
Research Article
Existence of Multiple Solutions for
Fourth-Order Elliptic Problem

Hua Gu and Tianqing An

College of Science, Hohai University, Nanjing 210098, China

Correspondence should be addressed to Hua Gu; guhuasy@hhu.edu.cn

Received 11 April 2014; Accepted 11 August 2014; Published 28 August 2014

Academic Editor: Felix Sadyrbaev

Copyright © 2014 H. Gu and T. An. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By using the variant fountain theorem, we study the existence ofmultiple solutions for a class of superquadratic fourth-order elliptic
problem with Navier boundary value condition.

1. Introduction

Consider the following fourth-order boundary value prob-
lem:

Δ
2
𝑢 + 𝑐Δ𝑢 = 𝑔 (𝑥, 𝑢) in Ω,

𝑢 = Δ𝑢 = 0 on 𝜕Ω,

(1)

where Δ2 denotes the biharmonic operator,Ω ⊂ R𝑁
(𝑁 > 4)

is a bounded domain with smooth boundary, and 𝑔 ∈ 𝐶(Ω ×

R,R).
The fourth-order elliptic equations which contain a

biharmonic operator can describe the static form change of
beam or the motion of rigid body. Thus the fourth-order
elliptic equations are widely applied in physics, oceanics,
aerospace engineering and other engineering. In [1], Lazer
and Mckenna considered the biharmonic problem:

Δ
2
𝑢 + 𝑐Δ𝑢 = 𝑑 [(𝑢 + 1)

+
− 1] in Ω,

𝑢 = Δ𝑢 = 0 on 𝜕Ω,

(2)

where 𝑢+ = max{𝑢, 0} and 𝑑 ∈ R. They pointed out that
this type of nonlinearity furnishes a model to study traveling
waves in suspension bridges. Afterwards, in [2], they have
proved the existence of 2𝑘 − 1 solutions when 𝑁 = 1 and
𝑑 > 𝜆

𝑖
(𝜆

𝑖
− 𝑐) ({𝜆

𝑖
}
𝑖≥1

is the sequence of the eigenvalues
of −Δ in 𝐻

1

0
(Ω)) by the global bifurcation method. In [3]

the existence of a negative solution of (2) was proved when

𝑑 > 𝜆
1
(𝜆

1
− 𝑐) by using the Leray-Schauder degree. In

particular, in [1, 4] the authors observed that problem (2)
was interesting also when the nonlinearity (𝑢 + 1)

+
− 1 was

replaced by a somewhat more general function 𝑔(⋅, 𝑢). In [5],
Micheletti and Pistoia used a variational linking theorem to
investigate the existence of two solutions for a more general
nonlinearity 𝑔(⋅, 𝑢). Moreover, by using a variational result,
they and Saccon also showed the existence of three solutions
for some special 𝑔(⋅, 𝑢) (see [6]). Next year, in [7], Micheletti
and Saccon obtained two results about the existence of two
nontrivial solutions and four nontrivial solutions by the
similar variational approach, depending on the position of
a suitable parameter with respect to the eigenvalues of the
linear part. In recent years, more researchers have used
variational approach to investigate the fourth-order elliptic
equations. In [8], Xu and Zhang studied the existence of
positive solutions of problem (1) when 𝑔 satisfied the local
superlinearity and sublinearity condition and 𝑐 < 𝜆

1
by

the classical mountain pass theorem. Recently, in [9], Pu et
al. used the least action principle, the Ekeland variational
principle, and the mountain pass theorem to prove the
existence and multiplicity of solutions of (1) when 𝑔(𝑥, 𝑢) =
𝑎(𝑥)|𝑢|

𝑠−2
𝑢 + 𝑓(𝑥, 𝑢) (𝑎 ∈ 𝐿

∞
(Ω), 𝑠 ∈ (1, 2)). For other

related results, see [8–14] and the references therein. Here, we
emphasize that most authors considered the case 𝑐 < 𝜆

1
.

The variant fountain theorems established in [15] have
been used in the study of a class of semilinear elliptic equa-
tions (see [16, 17]) and the investigation of the Hamiltonian
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system (see [18, 19]). Inspired by [9, 17], we will use the
variant fountain theorem to investigate the problem (1). More
precisely, we make the following assumptions.

(S
1
) There exist constants 𝑑

1
> 0 and 1 < ] < (𝑁+4)/(𝑁−

4) such that

𝑔 (𝑥, 𝑢)
 ≤ 𝑑

1
(1 + |𝑢|

]
) , ∀ (𝑥, 𝑢) ∈ Ω ×R. (3)

(S
2
) 𝐺(𝑥, 𝑢) ≥ 0 for all (𝑥, 𝑢) ∈ Ω ×R and

lim inf
|𝑢|→∞

𝐺 (𝑥, 𝑢)

|𝑢|
2

= ∞, uniformly for 𝑥 ∈ Ω. (4)

Here, 𝐺(𝑥, 𝑢) := ∫
𝑢

0
𝑔(𝑥, 𝑠)𝑑𝑠 is the primitive of the

nonlinearity 𝑔.

(S
3
) There exist constants  > (2𝑁/(𝑁 + 4))], 𝐿 > 0 and
𝑑
3
> 0 such that

𝑢𝑔 (𝑥, 𝑢) − 2𝐺 (𝑥, 𝑢) ≥ 𝑑
3|𝑢|


∀ |𝑢| ≥ 𝐿, 𝑥 ∈ Ω. (5)

Our main result is the following theorem.

Theorem 1. Assume that (𝑆
1
)–(𝑆

3
) hold and𝐺(𝑥, 𝑢) is even in

𝑢. Then problem (1) possesses infinitely many solutions.

Remark 2. In Theorem 1, we do not assume 𝑐 < 𝜆
1
,

which is widely used in the investigation of the fourth-order
equations. As is known, the so-called global Ambrosetti-
Rabinowitz condition (AR-condition for short) is introduced
by Ambrosetti and Rabinowitz in [20] and wildly used to
the existence of infinitely many solutions for superquadratic
situation: there is a constant 𝛼 > 2 such that, for all 𝑢 ̸= 0 and
𝑥 ∈ Ω, the nonlinearity is assumed to satisfy

0 < 𝛼𝐺 (𝑥, 𝑢) ≤ 𝑢𝑔 (𝑥, 𝑢) . (6)

In fact, if we choose

𝐺 (𝑥, 𝑢) = 𝐻 (𝑥) (|𝑢|
𝜇
+ (𝜇 − 2) |𝑢|

𝜇−𝜀sin2 (|𝑢|
𝜀

𝜀
)) , (7)

where 𝜀 ∈ (0, 𝜇 − 2),𝐻 ∈ 𝐶(Ω), and𝐻(𝑥) > 0 for all 𝑥 ∈ Ω.
Then it is easy to see that 𝐺 satisfies the conditions (𝑆

1
)–(𝑆

3
)

in Theorem 1 with 𝜇 = 3, ] = 2, 𝜀 = 0.1,  = 2.9, and𝑁 = 5,
but 𝐺 does not satisfy the AR-condition (6).

Remark 3. By (𝑆
1
), we can obtain that there exists a constant

𝑑
2
> 0 such that

|𝐺 (𝑥, 𝑢)| ≤ 𝑑
1
(|𝑢| + |𝑢|

]+1
) + 𝑑

2
, ∀ (𝑥, 𝑢) ∈ Ω ×R. (8)

And by (𝑆
3
), there exists a constant 𝑑

4
> 0 such that

𝑢𝑔 (𝑥, 𝑢) − 2𝐺 (𝑥, 𝑢) ≥ 𝑑
3|𝑢|


− 𝑑

4
, ∀ (𝑥, 𝑢) ∈ Ω ×R. (9)

2. Preliminaries

In this section, we will establish the variational setting for our
problem and state a variant fountain theorem.

Let 𝐸 = 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) be the Hilbert space equipped

with the inner product

(𝑢, V)
𝐸
= ∫

Ω

Δ𝑢ΔV 𝑑𝑥 (10)

and the norm

‖𝑢‖𝐸 = (𝑢, V)1/2
𝐸
. (11)

A weak solution of problem (1) is a 𝑢 ∈ 𝐸 such that

∫
Ω

(Δ𝑢ΔV − 𝑐 ⟨∇𝑢, ∇V⟩) 𝑑𝑥 − ∫
Ω

𝑔 (𝑥, 𝑢) V𝑑𝑥 = 0 (12)

for any V ∈ 𝐸. Here and in the sequel, ⟨⋅, ⋅⟩ always denotes
the standard inner product in R𝑁. Let Φ : 𝐸 → 𝑅 be the
functional defined by

Φ (𝑢) =
1

2
∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
) 𝑑𝑥 − ∫

Ω

𝐺 (𝑥, 𝑢) 𝑑𝑥. (13)

It is well known that a critical point of the functional Φ in 𝐸
corresponds to a weak solution of problem (1).

Let 𝜆
𝑖
(𝑖 = 1, 2, . . .) be the eigenvalues of −Δ in 𝐻

1

0
(Ω).

Then the eigenvalue problem

Δ
2
𝑢 + 𝑐Δ𝑢 = 𝜇𝑢 in Ω,

𝑢 = Δ𝑢 = 0 on 𝜕Ω,

(14)

has infinitely many eigenvalues 𝜇
𝑖
= 𝜆

𝑖
(𝜆

𝑖
− 𝑐), 𝑖 = 1, 2, . . . .

Define a selfadjoint linear operatorA : 𝐿
2
(Ω) → 𝐿

2
(Ω)

by

(A𝑢, V)
2
= ∫

Ω

(Δ𝑢ΔV − 𝑐 ⟨∇𝑢, ∇V⟩) 𝑑𝑥 (15)

with domain 𝐷(A) = 𝐸. Here, (⋅, ⋅)
2
denotes the inner

product in 𝐿2(Ω) and in the sequel 𝐿2(Ω) is simply denoted
by 𝐿2. Then the sequence of eigenvalues ofA is just {𝜇

𝑖
} (𝑖 =

1, 2, . . .). Denote the corresponding system of eigenfunctions
by {𝑒

𝑛
}; it forms an orthogonal basis in 𝐿2.

Denote

𝑛
−
= # {𝑖 | 𝜇

𝑖
< 0} , 𝑛

0
= # {𝑖 | 𝜇

𝑖
= 0} , 𝑛 = 𝑛

−
+ 𝑛

0
.

(16)

Here, #{⋅} denotes the cardinal of a set. Let

𝐿
−
= span {𝑒

1
, . . . , 𝑒

𝑛
−} , 𝐿

0
= span {𝑒

𝑛
−

+1
, . . . , 𝑒

𝑛
} ,

𝐿
+
= (𝐿

−
⊕ 𝐿

0
)
⊥

= span {𝑒
𝑛+1

, . . . , } .

(17)

Decompose 𝐿2 as

𝐿
2
= 𝐿

−
⊕ 𝐿

0
⊕ 𝐿

+
. (18)
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Then 𝐸 also possesses the orthogonal decomposition

𝐸 = 𝐸
−
⊕ 𝐸

0
⊕ 𝐸

+ (19)

with

𝐸
−
= 𝐿

−
, 𝐸

0
= 𝐿

0
, 𝐸

+
= 𝐸 ∩ 𝐿

+
= span {𝑒

𝑛+1
, . . . , }.

(20)

We define on E a new inner product and the associated
norm by

(𝑢, V) = (A𝑢
+
, V+)

2
− (A𝑢

−
, V−)

2
+ (𝑢

0
, V0)

2
,

‖𝑢‖ = (𝑢, 𝑢)
1/2
.

(21)

Therefore, Φ can be written as

Φ (𝑢) =
1

2
(
𝑢

+

2

−
𝑢

−

2

) − Ψ (𝑢) , (22)

where Ψ(𝑢) = ∫
Ω
𝐺(𝑥, 𝑢)𝑑𝑥 for all 𝑢 = 𝑢

−
+ 𝑢

0
+ 𝑢

+
∈ 𝐸 =

𝐸
−
⊕ 𝐸

0
⊕ 𝐸

+. Then Φ and Ψ are continuously differentiable.
Direct computation shows that

Ψ

(𝑢) V = ∫

Ω

𝑔 (𝑥, 𝑢) V 𝑑𝑥

Φ

(𝑢) V = (𝑢

+
, V+) − (𝑢−, V−) − Ψ (𝑢) V

(23)

for all 𝑢, V ∈ 𝐸 with 𝑢 = 𝑢
−
+ 𝑢

0
+ 𝑢

+ and V = V− + V0 + V+,
respectively. It is known that Ψ : 𝐸 → 𝐸 is compact.

Denote by ‖ ⋅ ‖
𝑝
the usual norm of 𝐿𝑝 ≡ 𝐿

𝑝
(Ω) for all 1 ≤

𝑝 ≤ 2𝑁/(𝑁 − 4); then by the Sobolev embedding theorem,
there exists a 𝜏

𝑝
> 0 such that

‖𝑢‖𝑝 ≤ 𝜏
𝑝 ‖𝑢‖ , ∀𝑢 ∈ 𝐸. (24)

Noting that the constants ] and  appeared in (𝑆
1
) and (𝑆

3
)

satisfies

1 + ] <
2𝑁

𝑁 − 4
,



 − ]
<

2𝑁

𝑁 − 4
. (25)

To prove our main result Theorem 1, we need an abstract
critical point theorem found in [15].

LetE be aBanach spacewith the norm ‖⋅‖ and𝐸 = ⊕
𝑗∈N𝑋𝑗

with dim𝑋
𝑗
< ∞ for any 𝑗 ∈ N. Set 𝑌

𝑘
= ⊕

𝑘

𝑗=1
𝑋
𝑗
and 𝑍

𝑘
=

⊕
∞

𝑗=𝑘
𝑋
𝑗
. Consider the following 𝐶1-functional Φ

𝜆
: 𝐸 → R

defined by

Φ
𝜆
(𝑢) := 𝐴 (𝑢) − 𝜆𝐵 (𝑢) , 𝜆 ∈ [1, 2] . (26)

Theorem 4 (see [15, Theorem 2.1]). Assume that the func-
tional Φ

𝜆
defined above satisfies the following:

(F
1
) Φ

𝜆
maps bounded sets to bounded sets for 𝜆 ∈ [1, 2],

and Φ
𝜆
(−𝑢) = Φ

𝜆
(𝑢) for all (𝜆, 𝑢) ∈ [1, 2] × 𝐸;

(F
2
) 𝐵(𝑢) ≥ 0 for all 𝑢 ∈ 𝐸; moreover, 𝐴(𝑢) → ∞ or
𝐵(𝑢) → ∞ as ‖𝑢‖ → ∞;

(F
3
) there exist 𝑟

𝑘
> 𝜌

𝑘
> 0 such that

𝛼
𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘

,‖𝑢‖=𝜌
𝑘

Φ
𝜆
(𝑢) > 𝛽

𝑘
(𝜆) := max

𝑢∈𝑌
𝑘

,‖𝑢‖=𝑟
𝑘

Φ
𝜆
(𝑢) ,

∀𝜆 ∈ [1, 2] .

(27)

Then

𝛼
𝑘
(𝜆) ≤ 𝜁

𝑘
(𝜆) := inf

𝛾∈Γ
𝑘

max
𝑢∈𝐵
𝑘

Φ
𝜆
(𝛾 (𝑢)) , ∀𝜆 ∈ [1, 2] , (28)

where 𝐵
𝑘
= {𝑢 ∈ 𝑌

𝑘
: ‖𝑢‖ ≤ 𝑟

𝑘
} and Γ

𝑘
:= {𝛾 ∈ 𝐶(𝐵

𝑘
, 𝐸) :

𝛾 is odd, 𝛾|
𝜕𝐵
𝑘

= 𝑖𝑑}. Moreover, for a.e. 𝜆 ∈ [1, 2], there exists
a sequence {𝑢𝑘

𝑚
(𝜆)}

∞

𝑚=1
such that

sup
𝑚


𝑢
𝑘

𝑚
(𝜆)


< ∞, Φ



𝜆
(𝑢

𝑘

𝑚
(𝜆)) → 0,

Φ
𝜆
(𝑢

𝑘

𝑚
(𝜆)) → 𝜁

𝑘
(𝜆)

as 𝑚 → ∞.

(29)

In order to apply this theorem to prove our main result,
we define the functionals A, B, andΦ

𝜆
on our working space

𝐸 = 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) as follows:

𝐴 (𝑢) =
1

2

𝑢
+

2

, 𝐵 (𝑢) =
1

2

𝑢
−

2

+ ∫
Ω

𝐺 (𝑥, 𝑢) 𝑑𝑥,

(30)

Φ
𝜆
(𝑢) = 𝐴 (𝑢) − 𝜆𝐵 (𝑢)

=
1

2

𝑢
+

2

− 𝜆(
1

2

𝑢
−

2

+ ∫

𝑇

0

𝐺 (𝑥, 𝑢) 𝑑𝑥)

(31)

for all 𝑢 = 𝑢
−
+ 𝑢

0
+ 𝑢

+
∈ 𝐸 = 𝐸

−
+ 𝐸

0
+ 𝐸

+ and 𝜆 ∈ [1, 2].
Then Φ

𝜆
∈ 𝐶

1
(𝐸,R) for all 𝜆 ∈ [1, 2] and

Φ


𝜆
(𝑢) V = (𝑢

+
, V+) − 𝜆 ((𝑢−, V−) + ∫

Ω

𝑔 (𝑥, 𝑢) V 𝑑𝑥) . (32)

Let 𝑋
𝑗
= span{𝑒

𝑗
}, 𝑗 = 1, 2, . . .. Note that Φ

1
is just equal to

the functionalΦ defined in (22).

3. Proof of Theorem 1

In this section we firstly establish the following two lemmas
and then give the proof of Theorem 1.

Lemma 5. Assume that (𝑆
1
) and (𝑆

2
) hold. Then 𝐵(𝑢) ≥ 0

for all 𝑢 ∈ 𝐸. Furthermore, 𝐴(𝑢) → ∞ or 𝐵(𝑢) → ∞ as
‖𝑢‖ → ∞.

Proof. Since 𝐺(𝑥, 𝑢) ≥ 0, by (30), it is obvious that 𝐵(𝑢) ≥ 0

for all 𝑢 ∈ 𝐸.
By the similar method used in the proof of Lemma 2.6 of

[17], for any finite-dimensional subspace 𝐹 ⊂ 𝐸, there exists
a constant 𝜖 > 0 such that

𝑚({𝑥 ∈ Ω : |𝑢| ≥ 𝜖 ‖𝑢‖}) ≥ 𝜖, ∀𝑢 ∈ 𝐹 \ {0} , (33)

where𝑚(⋅) is the Lebesgue measure in R𝑁.
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Now for the finite-dimensional subspace 𝐸− ⊕ 𝐸
0
⊂ 𝐸,

there exists a constant 𝜖 corresponding to the one in (33). Let

Λ
𝑢
= {𝑥 ∈ Ω : |𝑢| ≥ 𝜖 ‖𝑢‖} , ∀𝑢 ∈ 𝐸

−
⊕ 𝐸

0
\ {0} . (34)

Then𝑚(Λ
𝑢
) ≥ 𝜖. By (𝑆

2
), there exist positive constants𝑑

5
and

𝑅
1
such that

𝐺 (𝑥, 𝑢) ≥ 𝑑
5|𝑢|

2
, ∀𝑥 ∈ Ω, |𝑢| ≥ 𝑅

1
. (35)

Note that

|𝑢 (𝑥)| ≥ 𝑅
1
, ∀𝑥 ∈ Λ

𝑢 (36)

for any 𝑢 ∈ 𝐸
−
⊕ 𝐸

0 with ‖𝑢‖ ≥ 𝑅
1
/𝜖. Combining (35) and

(36), for any 𝑢 ∈ 𝐸− ⊕ 𝐸0 with ‖𝑢‖ ≥ 𝑅
1
/𝜖, we have

𝐵 (𝑢) =
1

2

𝑢
−

2

+ ∫
Ω

𝐺 (𝑥, 𝑢) 𝑑𝑡

≥ ∫
Λ
𝑢

𝐺 (𝑥, 𝑢) 𝑑𝑡 ≥ ∫
Λ
𝑢

𝑑
5|𝑢|

2
𝑑𝑡

≥ 𝑑
5
𝜖
2
‖𝑢‖

2
⋅ 𝑚 (Λ

𝑢
) ≥ 𝑑

5
𝜖
3
‖𝑢‖

2
,

(37)

which implies that

𝐵 (𝑢) → ∞ as ‖𝑢‖ → ∞ on 𝐸
−
⊕ 𝐸

0
. (38)

Combining this with 𝐸 = 𝐸
−
⊕ 𝐸

0
⊕ 𝐸

+ and (30), we have

𝐴 (𝑢) → ∞ or 𝐵 (𝑢) → ∞ as ‖𝑢‖ → ∞. (39)

The proof is completed.

Lemma6. Let (𝑆
1
), (𝑆

2
) be satisfied.Then there exist a positive

integer 𝑘
1
and two sequences 𝑟

𝑘
> 𝜌

𝑘
→ ∞ as 𝑘 → ∞ such

that

𝛼
𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘

,‖𝑢‖=𝜌
𝑘

Φ
𝜆
(𝑢) > 0, ∀𝑘 ≥ 𝑘

1
, (40)

𝛽
𝑘
(𝜆) := max

𝑢∈𝑌
𝑘

,‖𝑢‖=𝑟
𝑘

Φ
𝜆
(𝑢) < 0, ∀𝑘 ∈ N, (41)

where 𝑌
𝑘
= ⊕

𝑘

𝑗=1
𝑋
𝑗
= span{𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑘
} and 𝑍

𝑘
= ⊕

∞

𝑗=𝑘
𝑋
𝑗
=

span{𝑒
𝑘
, 𝑒
𝑘+1

, . . .} for all 𝑘 ∈ N.

Proof.

Step 1.We first prove (40).
By virtue of (8) and (31), for any 𝑢 ∈ 𝐸+

Φ
𝜆
(𝑢) ≥

1

2
‖𝑢‖

2
− 2∫

Ω

𝐺 (𝑥, 𝑢) 𝑑𝑥

≥
1

2
‖𝑢‖

2
− 2𝑑

1
(‖𝑢‖1 + ‖𝑢‖

]+1
]+1) − 2𝑑2 ⋅ 𝑚 (Ω) ,

∀𝜆 ∈ [1, 2] ,

(42)

where 𝑑
1
, 𝑑

2
are the constants in (8). Let

𝜄]+1 (𝑘) = sup
𝑢∈𝑍
𝑘

,‖𝑢‖=1

‖𝑢‖]+1, ∀𝑘 ∈ N. (43)

Then

𝜄]+1 (𝑘) → 0 as 𝑘 → ∞ (44)

since 𝐸 is compactly embedded into 𝐿]+1. Note that

𝑍
𝑘
⊂ 𝐸

+
, ∀𝑘 ≥ 𝑛 + 1, (45)

where 𝑛 is the integer given in (16). Combining (24), (42),
(43), and (45), for 𝑘 ≥ 𝑛 + 1, we have

Φ
𝜆
(𝑢) ≥

1

2
‖𝑢‖

2
− 2𝑑

1
𝜏
1 ‖𝑢‖ − 2𝑑2 ⋅ 𝑚 (Ω)

− 2𝑑
1
𝜄
]+1
]+1 (𝑘) ‖𝑢‖

]+1
, ∀ (𝜆, 𝑢) ∈ [1, 2] × 𝑍𝑘,

(46)

where 𝜏
1
is the constant given in (24). By (44), there exists a

positive integer 𝑘
1
≥ 𝑛 + 1 such that

𝜌
𝑘
:= (16𝑑

1
𝜄
]+1
]+1 (𝑘))

1/(1−])

> max {16𝑑
1
𝜏
1
+ 1, 16𝑑

2
⋅ 𝑚 (Ω)} , ∀𝑘 ≥ 𝑘

1

(47)

since ] > 1. Clearly,

𝜌
𝑘
→ ∞ as 𝑘 → ∞. (48)

Combining (46) and (47), direct computation shows

𝛼
𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘

,‖𝑢‖=𝜌
𝑘

Φ
𝜆
(𝑢) ≥

𝜌
2

𝑘

4
> 0, ∀𝑘 ≥ 𝑘

1
. (49)

Step 2.We then prove (41).
Note that for any 𝑘 ∈ N, 𝑌

𝑘
is of finite dimension, so we

can choose𝑀
1
> 0 sufficiently large such that

‖𝑢‖ ≤ 𝑀
1
(∫

Ω

|𝑢|
2
)

1/2

, ∀𝑢 ∈ 𝑌
𝑘
. (50)

By (𝑆
2
) and (8), for the former𝑀

1
, there exists a𝑀

2
> 0 such

that

𝐺 (𝑥, 𝑢) ≥ 𝑀
2

1
|𝑢|

2
−𝑀

2
, ∀ (𝑡, 𝑢) ∈ [0, 𝑇] ×R

𝑁
. (51)

Consequently, by (50) and (51), we have

Φ
𝜆
(𝑢)

≤
1

2

𝑢
+

2

−
1

2

𝑢
−

2

− ∫
Ω

𝐺 (𝑥, 𝑢) 𝑑𝑡

≤
1

2

𝑢
+

2

−
1

2

𝑢
−

2

−𝑀
2

1
∫
Ω

|𝑢|
2
𝑑𝑡

+𝑀
2
⋅ 𝑚 (Ω)

≤
1

2

𝑢
+

2

−
1

2

𝑢
−

2

−𝑀
2

1
(

1

𝑀
2

1

𝑢
+

2

+
1

𝑀
2

1


𝑢
0

2

) +𝑀
2
⋅ 𝑚 (Ω)

≤ −
1

2

𝑢
+

2

−
1

2

𝑢
−

2

−

𝑢
0

2

+𝑀
2
⋅ 𝑚 (Ω)

≤ −
1

2
‖𝑢‖

2
+𝑀

2
⋅ 𝑚 (Ω)

(52)
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for all 𝑢 = 𝑢
−
+𝑢

0
+𝑢

+
∈ 𝑌

𝑘
. Now for any 𝑘 ∈ N, if we choose

𝑟
𝑘
> max {𝜌

𝑘
, √2𝑀

2
⋅ 𝑚 (Ω)} , (53)

then (52) implies

𝛽
𝑘
(𝜆) := max

𝑢∈𝑌
𝑘

,‖𝑢‖=𝑟
𝑘

Φ
𝜆
(𝑢) < 0, ∀𝑘 ∈ N. (54)

The proof is completed.

Now we prove our main result Theorem 1.

Proof of Theorem 1. In view of (8), (24), and (31), Φ
𝜆
maps

bounded sets to bounded sets uniformly for 𝜆 ∈ [1, 2]. By
virtue of the evenness of 𝐺(𝑥, 𝑢) in 𝑢, it holds that Φ

𝜆
(−𝑢) =

Φ
𝜆
(𝑢) for all (𝜆, 𝑢) ∈ [1, 2] × 𝐸. Therefore the condition (𝐹

1
)

of Theorem 4 holds. Lemma 5 shows that the condition (𝐹
2
)

holds, whereas Lemma 6 implies that condition (𝐹
3
) holds for

all 𝑘 ≥ 𝑘
1
, where 𝑘

1
is given in Lemma 6.Thus, byTheorem 4,

for each 𝑘 ≥ 𝑘
1
and a.e. 𝜆 ∈ [1, 2], there exists a sequence

{𝑢
𝑘

𝑚
(𝜆)}

∞

𝑚=1
⊂ 𝐸 such tha

sup
𝑚


𝑢
𝑘

𝑚
(𝜆)


< ∞, Φ



𝜆
(𝑢

𝑘

𝑚
(𝜆)) → 0,

Φ
𝜆
(𝑢

𝑘

𝑚
(𝜆)) → 𝜁

𝑘
(𝜆)

as 𝑚 → ∞,

(55)

where

𝜁
𝑘
(𝜆) := inf

𝛾∈Γ
𝑘

max
𝑢∈𝐵
𝑘

Φ
𝜆
(𝛾 (𝑢)) , ∀𝜆 ∈ [1, 2] (56)

with 𝐵
𝑘
= {𝑢 ∈ 𝑌

𝑘
: ‖𝑢‖ ≤ 𝑟

𝑘
} and Γ

𝑘
:= {𝛾 ∈ 𝐶(𝐵

𝑘
, 𝐸) :

𝛾 𝑖𝑠 𝑜𝑑𝑑, 𝛾|
𝜕𝐵
𝑘

= 𝑖𝑑}.
Moreover, by the proof of Lemma 6, we have

𝜁
𝑘
(𝜆) ∈ [𝛼

𝑘
, 𝜁
𝑘
] , ∀𝑘 ≥ 𝑘

1
, (57)

where 𝜁
𝑘
:= max

𝑢∈𝐵
𝑘

Φ
1
(𝑢) and 𝛼

𝑘
:= 𝜌

2

𝑘
/4 → ∞ as 𝑘 → ∞

by (48).
Since the sequence {𝑢

𝑘

𝑚
(𝜆)}

∞

𝑚=1
obtained by (55) is

bounded, it is clear that, for each 𝑘 ≥ 𝑘
1
, we can choose

𝜆
𝑛
→ 1 such that the sequence {𝑢𝑘

𝑚
(𝜆

𝑛
)}
∞

𝑚=1
has a strong

convergent subsequence.
In fact, without loss of generality, assume that

𝑢
𝑘

𝑚
(𝜆

𝑛
)
−

→ 𝑢
𝑘

0
(𝜆

𝑛
)
−

, 𝑢
𝑘

𝑚
(𝜆

𝑛
)
0

→ 𝑢
𝑘

0
(𝜆

𝑛
)
0

,

𝑢
𝑘

𝑚
(𝜆

𝑛
)
+

⇀ 𝑢
𝑘

0
(𝜆

𝑛
)
+

as 𝑚 → ∞,

(58)

𝑢
𝑘

𝑚
(𝜆

𝑛
) ⇀ 𝑢

𝑘

0
(𝜆

𝑛
) as 𝑚 →∞ (59)

for some 𝑢𝑘
0
(𝜆

𝑛
) = 𝑢

𝑘

0
(𝜆

𝑛
)
−
+ 𝑢

𝑘

0
(𝜆

𝑛
)
0
+ 𝑢

𝑘

0
(𝜆

𝑛
)
+
∈ 𝐸 = 𝐸

−
⊕

𝐸
0
⊕ 𝐸

+ since dim(𝐸− ⊕ 𝐸0) < ∞.

Note that

Φ


𝜆
𝑛

(𝑢
𝑘

𝑚
(𝜆

𝑛
))

= 𝑢
𝑘

𝑚
(𝜆

𝑛
)
+

− 𝜆
𝑛
(𝑢

𝑘

𝑚
(𝜆

𝑛
)
−

+ Ψ

(𝑢

𝑘

𝑚
(𝜆

𝑛
))) ,

∀𝑛 ∈ N.

(60)

That is,

𝑢
𝑘

𝑚
(𝜆

𝑛
)
+

= Φ


𝜆
𝑛

(𝑢
𝑘

𝑚
(𝜆

𝑛
)) + 𝜆

𝑛
(𝑢

𝑘

𝑚
(𝜆

𝑛
)
−

+ Ψ

(𝑢

𝑘

𝑚
(𝜆

𝑛
))) ,

∀𝑚 ∈ N.

(61)

In view of (55), (58), (59), and the compactness of Ψ, the
right-hand side of (61) converges strongly in 𝐸 and hence
𝑢
𝑘

𝑚
(𝜆

𝑛
)
+
→ 𝑢

𝑘

0
(𝜆

𝑛
)
+ in 𝐸. Together with (58), {𝑢𝑘

𝑚
(𝜆

𝑛
)}
∞

𝑚=1

has a strong convergent subsequence in 𝐸.
Without loss of generality, we assume

lim
𝑚→∞

𝑢
𝑘

𝑚
(𝜆

𝑛
) = 𝑢

𝑘

𝑛
, ∀𝑛 ∈ N, 𝑘 ≥ 𝑘

1
. (62)

This together with (55) and (57) yields

Φ


𝜆
𝑛

(𝑢
𝑘

𝑛
) = 0, Φ

𝜆
𝑛

(𝑢
𝑘

𝑛
) ∈ [𝛼

𝑘
, 𝜁
𝑘
] ,

∀𝑛 ∈ N, 𝑘 ≥ 𝑘
1
.

(63)

Now we claim that the sequence {𝑢𝑘
𝑛
}
∞

𝑛=1
in (63) is bounded

in 𝐸 and possesses a strong convergent subsequence with the
limit 𝑢𝑘 ∈ 𝐸 for each 𝑘 ≥ 𝑘

1
. For the sake of notational

simplicity, throughout the remaining proof of Theorem 1 we
always denote 𝑢

𝑛
= 𝑢

𝑘

𝑛
.

Nowwe claim that {𝑢
𝑛
} is bounded in𝐸. Otherwise, going

to a subsequence if necessary, we can assume that ‖𝑢
𝑛
‖ → ∞

as 𝑛 → ∞. By (9), we have

2Φ
𝜆
𝑛

(𝑢
𝑛
) − Φ



𝜆
𝑛

(𝑢
𝑛
) 𝑢

𝑛

= 𝜆
𝑛
∫
Ω

[𝑔 (𝑥, 𝑢
𝑛
) 𝑢

𝑛
− 2𝐺 (𝑥, 𝑢

𝑛
)] 𝑑𝑥

≥ 𝑑
3
∫
Ω

𝑢𝑛




𝑑𝑥 − 𝑑
4
⋅ 𝑚 (Ω) ,

(64)

which yields that

∫
Ω

𝑢𝑛




𝑑𝑥

𝑢𝑛


→ 0 as 𝑛 → ∞. (65)
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Write 𝑢
𝑛
= 𝑢

−

𝑛
+ 𝑢

0

𝑛
+ 𝑢

+

𝑛
∈ 𝐸

−
⊕ 𝐸

0
⊕ 𝐸

+. It follows from (𝑆
1
),

(24), (25), (32), and the Hölder inequality that

Φ


𝜆
𝑛

(𝑢
𝑛
) 𝑢

+

𝑛

=
𝑢

+

𝑛



2

− 𝜆
𝑛
∫
Ω

𝑔 (𝑥, 𝑢
𝑛
) 𝑢

+

𝑛
𝑑𝑥

≥
𝑢

+

𝑛



2

− 2∫
Ω

𝑔 (𝑥, 𝑢𝑛)
 ⋅
𝑢
+

𝑛

 𝑑𝑥

≥
𝑢

+

𝑛



2

− 𝑑
1
∫
Ω

𝑢
+

𝑛

 𝑑𝑥 − 𝑑1 ∫
Ω

𝑢𝑛


] 𝑢
+

𝑛

 𝑑𝑥

≥
𝑢

+

𝑛



2

− 𝑑
1

𝑢
+

𝑛

1

− 𝑑
1
(∫

Ω

(
𝑢𝑛



]
)
/]
𝑑𝑥)

]/
⋅ (∫

Ω

𝑢
+

𝑛



/(−])
𝑑𝑥)

(−])/

≥
𝑢

+

𝑛



2

− 𝑐
1

𝑢
+

𝑛

 − 𝑐2
𝑢𝑛



]

⋅
𝑢

+

𝑛



(66)

for any 𝑛 ∈ N. Here and in the sequel, we denote 𝑐
𝑖
> 0 (𝑖 =

1, 2, . . .) for different positive constants. Since  > (2𝑁/(𝑁 +

4))] and𝑁 ≥ 5, we have ] < . So, by (65) we get
𝑢

+

𝑛


𝑢𝑛



→ 0 as 𝑛 → ∞. (67)

Similarly, we have
𝑢

−

𝑛


𝑢𝑛



→ 0 as 𝑛 → ∞. (68)

By (𝑆
3
), there also exist constants 𝑑

6
> 0 and 𝑑

7
> 0 such that

𝑢𝑔 (𝑥, 𝑢) − 2𝐺 (𝑥, 𝑢) ≥ 𝑑
6 |𝑢| − 𝑑7, ∀ (𝑥, 𝑢) ∈ Ω ×R.

(69)

So we get

2Φ
𝜆
𝑛

(𝑢
𝑛
) − Φ



𝜆
𝑛

(𝑢
𝑛
) 𝑢

𝑛

= 𝜆
𝑛
∫
Ω

[𝑔 (𝑥, 𝑢
𝑛
) 𝑢

𝑛
− 2𝐺 (𝑥, 𝑢

𝑛
)] 𝑑𝑥

≥ 𝑑
6
∫
Ω

𝑢𝑛
 𝑑𝑥 − 𝑑7 ⋅ 𝑚 (Ω)

≥ 𝑑
6
∫
Ω

(

𝑢
0

𝑛


−
𝑢
+

𝑛

 −
𝑢
−

𝑛

) 𝑑𝑥 − 𝑑7 ⋅ 𝑚 (Ω)

≥ 𝑐
3


𝑢
0

𝑛


− 𝑐

4
(
𝑢

−

𝑛

 +
𝑢

+

𝑛

) − 𝑐5

(70)

keeping in mind that dim𝐸
0
< ∞ and (24). Hence, by (67)

and (68), we get

𝑢
0

𝑛


𝑢𝑛



→ 0 as 𝑛 → ∞. (71)

Then we arrive at

1 =

𝑢𝑛


𝑢𝑛


≤

𝑢
−

𝑛

 +

𝑢
0

𝑛


+
𝑢

+

𝑛


𝑢𝑛



→ 0 as 𝑛 → ∞ (72)

which is a contradiction. Thus, {𝑢
𝑛
} is bounded in 𝐸. Then

the proof that {𝑢
𝑛
} has a strong convergent subsequence is

the same as the preceding proof of {𝑢𝑘
𝑚
(𝜆

𝑛
)}
∞

𝑚=1
.

Now for each 𝑘 ≥ 𝑘
1
, by (63), the limit 𝑢𝑘 is just a critical

point of Φ = Φ
1
with Φ(𝑢𝑘) ∈ [𝛼

𝑘
, 𝜁
𝑘
]. Since 𝛼

𝑘
→ ∞ as

𝑘 → ∞ in (57), we get infinitely many nontrivial critical
points of Φ. Therefore, system (1) possesses infinitely many
nontrivial solutions.
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