed network and then predict the
missing links. Lichtenwalter et al. [14] designed a flow based
method for link prediction, which is more localized. Low
rank matrices approximations can also be used in link
prediction for network [15–17]. Based on the technique of
cluster low rank approximation for massive graphs, Shin et
al. proposed a multiscale link prediction method [18], which
captures the information of global structure of network and
can handle massive networks quickly.

In order to capture the information of both global
structure and clustering structure of network, we consider
low rank approximations as well as blocks in networks’
adjacent matrices. Low rank approximations algorithms are
good techniques to get the global information of thematrices.
Meanwhile block structure is an important feature ofmatrices
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and it is often true that links in the same blocks have similar
properties. Indeed, links are easy to be found in dense blocks.
Good block detection algorithms have error tolerance: they
are unaffected by a few missing edges in a network. This
suggests that the principle of block detection could be applied
to edge prediction.

Theoretically, a probabilistic latent variable model is
proposed that combines both the concepts of block struc-
ture and low rank approximations for matrices. The model
provides a framework for predicting links. Firstly, any
modularity clustering algorithm can be used to generate
blocks, while the only limit is the computational complexity.
Then different from the low rank matrices approximations
algorithms already used for link predictions, we use a new
low rank matrices approximations algorithm named convex
nonnegative matrix factorization (CNMF) [19] to get the
predicting results within the blocks. The reason we use
CNMF is that the sparseness of solutions is in accord with
the sparse property for most real complex networks, so the
predicting results are more reliable. In small networks we
use 𝑘-means to detect the block structure of a network’s
adjacency matrix and average the prediction matrices for
some 𝑘 to get the predicting results. Experiments show that
ourmethod shows better performance. Scaling to themassive
size networks, it is infeasible to use CNMF directly for the
high computational complexity. In this case, we use the block
informationmapping matrices onto distributed architectures
and give a divide-and-conquer predictionmethod to embrace
distributed computing.

2. Background

The network of 𝑛 nodes can be represented mathematically
by an adjacency 𝑛 × 𝑛 matrix 𝐴. Here we set the diagonal
entries to be 1, whichmeans each node has a link to itself.This
adjacency matrix can be treated as an object-feature matrix.
Reduced rank method CNMF gives an approximation

𝐴 ≈ 𝐴𝑊𝐺, (1)

which has an interesting property: if 𝐴 is sparse, the factors
𝑊 and 𝐺 both tend to be sparse.

CNMF has a direct interpretation:𝑁×𝐿 (𝐿 ≪ 𝑁)matrix
𝐹 = 𝐴𝑊 is a convex combinations of the columns of 𝐴; thus
we could interpret its columns as weighted sums of certain
objects’ coordinates (the coordinate of 𝑖-object is given by 𝑖-
column of 𝐴). So the columns of 𝐹 can be treated as cluster
centroids of objects and𝑊 weights the association between
objects and clusters. Meanwhile 𝐺 measure the strength of
relationship between clusters and features; that is, 𝐺𝑘𝑖 = 1
if cluster 𝑘 has feature 𝑖; 𝐺𝑘𝑖 = 0 otherwise. So (𝐹𝐺)𝑖𝑗 can
measure the strength of relationship between object 𝑖 with
feature 𝑗 and then can be used to predict link between 𝑖 and
𝑗.

3. A Probabilistic Latent Variable Model

Although the background gives an intuitionistic interpre-
tation of CNMF used in link prediction, we still need

theoretical guarantee. Here we propose a probabilistic latent
variable model, and the model ensures that the probability of
a link between two nodes can be expressed as a combination
of CNMF and the block structure of a given adjacent matrix.

In probabilistic view, the observed network data is a real-
ization of an underlying probabilistic model, either because
it is itself the result of a stochastic process, or because the
sampling has uncertainty. We can think of the adjacent
matrices of network data 𝐴𝑜 = {𝐴

𝑜

𝑘
, 𝑘 = 1, . . . , 𝐾} as the

𝐾 object-feature matrices for objects {𝑥𝑖, 𝑖 = 1, . . . ,𝑀} and
features {𝑦𝑗, 𝑗 = 1, . . . , 𝑁}. In this paper, 𝐴𝑜 contains an
adjacency matrix and its blocks found by clustering methods
such as 𝐾-means. The joint occurrence probability of an
object and a feature can be factorized as

𝑃 (𝑋 = 𝑖, 𝑌 = 𝑗) =

𝐾

∑

𝑘=1

𝑃 (𝑋 = 𝑖 | 𝑌 = 𝑗, 𝐴 = 𝑘)

× 𝑃 (𝐴 = 𝑘 | 𝑌 = 𝑗) 𝑃 (𝑌 = 𝑗) ,

(2)

where 𝑋 is a variable for the index of objects, 𝑌 is a variable
for the index of features, and 𝐴 is a variable for the index of
sampling. 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗 | 𝐴 = 𝑘) is the joint occurrence
conditional probability given the observation 𝐴𝑜

𝑘
, and 𝑃(𝐴 =

𝑘) is the priori probability that 𝐴𝑜
𝑘
is observed.

Objects in real data are often organized into modules
or clusters and the probability that a object has a feature
depends on the groups to which they belong. These clusters
memberships are unknown to us. In the language of statistical
inference, they are latent variable. Assuming each cluster is a
combination of objects, the joint occurrence probability can
be factorized as

𝑃 (𝑋 = 𝑖, 𝑌 = 𝑗) =

𝐿

∑

𝑙=1

𝐾

∑

𝑘=1

𝑃 (𝑋 = 𝑖, 𝐴 = 𝑘, 𝐶 = 𝑙)

× 𝑃 (𝑌 = 𝑗 | 𝐴 = 𝑘, 𝐶 = 𝑙) ,

(3)

where 𝐶 is the variable for the index of cluster. Here, we
assume that the random variables 𝑋, 𝑌 are conditional
independent given 𝐶.

Define a random variable

𝑉𝑘𝑖𝑗 = {
1, (𝑋 = 𝑖, 𝑌 = 𝑗, 𝐴 = 𝑘) occurrence;
0, else.

(4)

If observing once, the expected value is

𝐸 (𝑉𝑘𝑖𝑗) = 𝑃 (𝑋 = 𝑖, 𝑌 = 𝑗, 𝐴 = 𝑘) . (5)

Let 𝑍𝑖𝑗 be a random variable of the occurrence frequency of
(𝑋 = 𝑖, 𝑌 = 𝑗) in observing ∑𝐾

𝑘=1
(∑
𝑠,𝑡
𝐴
𝑜

𝑘𝑠𝑡
) times. Then the

expected value is

𝐸 (𝑍𝑖𝑗) = (

𝐾

∑

𝑘=1

∑

𝑠,𝑡

𝐴
𝑜

𝑘𝑠𝑡
)𝐸(𝑉𝑘𝑖𝑗)

= (

𝐾

∑

𝑘=1

∑

𝑠,𝑡

𝐴
𝑜

𝑘𝑠𝑡
)𝑃 (𝑋 = 𝑖, 𝑌 = 𝑗, 𝐴 = 𝑘)
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=

𝐿

∑

𝑙=1

(

𝐾

∑

𝑘=1

∑

𝑠,𝑡

𝐴
𝑜

𝑘𝑠𝑡
)𝑃 (𝑋 = 𝑖 | 𝐴 = 𝑘, 𝐶 = 𝑙)

× 𝑃 (𝑌 = 𝑗 | 𝐴 = 𝑘, 𝐶 = 𝑙) 𝑃 (𝐴 = 𝑘, 𝐶 = 𝑙)

=

𝐿

∑

𝑙=1

(

𝐾

∑

𝑘=1

∑

𝑠,𝑡

𝐴
𝑜

𝑘𝑠𝑡
)𝑃 (𝑋 = 𝑖, 𝐴 = 𝑘, 𝐶 = 𝑙)

× 𝑃 (𝑌 = 𝑗 | 𝐴 = 𝑘, 𝐶 = 𝑙) .

(6)
For the reason of interpretability, we suppose the joint

concurrent probability of 𝑖th object, 𝑙th cluster, and 𝑘th data
sampling is given by a combination of data 𝐴𝑜

𝑘
as follows:

𝑃 (𝑋 = 𝑖, 𝐴 = 𝑘, 𝐶 = 𝑙) =
∑
𝑁

𝑡=1
𝐴
𝑜

𝑘𝑖𝑡
𝑊𝑘𝑡𝑙

∑
𝐾

𝑘=1
∑
𝑠,ℎ
𝐴𝑜
𝑘𝑠ℎ

, (7)

where𝑊𝑘𝑡𝑙 ≥ 0 and

∑

𝑖,𝑙

(

𝑁

∑

𝑡=1

𝐴
𝑜

𝑘𝑖𝑡
𝑊𝑘𝑡𝑙) = ∑

𝑠,ℎ

𝐴
𝑜

𝑘𝑠ℎ
. (8)

Constraint (8) ensures that the probability defined by (7) is
well defined.

This constraint has the advantage that we could interpret
𝑃(𝑋 = 𝑖, 𝐴 = 𝑘, 𝐶 = 𝑙) as weighted sums of certain joint
concurrence probability of object, features, and data, given by

𝑃 (𝑋 = 𝑖, 𝑌 = 𝑡, 𝐴 = 𝑘) =
𝐴
𝑜

𝑘𝑖𝑡

(∑
𝐾

𝑘=1
∑
𝑠,ℎ
𝐴𝑜
𝑘𝑠ℎ
)
. (9)

Therefore, (6) can be expressed as

𝐸 (𝑍𝑖𝑗) =

𝐾

∑

𝑘=1

𝐿

∑

𝑙=1

𝑁

∑

𝑡=1

𝐴
𝑜

𝑘𝑖𝑡
𝑊𝑘𝑡𝑙𝐺𝑘𝑙𝑗, (10)

where 𝐺𝑘𝑙𝑗 = 𝑃(𝑌 = 𝑗 | 𝐴 = 𝑘, 𝐶 = 𝑙). Our goal is to compute
two 3-order tensors𝑊 and 𝐺.

If we are only inputting the adjacencymatrix, we can drop
the index for sampling; then

𝐸 (𝑍𝑖𝑗) =

𝐿

∑

𝑙=1

𝑁

∑

𝑡=1

𝐴
𝑜

𝑖𝑡
𝑊𝑡𝑙𝐺𝑙𝑗. (11)

Equation (11) can be expressed by matrix as

(𝐸 (𝑍𝑖𝑗)) = 𝐴
𝑜
𝑊𝐺. (12)

Now, we show that this factorization is equivalent to CNMF.
In fact, for any CNMF solution (�̃�, 𝐺), ∑𝑁

𝑗=1
𝐺𝑙𝑗 = 1

does not hold and ∑𝑁
𝑗=1
�̃�𝑗𝑙 = 1 holds for any 𝑙. Let 𝐷𝐺 be

the diagonal matrix, containing the row sums of 𝐺. We say
that the matrix �̃�𝐷

𝐺
approximately satisfies (8). This can be

proved as follows:
𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝐴
𝑜

𝑖𝑗
≈

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝐿

∑

𝑙=1

𝑁

∑

𝑡=1

𝐴
𝑜

𝑖𝑡
(�̃�𝑡𝑙𝐷𝐺𝑙𝑙) (𝐷

−1

𝐺𝑙𝑙
𝐺𝑙𝑗)

=

𝑀

∑

𝑖=1

𝐿

∑

𝑙=1

𝑁

∑

𝑡=1

𝐴
𝑜

𝑖𝑡
(�̃�𝑡𝑙𝐷𝐺𝑙𝑙) .

(13)

So the factorization

(𝐸 (𝑍𝑖𝑗)) = 𝐴
𝑜
(�̃�𝐷
𝐺
) (𝐷
−1

𝐺
𝐺) (14)

satisfies the condition of (11). If we are also inputting blocks,
(10) can be solved as

(𝐸 (𝑍𝑖𝑗)) =

𝐾

∑

𝑘=1

𝐴
𝑜

𝑘
�̃�𝑘𝐺𝑘, (15)

where �̃�𝑘 and 𝐺𝑘 are solutions of CNMF for 𝐴𝑜
𝑘
. This can be

proved as the case of only inputting the adjacency matrix.
The algorithm of CNMF gives a global optimal solution

to min ‖𝐴 − 𝐴𝑊𝐺‖2.The computational complexity of it (the
most time-consuming step in our method) for𝑀×𝑁matrix
is of order (𝑁2𝑀+ 𝑡(2𝑁

2
𝐿 + 𝑁𝐿

2
)) for 𝐾 × 𝐾 factor𝑊 and

is of order 𝑡(2𝑁2𝐿 + 2𝑁𝐿2) for𝐾×𝑁 factor 𝐺, where 𝑡 is the
number of iterations [19].

4. Algorithms

Inputting the network data, the missing link prediction by
calculating (15) has three steps. First, partition the observed
adjacent matrix into 𝑘2 blocks, using any modularity cluster-
ing algorithms. Secondly, the predicting matrix is given by
doing CNMF to approximate each block. Thirdly, sum the
corresponding entities of predictingmatrices for all 𝑘 tomake
the final prediction. In small networks, We call our method
𝐾-CNMF, as we use 𝐾-means to partition the matrix. The
diagram of𝐾-CNMF for 𝑘 = {1, 2, 3, . . .} is shown in Figure 1.

The purpose of the first step is to use several scales
structures information of the observed network. For small
networks, CNMF approximation can be computed directly
on the original matrix (block generated by 𝐾-means with
𝑘 = 1) to use the global information. A simple interpretation
of our method is that if an edge is predicted to exist in many
scales, it should be a missing link with high probability. The
input of𝐾-CNMF also needs two parameters: desired rank 𝐿
and scale parameter 𝐾. Algorithm 1 shows the algorithm for
𝐾-CNMF.

When predicting links in massive size network, 𝐾-
means is unsuitable for high dimensional data clustering.
Meanwhile, the high computational complexity of CNMF
makes it also infeasible to be used on the large adjacentmatrix
directly. So we use fast modularity clustering algorithm [20]
to generate blocks. Based on block structures, we give a
divideand-conquer algorithm (𝑀-CNMF) to predict links,
which is shown in Algorithm 2. The algorithm works by
partitioning a matrix into blocks which are small enough
for CNMF directly. Then the predicting results for the small
blocks are combined to give the final predicting result for
the original matrix. In order to give a solution for CPU
load balancing, the size of blocks should be similar, which
is achieved by splitting the large blocks and combining the
small blocks to make their sizes in the neighborhood of a
given threshold.
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Figure 1: Diagram of 𝐾-CNMF.

input: 𝐴𝑜//observed network
𝐿, 𝐾//desired rank, scale parameter

output: 𝐴//predicting matrix
𝐴 = (0)

for 𝑘 in range of (1, 𝐾)
do 𝐾-means to partition matrix into 𝐵 = {𝐵1, . . . , 𝐵𝑘2 }
for block 𝐵𝑖 ∈ 𝐵

do CNMF with rank min(𝑐𝑜𝑙(𝐵𝑖), 𝑟𝑜𝑤(𝐵𝑖), 𝐿)
𝐴 = 𝐴 + 𝐵𝑖𝑊𝐺//sum the corresponding entities

end for
end for

Algorithm 1: Algorithm for 𝐾-CNMF.

5. Experiments and Comparison

In general, links between different nodes may have different
weights in networks, representing their relative importance in
the network. In our experiments, we set all weights to be one
and get the original adjacency matrix𝐴𝑇 of the network.The
observed network 𝐴𝑜 is generated by removing a fraction of
links randomly from the original network 𝐴𝑇, which will be
called the missing edges. Then we use the two algorithms𝐾-
CNMF and𝑀-CNMF to get the probability of links between
nodes, which appears to be links’ weight in the observed
network.

5.1. Evaluation Method. To measure the accuracies of link
prediction methods, the main metric we use is AUC [21],
area under the receiver operating characteristic (ROC) curve,
which is widely used in the machine learning and social
network communities. If we rank pairs of nodes in order
of decreasing, AUC is mean value of the probability that a
missing link (𝐴𝑜

𝑖𝑗
= 0 & 𝐴𝑇

𝑖𝑗
̸= 0) has a higher ranking than a

nonexistent link (𝐴𝑇
𝑖𝑗
= 0). In practice, we do 𝑛 independent

comparisons. At each time we randomly pick a missing link
and a nonexistent link to compare their ranking. If there
are 𝑛0 times the missing link has a higher ranking than the
missing one and 𝑛∗ times they have the same ranking, the
AUC value is

input: 𝐴𝑜//observed network
𝐿, 𝐾//desired rank, scale parameter

output: 𝐴//predicting matrix
𝐴 = (0)

find community structure 𝐶 = {𝐶1, . . . , 𝐶𝑚}
for 𝐶𝑖 ∈ 𝐶

if size(𝐶𝑖) > 𝐾
divide 𝐶𝑖 into int(size(𝐶𝑖)/𝐾 + 1) equal parts
append each part to 𝐶
delete 𝐶𝑖

end if
end for
for 𝐶𝑖 ∈ 𝐶

if size(𝐶𝑖) < 𝐾
for 𝐶
𝑗
∈ 𝐶, 𝑖 ̸= 𝑗

if size(𝐶𝑖 ∪ 𝐶𝑗) < 𝐾
𝐶𝑖 = 𝐶𝑖 ∪ 𝐶𝑗

delete 𝐶𝑗
end if

end for
end if

end for
partition matrix into 𝐵 = {𝐵1, . . . , 𝐵|𝐶|2 } by 𝐶
for block 𝐵𝑖 ∈ 𝐵

do CNMF with rank min(𝑐𝑜𝑙(𝐵𝑖), 𝑟𝑜𝑤(𝐵𝑖), 𝐿)
𝐴 = 𝐴 + 𝐵𝑖𝑊𝐺//sum the corresponding entities

end for

Algorithm 2: Algorithm for𝑀-CNMF.

AUC = 𝑛
0
+ 0.5𝑛

∗

𝑛
. (16)

Themissing links fraction𝑓 ranges from 0.05 to 0.95, and
the interval is set at 0.05.

5.2. Methods Used to Compare. We compare our algorithm
with three prediction methods: Common Neighbors, Block
Model, and Hierarchical Random Graphs.
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Figure 2: Comparison of 𝐾-CNMF for different 𝐾.

(1) Common Neighbors (CN) [2]. If two nodes, 𝑎 and 𝑏 have
many common neighbors, they are more likely to have a link.
The measure of this is

𝑠𝑎𝑏 = ‖𝜏 (𝑎) ∩ 𝜏 (𝑏)‖ , (17)

where 𝜏(𝑎) is the set of neighbors of 𝑎.
(2) Block Model (BM) [4]. In block models, nodes are
partitioned into groups and the connecting probability of two
nodes only depends on the groups they belong to. Given a
partition 𝑃 of the network, 𝑙𝑜

𝛼𝛽
is the number of edges in the

observed network between nodes in groups 𝛼 and 𝛽, and 𝑟𝛼𝛽
is the maximum possible number of links between 𝛼 and 𝛽.
The reliability of an individual link is

𝑝 (𝐴 𝑖𝑗 = 1 | 𝐴
𝑜
) =

1

𝑍
∑

𝑃∈P

(

𝑙
𝑜

𝜎
𝑖
𝜎
𝑗

+ 1

𝑟𝜎
𝑖
𝜎
𝑗

+ 2
) exp (−H (𝑃)) , (18)

where the sum is over partitions 𝑃 in the spaceP of all pos-
sible partitions of the network, 𝜎𝑖 is node 𝑖’s group, H(𝑃) =
∑
𝛼≤𝛽
(ln(𝑟𝛼𝛽 + 1) + ln𝐶

𝑙
𝑜

𝛼𝛽

𝑟
𝛼𝛽
), and 𝑍 = ∑

𝑃∈P exp(−H(𝑃)).

(3) Hierarchical Random Graphs (HRG) [3]. The hierarchical
structure of a network can be represented by a dendrogram
with 𝑛 leaves (the vertices from the given network) and 𝑛 − 1
internal nodes. A probability 𝑝𝑟 is associated with internal
node 𝑟 and the connecting probability of a pair of leaves is
equal to 𝑝𝑟, where 𝑟 is the deepest common ancestor of these
two leaves. HRG combines the maximum likelihood method
and Markov chain Monte Carlo method to sample the
hierarchical structure with probability proportional to their
likelihood from the observed network and then calculate
𝑝𝑟.



6 Journal of Applied Mathematics

0.1 0.2 0.3 0.4 0.5

Fraction of missing edges

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
AU

C

CNMF
CN

BM
HRG

(a) Karate

0.1 0.2 0.3 0.4 0.5

Fraction of missing edges

CN
BM
HRG

0.65

0.7

0.75

0.8

0.85

AU
C

K-CNMF

(b) Dolphins

0.1 0.2 0.3 0.4 0.5
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Fraction of missing edges

AU
C

K-CNMF
CN

BM
HRG

(c) Les-mis

0.1 0.2 0.3 0.4 0.5

Fraction of missing edges

CN
BM
HRG

0.86

0.88

0.9

0.92

0.94

0.96

0.98

AU
C

CNMF

(d) US-Air

Figure 3: Comparison of 𝐾-CNMF with CN, BM, and HRG.

5.3. Performance of 𝐾-CNMF. We evaluate the performance
of 𝐾-CNMF using four high-quality small networks, and
they are listed in Table 1: the social network of interactions
between people in a karate club [22], the social network of
frequent associations between dolphins [23], the air trans-
portation network of USA, the coappearance network of
characters in the novel Les Miserables [24], and a network of
hyperlinks between weblogs on US politics [25]. Each AUC is
obtained by averaging over 100 independent realizations.

Communities are basic structure in networks, which is
widely used to predict missing links. Using block structure,
our combined method is also dependent on communities
of the networks. As Figures 2(a) and 2(b) show, 𝐾-CNMF
(𝐿 = 2, 𝐾 = 3) performs much better than CNMF (𝐿 = 2)
alone on Karate and Les-Mis, because both of those networks
havemore than two communities. However the enhancement
by block structure is small on PB with desired rank 𝐿 = 2
(see Figure 2(c)), which has two main communities. As the

Table 1: Networks.

Name Nodes Edges Average degree
Karate club 34 78 4.588
Dolphins 62 159 5.129
Les Miserables 77 254 6.597
Politics weblogs 1490 19025 22.436
US-Air 97 332 2126 12.807
Power 4941 6594 2.669

desired rank increases, the enhancement by block structure
decreases. That is because the local information can be
revealed by the richness of clustering structures given by
CNMF with high desired rank. So the enhancement is also
small on US-Air (nodes: 332) with desired rank 𝐿 = 300 (see
Figure 2(d)).
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Figure 4: Comparison of𝑀-CNMF with CN.

Will more block information usage bring more accu-
racy?

If partitioning matrix into too small blocks, 𝐾-CNMF
will have too many parameters relative to the observed data,
and then overfitting will occur. An overfittedmodel describes
noise instead of the underlying relationship and generally
has poor predictive performance. From the performance of
𝐾-CNMF (𝐿 = 62) with different 𝐾 on Dolphins (see
Table 2), we can see that 𝐾-CNMF (𝐿 = 62,𝐾 = 1) has
revealed enough local information, and increasing 𝐾 caused
overfitting.

Figure 3 shows the comparison of 𝐾-CNMF with CN,
BM, and HRG on Karate (inputting parameters of𝐾-CNMF:
𝐾 = 3, 𝐿 = 34) and Dolphins (𝐾 = 1, 𝐿 = 62), Les-Mis
(𝐾 = 40, 𝐿 = 50), and US-Air (𝐾 = 3, 𝐿 = 300). 𝐾-CNMF
performs better than CN, because it concerns the property
of both local and global information. The performance of

Table 2: Results for predicting missing links: AUC of 𝐾-CNMF on
Dolphins with 𝐾 = 1, 2, 3, 𝐿 = 62.

𝑓 𝐾 = 1 𝐾 = 2 𝐾 = 3

0.05 0.818327 0.809745 0.799961
0.10 0.805632 0.802360 0.795246
0.15 0.798197 0.793669 0.786697
0.20 0.792776 0.786535 0.778436
0.25 0.782948 0.77611 0.773828
0.30 0.777660 0.769801 0.758317
0.35 0.759993 0.759392 0.761205
0.40 0.750356 0.742400 0.732967
0.45 0.728203 0.725031 0.717759
0.50 0.715353 0.720560 0.705817

𝐾-CNMF is comparable with BM and HRG, but faster, as it
does not need Monte Carlo samplings.
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Figure 5: Comparison of partition methods.

5.4. Performance of𝑀-CNMF. We examine the performance
of 𝑀-CNMF by the main components of four real-world
networks: Arxiv GR-QC collaboration network (inputting
parameters: 𝐿 = 2, 𝐾 = 1000) [26], the Western States Power
Grid of the United States (𝐿 = 2, 𝐾 = 250) [27], Enron email
network (𝐿 = 2, 𝐾 = 2000) [28], and the subnetwork of EU
email communication network generated by email form the
first 5000 nodes to first 10000 nodes (𝐿 = 2, 𝐾 = 2000) [26].

Comparisons are made only between 𝑀-CNMF and
CN, for the reason that BM and HRG are not suitable for
large networks. Figure 4 shows the comparison of𝑀-CNMF
with CN. The performances of 𝑀-CNMF are better than
CN when the observed networks are much sparse, because
common neighbors miss too much in sparse case and CN
only concerns this property. In the power network, our
method is obviously better than CN, because the original
network is sparse.

Figures 5(a) and 5(b) show the comparison ofAUC results
between 𝑀-CNMF and 𝐾-CNMF on Karate and Dolphins,
respectively, where 𝐾 = 2, 𝐿 = 2. There are no obvious rules
that different modularity clustering algorithms will influence
the results of AUC.

6. Conclusions

We have introduced a probabilistic latent variable model for
finding missing edges, which combines convex nonnegative
matrix factorization with block structures detection. It is
inspired by two properties of block structure formatrices: the
facts that entities in the same block tend to be similar and that
good block detection algorithms have tolerance to missing
edges. Scaling tomassive size network, we use fastmodularity
clustering algorithm to generate blocks and give a divide-and-
conquer algorithm (𝑀-CNMF) for predicting links. For the
load balancing of CPU, we split the large blocks and combine
the small blocks to make their sizes in the neighborhood of a
given threshold.

Since most applications of link prediction are facing
the problems of sparse data, such as personalized recom-
mendation, we plan to combine other sparse low rank
approximation algorithms with block detection methods to
get effective link prediction algorithms for massive networks
in the future.
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