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This editorial provides a brief review of some concepts related
to the subject of the papers published in this special issue
devoted to the onset of nonlinear dynamics in systems of the
applied sciences. Nonlinear dynamics is currently an active
and fashionable discipline that is having a profound effect
on a wide variety of fields, including populations dynamics,
physics, biology, economics, and sociology.

The origin of nonlinear dynamics is related to the gravita-
tional three-body problem [1], which attempts to calculate the
orbit of a planet around the sun in presence of two celestial
bodies (planets or moon). In particular, the presence of a
third celestial body can influence the dynamics of the plane
and produce highly irregular dynamics (chaotic); see [2-4].

However, the development of a mathematical apparatus
for irregular (hyperbolic) dynamics comes from mathemati-
cians and theoretical physicists of the Russian school; see the
review paper [5] and the reference cited therein. Moreover
the development of high speed computers has also allowed
for displaing the complex behavior of the solutions visually.

Nowadays, nonlinear dynamics can be found in almost
every branch of the applied science. It includes systems in
which feedback, iterations, nonlinear interactions, and the
general dependency of each part of the system upon the
behavior of all other parts demand the use of nonlinear
differential equations rather than the well-known linear
differential equations, for example, Bellman equation [6]
(with applications in economics [7]), Boltzmann equation [8]

(with applications to gas dynamics), Colebrook equation [9]
(with applications to turbulence), Ginzburg-Landau equa-
tion [10] (with applications to superconductors), Navier-
Stokes equation [11] (with applications to fluid dynamics),
Korteweg-De Vries equation [12] (for models of waves on
shallow water surfaces), Sine-Gordon equation [13] (with
applications to the study of crystal dislocations), Landau-
Lifshitz-Gilbert equation [14] (with application to the preces-
sional motion of magnetization in a solid), Ishimori equation
[15], Vlasov equation [16] (with applications in plasma), non-
linear Schrodinger equation [17] (with applications to optics
and water waves), Lienard equation [18] (with applications
to oscillating circuits), Solow equation [19] (with applications
to the economy), and Cournot-Bertrand equation [20] (with
applications to the economy), Matsumoto-Nonaka equation
[21] (with applications to the economy), Kaleckian equation
[22] (with applications to the economy), Dullin-Gottwald-
Holm equation [23] (with applications to the propaga-
tion of surface waves in a shallow water regime), Lotka-
Volterra equation [24] (with applications in biology and eco-
nomics), and thermostatted kinetic equations (with applica-
tions to physics, biology, vehicular traffic, crowds and swarms
dynamics, and social and economic systems); see papers
[25-34] and the review [35].

The motions involved in nonlinear equations are not
simply combinations of a bunch of simpler motions. More-
over the dynamics involving nonlinear (ordinary, partial, or
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integro) differential equations are extremely different, and
the related mathematical methods and analysis are problem
dependent. Numerical simulations are also carried out for
supporting the results.

The qualitative analysis of nonlinear ordinary differen-
tial equations is usually performed by searching conserved
quantities (an approach that is typically used in Hamiltonian
systems) and/or dissipative quantities. Linearization of the
equations by Taylor expansion, change of variables, bifur-
cation theory, and perturbation methods is the most used
approaches.

Nonlinear partial differential equations are qualitatively
analyzed by using change the variables, separation of vari-
ables, and integral transforms. Other methods include the
examination of the characteristics curves, and scale analysis
(typically in fluid and heat mechanics) that allows, in some
cases, for simplifing the nonlinear Navier-Stokes equations.

The nonlinear dynamics that appear in the above men-
tioned equations, and in the papers of this special issues,
include highly sensitive to initial conditions (chaos dynamics,
see; among others, papers [36-38]); anomalous transport (see
paper [39] and references cited therein); alternating between
two or more exclusive states (multistability; see [40, 41]); ape-
riodic oscillations (known as chaotic oscillations; see papers
[42, 43] and the references section); amplitude death (com-
plete cessation of oscillations; see [44, 45]); solitons (self-
reinforcing solitary wave; see [46]); bifurcations (changes in
the qualitative or topological property).

In this special issue, the tools of nonlinear dynamics
have been used in attempts to better understand irregularity
in diverse mathematical models of population dynamics,
physics, biology, and economy. The interested reader is
addressed to explore these interesting and fascinating results
further. Moreover applications can refer to more research
fields.

The guest editors of this special issue hope that problems
discussed and investigated in the papers by the authors of this
issue can inspire and motivate researchers in these fields to
discover new, innovative, and novel applications in all areas
of pure and applied mathematics.
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