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Grey target decision model for mixed attributes including real numbers, interval numbers, triangular fuzzy numbers, and
trapezoidal fuzzy numbers is complex for its data processing in different ways and information distortion in handling fuzzy
numbers. To solve these problems, the binary connection number proposed in set pair analysis is applied to unify different types
of index values with their parameters’ average values and standard deviations as determinacy-uncertainty vectors. Then the target
center index vectors are determined by the modules of index vectors of all alternatives under different attributes. So the similarity
of each index vector and its target center index vector called nearness degree can be calculated. Following, all the nearness degrees
are normalized in linear method in order to be compared with each other. Finally, the optimal alternative can be determined by
the minimum of all integrated nearness degrees. Case study demonstrated that this approach can not only unify different types of
numbers, and simplify the calculation but also reduce the information distortion in operating fuzzy numbers.

1. Introduction

The grey target decision method has been widely used in
many fields since Professor Deng established it [1–7]. How-
ever grey target decision method involving mixed attributes
including real numbers, interval numbers, triangular fuzzy
numbers, and trapezoidal fuzzy numbers is hard to deal with.
Mixed attributes based decision making by the reported grey
target decision method depends on the following steps: first,
normalize different types of numbers individually; second,
obtain the target center indices; third, calculate every alter-
native’s distance to the target center; finally, make decision
by alternatives’ target center distances [8–11]. As far as the
reported method is concerned, it is complex for different
data processing ways. Besides it has deficiency in handling
fuzzy numbers in two aspects: one is for distorting the
information of the fuzzy numbers while normalizing them
and the other is for enlarging the uncertainty between the
fuzzy numbers when computing the alternatives’ distances
to target center. Thus an approach is required urgently to
simplify the calculation, reduce the information distortion,
and lower the uncertainty in dealing with fuzzy numbers.

So the binary 𝐴 + 𝐵𝑖 connection number proposed in set
pair analysis (SPA) is employed to conduct this work [12, 13].
The average values and standard deviations of all the index
values of different types of numbers can be regarded as binary
connection numbers’ deterministic and uncertain terms.
Furthermore these binary connection numbers can also be
thought as the determinacy-uncertainty vectors. Based on the
special vectors and the similarity theory, the generalized grey
target decision model can be constructed.

Evaluating feasible alternatives may have no criterions,
which is a challenging task to the decision makers. However,
grey target decision method provides the decision makers a
useful tool to solve this problem.Though grey target decision
method has been advanced by some scholars, the method
handling mixed attributes including real numbers and fuzzy
numbers needs to be further studied.The proposed approach
unifies the calculation ways of different types of numbers
with binary connection number, does not normalize the raw
data of all alternatives, and calculates alternatives’ nearness
degrees instead of target center distances, as is superior in
theory and in practice. So the proposed approachunifying the
calculation ways, reducing the information distortion, and
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Figure 1: Determinacy-uncertainty space.

lowering the uncertainty in operating the fuzzy numbersmay
have wide use in decision making.

The remainder of this paper is organized as follows. Some
basic concepts about the proposed approach are given in
Section 2. Section 3 discusses the proposed approach. And
the case study is presented in Section 4. Finally, Section 5
gives the conclusions.

2. Preliminaries

2.1. FuzzyNumber. The index values of all alternativesmay be
real numbers or fuzzy numbers for optimal decision making.
The fuzzy number is more meaningful than that of real num-
ber, and this paper only involves interval number, triangular
fuzzy number, and trapezoidal fuzzy number [14–19].

Definition 1. Let 𝑅 be a set of real numbers; if 𝑥 = [𝑥
−

, 𝑥
+

],
then 𝑥 is called interval number, where 𝑥

−, 𝑥
+

∈ R, 𝑥
−

< 𝑥
+.

Definition 2. Let 𝑅 be a set of real numbers; if
𝑥 = [𝑥

𝐿

, 𝑥
𝑀

, 𝑥
𝑁

], then 𝑥 is called triangular fuzzy number,
where 𝑥

𝐿

, 𝑥
𝑀

, 𝑥
𝑁

∈ R, 0 < 𝑥
𝐿

< 𝑥
𝑀
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𝑁

, 𝑥
𝐿, and 𝑥

𝑁 are
the triangular fuzzy number’s lower limits and upper limits,
respectively, while 𝑥

𝑀 is the medium value.

Definition 3. Let 𝑅 be a set of real numbers; if 𝑥 =

[𝑥
𝐿

, 𝑥
𝑀

, 𝑥
𝑁

, 𝑥
𝑈

], then 𝑥 is called trapezoidal fuzzy number,
where 𝑥

𝐿

, 𝑥
𝑀

, 𝑥
𝑁

, 𝑥
𝑈

∈ R, 0 < 𝑥
𝐿

< 𝑥
𝑀

< 𝑥
𝑁
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𝑈

, 𝑥
𝐿, and

𝑥
𝑈 are the trapezoidal fuzzy number’s lower limits and upper

limits, respectively, while [𝑥
𝑀

, 𝑥
𝑁

] is the medium interval.

2.2. Connection Number. The connection number is a key
concept in set pair analysis founded by Zhao in 1989. It
unifies the related two sets with identity, discrepancy, and
contrary [12, 13]. Now, the connection number has been
used in many fields such as artificial intelligence. And the
binary connection number considering the determinacy and
uncertainty about two sets has also been widely used [20].

Definition 4. Let 𝑅 be a set of real numbers; then 𝐴 +

𝐵𝑖 is called binary connection number, where 𝐴, 𝐵 ∈

𝑅, 𝑖 ∈ [−1, 1], 𝐴 denotes the deterministic term, 𝐵 denotes

the uncertain term, and 𝑖 is a variable term unifying the
determinacy and the uncertainty of a set pair.

2.3. Transform Fuzzy Number into Connection Number. Zhao
proposed that a fuzzy number with uncertainty can be
expressed as a binary connection number. In Zhao’s view-
point, the average value and standard deviation in statistics
are also the parameters of fuzzy numbers (interval number,
triangular fuzzy number, or trapezoidal fuzzy number).Thus,
the fuzzy number can be characterized as the binary “average
value + standard deviation” connection number [14].

Suppose 𝑥 is a fuzzy number (interval number, triangular
fuzzy number, or trapezoidal fuzzy number); if its parameters
can be seen as 𝑛 (𝑛 ≥ 2) observed values, then the fuzzy
number’s average value and standard deviation are as follows:

𝑥 =
1

𝑛

𝑛

∑

𝑡=1

𝑥
𝑡

,

𝑠 = √
1

(𝑛 − 1)

𝑛

∑

𝑡=1

(𝑥
𝑡

− 𝑥)
2

.

(1)

According to the SPA, the average value 𝑥 and the
standard deviation 𝑠 reflect 2 parameters of 𝑛 observed values
for the same object 𝑥, so they can be regarded as the related
two sets and form the set pair 𝐻 = (𝑥, 𝑠), where 𝑥 and 𝑠 can
also be thought as the relative deterministic (concentration)
measure and the relative uncertain (dispersion) measure of
𝑛 observed values about 𝑥. So 𝐻 = (𝑥, 𝑠) is a determinacy-
uncertainty set pair and the relationship of 𝑥 and 𝑠 denoted
by the binary connection number 𝐴 + 𝐵𝑖.

Definition 5. Let𝑥 and 𝑠 be the average value and the standard
deviation of 𝑛 (𝑛 ≥ 2) observed values of the same object 𝑥,
respectively; then

𝑢 (𝑥, 𝑠) = 𝐴 + 𝐵𝑖 = 𝑥 + 𝑠𝑖 (𝑖 ∈ [−1, 1]) (2)

is called the average value-standard deviation connection
number of 𝑛 observed value of the object 𝑥 or connection
number for short.

Definition 6. Themutual interaction of 𝑥 and 𝑠 of the average
value-standard deviation connection number 𝑢(𝑥, 𝑠) can be
mapped to the binary determinacy-uncertainty space (𝐷-𝑈
space) based on SPA. If 𝑢(𝑥, 𝑠) = 𝑥 + 𝑠𝑖 represents the vector
in the 𝐷-𝑈 space, then the “𝑖” only denotes the signal of the
uncertain term without representing the variable value.

Figure 1 is a 𝐷-𝑈 space. The 𝑈 axis represents the
relative uncertain measure, while the 𝐷 axis is the relative
deterministic measure. Seen from Figure 1, 𝑥 and 𝑠 interact
with each other, and the space reflection is the vector𝑂𝐸 from
𝑂 to𝐸, and the degree of interactionmeans themodule of the
vector 𝑂𝐸 denoted by 𝑟 [14].

2.4. Similarity Measure between Vectors. Measure between
vectors includes distance method [21] and similarity method
[22], and this paper only refers to the latter.
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Definition 7. Let 𝑋 = (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) be a vector; then

|𝑋| = √

𝑛

∑

𝑡=1

𝑥
2

𝑡

(3)

is called the module of 𝑋.

Definition 8. Let𝑋 = (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) and𝑌 = (𝑦
1

, 𝑦
2

, . . . , 𝑦
𝑛

)

be two vectors; then

sim (𝑋, 𝑌) = cos (𝑋, 𝑌) =
∑
𝑛
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√∑
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𝑥
2
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∑
𝑛

𝑡=1

𝑦
2

𝑡

(4)

is the cosine of 𝑋 and 𝑌. The cosine value reflects the
similarity of 𝑋 and 𝑌, and the bigger of the cosine value is
the more similarity of them.

Definition 9. Let𝑋 = (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) and𝑌 = (𝑦
1

, 𝑦
2

, . . . , 𝑦
𝑛

)

be two vectors; then

Prj
𝑌

(𝑋) =
∑
𝑛
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𝑦
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2
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2
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(5)

is the projection of 𝑋 on 𝑌. Obviously, the bigger value of
Prj
𝑌

(𝑋) is the more similarity between 𝑋 and 𝑌 [23].

2.5. Grey Target Decision Method and Its Generalized Method.
Seeking for the satisfied alternative is the essence of grey
target decision method. Actually, it is impossible to obtain
the absolute optimal alternative, so the satisfied one is
accepted. The definitions of grey target decision method and
its generalized method are as follows.

Definition 10. When evaluating multiattribute alternatives
without standardmodel, a grey target is set and the target cen-
ter is derived from it in order to calculate every alternative’s
distance to target center for decision making, which is called
grey target decision method.

Definition 11. Based on the grey target decision theory,
however, the method of procedure and handling technique
that is different from the classical one is called generalized
grey target decision method. Compared with the traditional
model, the generalized method has two differences: needless
to normalize the index values and difference of target center
distance calculation.

The proposed generalized approach for handling mixed
attributes has its advantages over the previous reported
method. First, it uses the uniform way to handle different
types of numbers, which is easy to operate for decision
makers. Second, it will reduce the information distortion
in normalizing the fuzzy numbers and lower the uncer-
tainty in calculating the target center distances, which may
improve the accuracy of decision making. Third, the pro-
posed approach which is a generalizedmethod can be further
improved and applied in a wide range fields. The generalized

grey target decision method based on connection number
will be presented next. However, the interested readers who
want to learn the previous reported method can see the
literature [8–11, 24].

3. Generalized Grey Target Decision Method
for Mixed Attributes

In this section, the basic work for constructing the general-
ized grey target decision model is first conducted and then
the algorithm of the approach is concluded.

3.1. Transform Index Values into Connection Numbers. Let
𝐶 = {𝐶

1

, 𝐶
2

, . . . , 𝐶
𝑛

} be an alternative set and let 𝐴 =

{𝐴
1

, 𝐴
2

, . . . , 𝐴
𝑚

} be an attribute set; then the index of
alternative 𝐶

𝑠

under attribute 𝐴
𝑡

is V
𝑠𝑡

(𝑠 = 1, 2, . . . , 𝑛;
𝑡 = 1, 2, . . . , 𝑚). Here the mixed attributes may be expressed
as real numbers and fuzzy numbers. And the benefit type
index set and cost type index set are denoted by 𝐽

+ and 𝐽
−,

respectively.
Using the equations from (1) to (2), the different types of

index values can be converted into binary 𝐴 + 𝐵𝑖 connection
numbers thought as the vectors in the 𝐷-𝑈 space. Note that
the converted binary connection number for real number
is the form 𝐴 + 0𝑖, which means the deterministic term
is the real number itself and the uncertain term is 0𝑖. The
transformed index vector can be expressed as

𝑈
𝑠𝑡

= 𝐴
𝑠𝑡

+ 𝐵
𝑠𝑡

𝑖 (𝑠 = 1, 2, . . . , 𝑛; 𝑡 = 1, 2, . . . , 𝑚) , (6)

where 𝐴
𝑠𝑡

and 𝐵
𝑠𝑡

denote the average value and standard
deviation of V

𝑠𝑡

, respectively. And the module of 𝑈
𝑠𝑡

can be
calculated using the following equation:

𝑈𝑠𝑡
 = √𝐴

2

𝑠𝑡

+ 𝐵
2

𝑠𝑡

(𝑠 = 1, 2, . . . , 𝑛; 𝑡 = 1, 2, . . . , 𝑚) . (7)

3.2. Determine the Target Center Index Vectors. Having got
the binary connection numbers converted from all index
values using (6), the target center index vectors can be
determined according to the following equation:

𝐶
0

𝑡

= {
{𝑈
𝑠𝑡

| max {
𝑈𝑠𝑡

} , 𝑈
𝑠𝑡

∈ 𝐽
+

}

{𝑈
𝑠𝑡

| min {
𝑈𝑠𝑡

} , 𝑈
𝑠𝑡

∈ 𝐽
−

} ,

𝑠 = 1, 2, . . . , 𝑛, 𝑡 = 1, 2, . . . , 𝑚.

(8)

However, if the index vectors corresponding tomax{|𝑈
𝑠𝑡

|}

or min{|𝑈
𝑠𝑡

|} are not unique, then choose the vector with the
minimum uncertain term 𝐵

𝑠𝑡

𝑖 of 𝑈
𝑠𝑡

such that min{|𝐵
𝑠𝑡

|} is
target center index vector. The equation is as follows:

𝐶
0

𝑡

= {
{𝑈
𝑠𝑡

| max {
𝑈𝑠𝑡

} ,min {
𝐵𝑠𝑡

} , 𝑈
𝑠𝑡

∈ 𝐽
+

}

{𝑈
𝑠𝑡

| min {
𝑈𝑠𝑡

} ,min {
𝐵𝑠𝑡

} , 𝑈
𝑠𝑡

∈ 𝐽
−

} ,

𝑠 = 1, 2, . . . , 𝑛, 𝑡 = 1, 2, . . . , 𝑚.

(9)

Equations (8) and (9) tell that the target center index
vector under attribute 𝑡 is that the index vector with the
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Figure 2:The relationship of different types of index vectors and the
baseline index vector.

maximum module for benefit type indices and that with
the minimum module for cost type indices. However, if the
vectors to the maximum or the minimum module are not
unique, the target center index vector is the one with the
minimum uncertain term of these index vectors.

3.3. Nearness Degrees Calculation

(1) The Deficiency of Using Distance to Measure the Fuzzy
Numbers. The decision making may not be as accurate
as expected with the fuzzy numbers operated by distance
which actually enlarges the uncertainty of them. Two aspects
lead to the uncertainty: one is the information distortion
when normalizing the fuzzy numbers, and the other is the
operation of calculating the distances between the fuzzy
numbers. However, the measure of the fuzzy numbers by
vector similarity is superior to that by distance in theory for
it is not normalizing the fuzzy numbers and also considering
the fuzzy number’s determinacy-uncertaintywith connection
number.

(2) Method Selection for the Similarity between Vectors. The
cosine value reflects the similarity of the two vectors. Taking
the vectors 𝑋 and 𝑌 for an example, the bigger the value is,
the more the similarity of the two vectors is. Due to the gap
difference of index vectors for each attribute, the similarity
between the vectors cannot always be done well only by
cosine value. And the vector projection method also has its
disadvantage. Figure 2 illustrates the use of cosine value and
vector projection.

Figure 2 is a𝐷-𝑈 space. In the𝐷-𝑈 space,𝑂𝐸 is a baseline
vector (target center index vector), 𝑂𝐵 has the angle 0 with
𝑂𝐸, 𝑂𝑀 is an entirely deterministic vector, and 𝑂𝑁 has a
small angle with𝑂𝐸. Judging from the cosine value, 𝑂𝐵 is the
nearest to 𝑂𝐸, 𝑂𝑁 is nearer to 𝑂𝐸, and 𝑂𝑀 is the furthest to
𝑂𝐸. But this relationship does not reflect the different indices
near the target center index. So the vectors 𝑂𝑀, 𝑂𝑁, and
𝑂𝐵 should be projected to the baseline vector 𝑂𝐸 with the
points 𝑀

1

, 𝑁
1

, and 𝐵, respectively. Thus each index near the
target center index can be decided by the projection values,
𝑂𝑁 is the nearest to 𝑂𝐸, 𝑂𝑀 is nearer to 𝑂𝐸, and 𝑂𝐵 is
the furthest to 𝑂𝐸. Note that the above conclusion using
projection values to judge the indices’ distances performs

well only when all the projection values are smaller than the
module of the baseline vector. In Figure 2, if𝑂𝐵 is the baseline
vector, then the vectors 𝑂𝑀, 𝑂𝑁, and 𝑂𝐸 can be projected to
𝑂𝐵 with the points 𝑀

1

, 𝑁
1

, and 𝐸, respectively (the points
𝑀
1

, 𝑁
1

, and 𝐸 can be seen as on the extended line of 𝑂𝐵).
Then the projection value of 𝑂𝐸 on 𝑂𝐵 is the biggest among
the projections, but the index distance between 𝑂𝐸 and 𝑂𝐵

is the furthest. So the effective method must be provided to
conduct this work.

(3) Effective Method for Measuring the Similarity between
Vectors. A new method was proposed to overcome the
cosine valuemethod and the projection valuemethod cannot
effectively solve the problem shown above. First, each index
vector must be projected to the baseline vector, so the
projection value can be obtained.Then, the distance between
the module of baseline vector and the projection value can be
calculated. And the special distance can be used to judge the
distance of the two indices [25].

Definition 12. Suppose 𝑟 is the module of the vector 𝑌 and 𝑝
𝑟

is the projection value of the vector 𝑋 on the vector 𝑌; then

𝑑
𝑛

=
𝑟 − 𝑝

𝑟

 (10)

is the distance of projection value 𝑝
𝑟

and the module 𝑟 of
the vector 𝑌 is called nearness degree. When the baseline
index vector and the index vector are all transformed from
real numbers, 𝑑

𝑛

is degraded to Hamming distance.

3.4. Nearness Degrees Normalization. The index values of all
alternatives are not normalized; thus the nearness degrees
of all index values under different attributes cannot be
compared with each other directly, so the nearness degree
𝑑
𝑠𝑡

must be normalized. The linear normalized method is
adopted to keep the information of nearness degrees (gen-
eralized target center distances). The normalized nearness
degree 𝑍

𝑠𝑡

can be obtained by the following equation:

𝑍
𝑠𝑡

=
𝑑
𝑠𝑡

∑
𝑛

𝑠=1

𝑑
𝑠𝑡

, 𝑠 = 1, . . . , 𝑛; 𝑡 = 1, . . . , 𝑚, (11)

where 𝑑
𝑠𝑡

and𝑍
𝑠𝑡

denote the nearness degree and normalized
nearness degree of V

𝑠𝑡

, respectively and 𝑑
𝑠𝑡

is calculated by
(10).

3.5. Weights Determination. The weights of all attributes can
be determined by the deviation of the normalized nearness
degrees objectively. The weight model is as follows [26].

For any two alternatives 𝐶
𝑠

and 𝐶
𝑡

, under the attribute 𝑗,
the deviation of nearness degree is denoted by 𝑧

𝑠𝑡𝑗

= 𝑧
𝑠𝑗

− 𝑧
𝑡𝑗

;
thus all the deviations of all alternatives under attribute 𝑗 are
as follows:

𝑧
𝑗

=

𝑛−1

∑

𝑠=1

𝑛

∑

𝑡=𝑠+1

𝑧
𝑠𝑗

=

𝑛−1

∑

𝑠=1

𝑛

∑

𝑡=𝑠+1

(𝑧
𝑠𝑗

− 𝑧
𝑖𝑗

) . (12)
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Table 1: Index values of every alternative.

𝐶
𝑡

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
6

𝐶
1

2.0 500 [55 56] [4.7 5.7] [0.4 0.5 0.6] [0.8 0.9 1.0]

𝐶
2

2.5 540 [30 40] [4.2 5.2] [0.2 0.3 0.4] [0.4 0.5 0.6]

𝐶
3

1.8 480 [50 60] [5 6] [0.6 0.7 0.8] [0.6 0.7 0.8]

𝐶
4

2.2 520 [35 45] [4.5 5.5] [0.4 0.5 0.6] [0.4 0.5 0.6]

The attribute weights can be obtained through maximiz-
ing the entire deviations, so the following model can be
constructed:

max 𝑓 =

𝑚

∑

𝑗=1

𝑧
𝑗

𝜔
1/2

𝑗

s.t.
𝑚

∑

𝑗=1

𝜔
𝑗

= 1, 𝜔
𝑗

≥ 0, 𝑗 = 1, . . . , 𝑚.

(13)

To solve the nonlinear program (13) via the Lagrange
function, the weights can be obtained as follows:

𝜔
𝑗

=

𝑧
2

𝑗

∑
𝑚

𝑗=1

𝑧
2

𝑗

, 𝑗 = 1, 2, . . . , 𝑚, (14)

where 𝜔
𝑗

is the weight of attribute 𝑗.

3.6. Decision Making. Every alternative’s integrated nearness
degree can be aggregated with every attribute’s weight; the
equation is as follows:

𝑤
𝑖

= 𝜔
𝑗

𝑧
𝑖𝑗

, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚. (15)

So the decision making can be obtained according to
the value 𝑤

𝑖

; and the smaller value of it means the better
alternative.

3.7. Algorithm of the Proposed Approach. Thealgorithmof the
proposed approach includes the following steps.

Step 1 (measure all the feasible alternatives). The measures
of feasible alternatives could be expressed as real numbers or
fuzzy numbers appropriately by decision makers.

Step 2 (transform index values of all alternatives into connec-
tion numbers). The average values and standard deviations
of all alternatives’ indices with different types of numbers can
be computed and converted into the binary𝐴+𝐵𝑖 connection
numbers using (1) and (2).

Step 3 (determine the target center index vectors). The target
center index vectors can be determined by comparing with
themodules of index vectors of all alternatives under different
attributes using (7) and (8) or (9).

Step 4 (calculate the nearness degrees). The nearness degree
of every alternative’s index vector to target center index vector
can be calculated using (10).

Step 5 (normalize the nearness degrees). The nearness degree
of every alternative’s index vector to its target center index
vector can be calculated using (11).

Step 6 (determine the weights of attributes). Theweightsmay
be determined by objective method or subjective method; if
the subjective method is selected, then the equations from
(12) to (14) perform well.

Step 7. Aggregate the normalized nearness degrees under all
attributes and the relative optimal alternative can be obtained
by the minimum integrated nearness degree considering
every attribute’s weight use (15).

4. Case Study

4.1. Background. In order to exemplify the proposed gener-
alized grey target decision method, the data are derived from
the literature [8] and the results are also compared with those
of the literature [8].

To evaluate the tactical missiles, six indices, namely, hit
accuracy (km), warhead payload (kg), mobility (km ⋅ h−1),
price (106 g), reliability, and maintainability, are considered
denoted by 𝐴

1

∼ 𝐴
6

. For all the data type of the attributes,
𝐴
1

and𝐴
2

are real numbers,𝐴
3

and𝐴
4

are interval numbers,
and 𝐴

5

and 𝐴
6

are triangular fuzzy numbers. Among these
attributes 𝐴

1

and 𝐴
4

are cost type indices and the others
are benefit type indices. There are four feasible alternatives
denoted by 𝐶

1

∼ 𝐶
4

. The data are shown in Table 1.

4.2. Process to Decision Making

(1) Calculate the Average Value and the Standard Deviation of
Every Index.The average value and the standard deviation of
every index can be calculated using (1), and the results are
shown in Table 2. In Table 2, 𝐸

𝑖

and 𝑠
𝑖

(𝑖 = 1, . . . , 4) represent
the 𝑖th alternative’s average values and standard deviations of
all indices under all attributes. Note that the average values
and the standard deviations of real numbers are themselves
and 0, respectively.

(2) Transform Index Values into Binary Connection Numbers.
Having got the average value and the standard deviation
of every index shown in Table 2, every index value can be
transformed into binary connection number using (2), and
the results are shown in Table 3. Moreover, every binary
connection number in Table 3 can be regarded as a vector
in the 𝐷-𝑈 space. Note that the form of the real number is
expressed as the form 𝐴 + 0𝑖 (𝐴 ∈ 𝑅).
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Table 2: The average value and the standard deviation of every index.

𝐴
𝑡

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐸
1

𝑆
1

𝐸
2

𝑆
2

𝐸
3

𝑆
3

𝐸
4

𝑆
4

𝐴
1

2.0 0 2.5 0 1.8 0 2.2 0
𝐴
2

500 0 540 0 480 0 520 0
𝐴
3

55.5 0.707107 35 7.071068 55 7.071068 40 7.071068
𝐴
4

5.2 0.707107 4.7 0.707107 5.5 0.707107 5 0.707107
𝐴
5

0.5 0.1 0.3 0.1 0.7 0.1 0.5 0.1
𝐴
6

0.9 0.1 0.5 0.1 0.7 0.1 0.5 0.1

Table 3: The binary connection numbers transformed from all index values.

𝐴
𝑡

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

2.0 + 0𝑖 2.5 + 0𝑖 1.8 + 0𝑖 2.2 + 0𝑖

𝐴
2

500 + 0𝑖 540 + 0𝑖 480 + 0𝑖 520 + 0𝑖

𝐴
3

55.5 + 0.707107𝑖 35 + 7.071068𝑖 55 + 7.071068𝑖 40 + 7.071068𝑖

𝐴
4

5.2 + 0.707107𝑖 4.7 + 0.707107𝑖 5.5 + 0.707107𝑖 5 + 0.707107𝑖

𝐴
5

0.5 + 0.1𝑖 0.3 + 0.1𝑖 0.7 + 0.1𝑖 0.5 + 0.1𝑖

𝐴
6

0.9 + 0.1𝑖 0.5 + 0.1𝑖 0.7 + 0.1𝑖 0.5 + 0.1𝑖

Table 4: The module of every index and the target center index vector.

𝐴
𝑡

𝑟
𝑠1

𝑟
𝑠2

𝑟
𝑠3

𝑟
𝑠4

𝑟
0

𝐶
0

𝐴
1

2 2.5 1.8 2.2 1.8 1.8 + 0𝑖

𝐴
2

500 540 480 520 540 540 + 0𝑖

𝐴
3

55.504504 35.707142 55.452683 40.620192 55.504504 55.5 + 0.707107𝑖

𝐴
4

5.247857 4.752894 5.545268 5.049752 4.752894 4.7 + 0.707107𝑖

𝐴
5

0.509902 0.316228 0.707107 0.509902 0.707107 0.7 + 0.1𝑖

𝐴
6

0.905539 0.509902 0.707107 0.509902 0.905539 0.9 + 0.1𝑖

(3) Determine the Target Center Index Vectors. Using (6), (7),
and (8) the target center index vectors can be determined by
the modules of all index vectors under different attributes,
and the results are shown in Table 4. In Table 4, 𝑟

𝑡𝑠

(𝑡 =

1, 2, . . . , 6; 𝑠 = 1, . . . , 4) denotes the module of every binary
connection number vector, while 𝑟

0

and 𝐶
0

are the desirable
(maximum or minimum) modules of different attributes and
the target center index vectors, respectively.The target center
index vectors of different attributes are determined by the
modules of every index vectors. The target center index
vector is the one with the maximum module for benefit type
attribute, while the target center index vector is the one with
theminimummodule for cost type attribute. For example,𝐴

1

is a cost type attribute, so the index vector with the minimum
module is 1.8 + 0𝑖.

Finally, the target center index vector set is 𝐶
0

= (1.8 + 0𝑖,

540+0𝑖, 55.5+0.707107𝑖, 4.7+0.707107𝑖, 0.7+0.1𝑖, 0.9+0.1𝑖).

(4) Calculate the Nearness Degree of Every Index Vector. Table
5 is the nearness degree of every index vector to its target
center index vector calculated by the equations from (4) to
(7) and (10). In Table 5, 𝑑

𝑠𝑡

(𝑠 = 1, . . . , 4; 𝑡 = 1, 2, . . . , 6)

represents the nearness degree (generalized target center
distance).

The nearness degrees of all index vectors cannot be
compared with each other for different attributes, so they
need to be normalized with (10). The normalized nearness
degrees are shown in Table 6. In Table 6, 𝑍

𝑠𝑡

(𝑠 = 1, . . . , 4; 𝑡 =

1, 2, . . . , 6) represents the normalized nearness degree.

(5) Decision Making and Comparison. The entire integrated
nearness degrees must be calculated for decision making.
Aggregating the nearness degrees under different attributes
for every alternative involves considering the attributes’
weights or not.

Without considering the weights of all attributes, the
entire integrated nearness degrees are calculated as 𝑊 =

(1.050205, 2.003727, 1.206973, 1.739095), so the alternatives
ranking is 𝐶

1

≻ 𝐶
3

≻ 𝐶
4

≻ 𝐶
2

.
However, if the objective weights are calculated as 𝜔 =

(0.1655, 0.1534, 0.3361, 0.1349, 0.0859, 0.1241) by (14), then
the entire integrated nearness degrees 𝑊 = (0.140270,

0.371996, 0.171244, 0.316391) can be obtained using (15), so
the alternatives ranking is 𝐶

3

≻ 𝐶
1

≻ 𝐶
4

≻ 𝐶
2

.
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Table 5: Nearness degree of every index vector to its target center index vector.

𝑑
𝑠𝑡

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
6

𝑑
1𝑡

0.2 40 0 0.494699 0.197598 0
𝑑
2𝑡

0.7 0 20.108669 0 0.39344 0.396596
𝑑
3𝑡

0 60 0.235658 0.791736 0 0.198604
𝑑
4𝑡

0.4 20 15.15187 0.29676 0.197598 0.396596

Table 6: The normalized nearness degree of every index vector.

𝑍
𝑠𝑡

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
6

𝑍
1𝑡

0.153846 0.333333 0 0.312469 0.250556 0
𝑍
2𝑡

0.538462 0 0.566502 0 0.498887 0.399876
𝑍
3𝑡

0 0.5 0.006639 0.500087 0 0.200247
𝑍
4𝑡

0.307692 0.166667 0.426859 0.187444 0.250556 0.399876

Table 7: The results comparison between the proposed approach and the reported method.

𝐶
𝑖

No weights Objective weights Subjective weights
𝑀
1

𝑀
2

𝑀
1

𝑀
2

𝑀
1

𝑀
2

𝑁 𝑅 𝐷 𝑅 𝑁 𝑅 𝐷 𝑅 𝑁 𝑅 𝐷 𝑅

𝐶
1

1.050205 1 0.0511 1 0.140270 1 0.0888 2 0.178794 2 0.0960 2
𝐶
2

2.003727 4 0.0863 4 0.371996 4 0.2278 4 0.264120 4 0.2500 4
𝐶
3

1.206973 2 0.0661 2 0.171244 2 0.0768 1 0.150673 1 0.0783 1
𝐶
4

1.739095 3 0.0699 3 0.316391 3 0.1664 3 0.206413 3 0.1820 3

If the weights 𝜔 = (0.2, 0.2, 0.1, 0.1, 0.2, 0.2) are given
by the experts, then the entire integrated nearness degrees
are 𝑊 = (0.178794, 0.264120, 0.150673, 0.206413), so the
alternatives ranking is 𝐶

1

≻ 𝐶
3

≻ 𝐶
4

≻ 𝐶
2

.
Table 7 is the results comparison between the proposed

approach and the previous method reported in literature [8].
In Table 7, 𝑀

1

, 𝑀
2

, 𝑁, 𝐷, and 𝑅 stand for the proposed
approach, the previous reported method, integrated near-
ness degree, target center distance, and alternatives ranking,
respectively.The objective weights determined in 𝑀

2

are 𝜔 =

(0.18, 0.2, 0.1, 0.2, 0.16, 0.16), while the subjective weights in
𝑀
2

are 𝜔 = (0.2, 0.2, 0.1, 0.1, 0.2, 0.2).
Seen from Table 7, there are differences about the results

between the proposed approach and the previous reported
method. Both the two methods are compared with consid-
ering the attributes with no weights, objective weights, and
subjective weights. With respect to the alternatives ranking,
the ranking of alternatives 𝐶

1

and 𝐶
3

is opposite, while the
ranking of 𝐶

2

and 𝐶
4

remains the same only for considering
the objective weights. Obviously, different objective weights
make the difference. However the results of ranking with
no weights and subjective weights are uniform with the
two methods. Besides judging the alternatives by nearness
degree is easier than by target center distance from the data
results shown in Table 7. Due to the fact that the proposed
approach can reduce the information distortion, the results
of it especially for considering objective weights are superior

to those of the previous reported method in literature
[8].

5. Conclusions

This paper presents a generalized great target decision
method using connection number to deal with alternatives
with mixed attribute values. All the index values of all
alternatives can be converted into the binary connection
numbers regarded as the connection number vectors in the
determinacy-uncertainty space. Then the target center index
vectors can be determined by the modules of the binary
connection number vectors. So the nearness degrees of all
index vectors can be calculated. For comparison, the nearness
degrees are normalized in linear method. Thus the decision
making can be made by the minimum of the integrated
nearness degrees derived from aggregating the total normal-
ized degrees of every alternative. The generalized grey target
decision method for mixed attributes based on connection is
superior to that of the other authors in two aspects: needless
to normalize the raw data will reduce the information distor-
tion of fuzzy numbers; considering both the determinacy and
the uncertainty of the fuzzy numbers is of more accuracy.
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