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This paper proposes a continuous finite-time control scheme using a new form of terminal sliding mode (TSM) combined with a
sliding mode disturbance observer (SMDO). The proposed controller is applied for nanopositioning of piezoelectric actuators
(PEAs). Nonlinearities, mainly hysteresis, can drastically degrade the system performance. Same as the model imperfection,
hysteresis can also be treated as uncertainties of the system.These uncertainties can be addressed by terminal sliding mode control
(TSMC) for it is promising for positioning and tracking control. To further improve the robustness of the TSM controller, the
SMDO is employed to estimate the bounded disturbances and uncertainties. The robust stability of the TSMC is proved through
a Lyapunov stability analysis. Simulation results demonstrate the effectiveness of the proposed TSM/SMDO controller for both
positioning and tracking applications.The fast response, few chattering, and high precision positioning and tracking performances
can be achieved in finite time by the proposed controller.

1. Introduction

Different from other traditional actuators, piezoelectric actu-
ators (PEAs) possess the advantages of high positioning
resolution, fast response, large actuating force, and free of
backlash and friction [1]. Therefore, PEAs have been widely
used in a variety of applications, such as adaptive optics [2],
scanning tunneling microscopy [3, 4], data storage [1, 5, 6],
and nanofabrication.However, there are also some challenges
in the use of PEAs. The main problems come from the
nonlinear behaviors like creep and hysteresis that often occur
when the PEAs are driven by an amplifier. These nonlineari-
ties can greatly degrade the performance of PEAs and even
compromise the stability of the closed-loop system [2, 7].
For these two types of nonlinearity, creep is a slow drifting
behavior in the displacement of PEAs, when responding to a
step command voltage. Creep can cause a drifting steady state
error in static or slow moving applications, but this effect can
be easily eliminated by feedback techniques.

Hysteresis, on the other hand, is another typical nonlinear
behavior that needs to be tackled in applications of PEAs.
The hysteresis relation between the input voltage and the

output displacement can cause normally 10%–15% of open-
loop positioning error in the displacement range of PEAs.
Figure 1 shows the simulated hysteresis response of the PEA
model employed in this research [8]. This phenomenon can
largely degrade the performance of controllers that have not
considered its influence. Some earlier works dealt with this
problem by using charge amplifier [1, 9–11] or restricting the
amplitude of the input voltage small enough [12]. However,
these two methods were either too complex or not practical
in implementation. Therefore, researchers start to employ
advanced control methods to suppress hysteresis in various
applications of PEAs.

Past research proposed various control methods to deal
with the influence of hysteresis. To generally summarize,
mainly two ways of control strategies were employed in
related literature. One way is using some inverse-based
feedforward compensation methods, and another is using
feedback control methods. In feedforward based methods,
different hysteresis models are used to compensate this effect
inversely. Typical models are Prandt-Ishlinskii model [13,
14], Preisach model [15, 16], Bouc-Wen model [17], and
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Figure 1: (a) A 1Hz input displacement signal applied to the PEA model and (b) hysteresis loop obtained by simulation.

Maxwell resistive capacitor (MRC) model [18, 19]. How-
ever, these methods are based on precise hysteresis model;
degraded compensation performance is unavoidable if mod-
eling error exists. On the other hand, in feedback control
methods, the hysteresis model is usually not needed since
nonlinearities can be treated as disturbances that can be
suppressed by feedback controller, related methods include
PID (proportional-integral-derivative) control [20], repeti-
tive control [21], robust control [22–26], and SMC (sliding
mode control) [8, 27–29]. In addition, [30, 31] combined
those two types of methods by employing both feedforward
and feedback control design.

It is well known that finite-time stabilization of dynamical
systems will improve the systems performance of high-
precision and finite-time convergence to the equilibrium.
Therefore, discontinuous terminal sliding mode control with
robustness for matched disturbances and parametric uncer-
tainties with known bounds has been widely adopted in
nonlinear systems for finite-time stability [32–35]. However,
because of the chattering of discontinuous control, it may
induce poor tracking performance and create undesirable
oscillations in the control signal and even may excite high-
frequency dynamics neglected in the course of modeling [8].
In order to alleviate chattering, the boundary layer technique
is usually adopted. However, both the attractive SMC feature
of insensitivity to uncertainties and disturbances and the
finite time stability are lost. Recently, a continuous TSMC
scheme has been developed for robotic manipulators to avoid
this problem [36]. In this paper, a new continuous finite-time
terminal sliding mode control combined with a sliding mode
disturbance observer is proposed, which is then applied in
a piezoelectric actuator system with finite-time stability. To
improve the robustness of the TSMC, the SMDO is adopted
to estimate the bounded disturbances and uncertainties in
finite time. Here, the PEA is considered as a second-order
nonlinear system to design the proposed controller, and the
hysteresis considered as the main nonlinearity is modeled for
accurate simulation. The stability of the proposed controller

is proved by using the Lyapunov stability theory, and the posi-
tioning and tracking performances of the resulting control
system illustrate that the proposed controller can provide the
fast convergence in finite time and high tracking precision.

This paper is organized as follows. In Section 2, the
problem formulation is presented. In Section 3, the contin-
uous finite-time terminal sliding mode control with sliding
mode disturbance observer scheme is designed. Simula-
tions demonstration of the proposed controller is shown in
Section 4. Section 5 concludes this paper.

2. Problem Formulation

A class of second-order single input nonlinear systems with
dynamic processes can be defined as follows:

�̈� = 𝑓 (𝑥, �̇�) + 𝑏 (𝑥) 𝑢 + 𝑓𝑑, (1)
where 𝑥 and �̇� are the system state variables, 𝑓(𝑥, �̇�) is in
general nonlinear and possibly time-varying, 𝑏(𝑥) expresses
the control gain, 𝑢 is the control input, and 𝑓𝑑 represents
the bounded external disturbance with |𝑓𝑑| ≤ 𝑑. 𝑓(𝑥, �̇�) =
𝑓𝑛(𝑥, �̇�) + Δ𝑓(𝑥, �̇�), and 𝑏(𝑥) = 𝑏𝑛(𝑥) + Δ𝑏(𝑥). Here 𝑓𝑛(𝑥, �̇�)
and 𝑏𝑛(𝑥) are the nominal parts, whereas Δ𝑓(𝑥, �̇�) and Δ𝑏(𝑥)
represent the perturbations in the system. Then, the second-
order system can be rewritten as

�̈� = 𝑓𝑛 (𝑥, �̇�) + 𝑏𝑛 (𝑥) 𝑢 + 𝐹𝑑, (2)
where 𝑓𝑛(𝑥, �̇�), 𝑏𝑛(𝑥) are the nominal parts and 𝐹𝑑 =

Δ𝑓(𝑥, �̇�) + Δ𝑏(𝑥)𝑢 + 𝑓𝑑 is the lumped system uncertainty,
which is assumed to be bounded by |𝐹𝑑| ≤ 𝐷. 𝐷 is a given
positive constant.

Consider the piezoelectric actuator as a second-order
system [37], which can be written as

�̈� + 2𝜉𝜔𝑛�̇� + 𝜔
2

𝑛
𝑥 = 𝑘𝜔

2

𝑛
𝑢 + 𝐹𝑑,

(3)
where 𝜉, 𝜔𝑛, and 𝑘 are the damping ratio, the natural fre-
quency, and the gain of the second-order system, respectively.
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3. Controller Design

To have a concise manner of representation, in the rest of this
paper, the system state variables 𝑥 and �̇� will be omitted.

3.1. Terminal Sliding Mode Controller Design. For simplicity
of expression and used in the analysis and design of the TSM
controller, the following notion, which was used in [38], is
introduced in this paper:

sig(𝑥)𝜆 = |𝑥|𝜆 sign (𝑥) , (4)

where 0.5 < 𝜆 < 1.

Remark 1. A TSM and a fast TSM can be described by the
following first-order nonlinear differential equations [36]:

𝑠 = �̇� + 𝜇 sig(𝑥)𝜆 = 0, (5)

𝑠 = �̇� + 𝑎𝑥 + 𝜇 sig(𝑥)𝜆 = 0, (6)

respectively, where 𝑥 ∈ 𝑅, 𝑎, 𝜇 > 0, 0.5 < 𝜆 < 1.

Remark 2. According to the definition of finite-time stability
[39], the equilibrium point 𝑥 = 0 of the differential equations
(5) and (6) is globally finite-time stable; for example, for any
given initial condition 𝑥(0) = 𝑥0, the system state 𝑥 will
converge to 0 in finite time as follows:

𝑇 =

1

𝜇 (1 − 𝜆)









𝑥0









(1−𝜆)
,

𝑇 =

1

𝑎 (1 − 𝜆)

ln
𝑎









𝑥0









(1−𝜆)
+ 𝜇

𝜇

,

(7)

respectively, and it stays there forever, such as 𝑥 = 0 for 𝑡 > 𝑇.
Define the tracking error as

𝑒0 = 𝑥 − 𝑥𝑑, (8)

where 𝑥𝑑 represents the desired position trajectory, and for
the tracking task to be achievable using a feedback control 𝑢,
the actuator output 𝑥 tracks the desired trajectory 𝑥𝑑 in finite
time.

Introduce three auxiliary variables 𝑒01, 𝑒02, and 𝑒, where
̇𝑒01 = 𝑒0, ̇𝑒02 = 𝑒01, and

𝑒 = ̇𝑒01 + 𝑘0𝑒02, (9)

where 𝑘0 is a positive constant.
Hence, a TSM sliding surface is defined as

𝑠 = ̇𝑒 + 𝜇 sig(𝑒)𝜆, (10)

where 𝜇 > 0 and 0.5 < 𝜆 < 1. A continuous fast TSM-
type reaching law is selected to achieve continuous control
as follows:

̇𝑠 = −𝑘1𝑠 − 𝑘2sig(𝑠)
𝜌
, (11)

where 𝑘1, 𝑘2 > 0 and 0 < 𝜌 < 1.

By differentiating the sliding variable 𝑠 with respect to
time, we have

̇𝑠 = −2𝜉𝜔𝑛�̇� − 𝜔
2

𝑛
𝑥 + 𝑘𝜔

2

𝑛
𝑢 + 𝐹𝑑 − �̈�𝑑 + 𝜇𝜆|𝑒|

𝜆−1
̇𝑒.

(12)

Substituting (11) into (12), the control law of the finite-
time TSM controller can be obtained as follows:

𝑢 = 𝐵

−1
[−𝐴 − 𝑘1𝑠 − 𝑘2sig(𝑠)

𝜌
− 𝐹𝑑] ,

(13)

where 𝐴 = −2𝜉𝜔𝑛�̇� − 𝜔
2

𝑛
𝑥 + 𝜇𝜆|𝑒|

𝜆−1
̇𝑒 − �̈�𝑑 and 𝐵 = 𝑘𝜔

2

𝑛
.

It can be seen from the expression equation (12) that the
term |𝑒|𝜆−1 ̇𝑒 is included in the control law 𝑢 which has the
negative fractional power 𝜆 − 1 because of 0.5 < 𝜆 < 1.
Therefore, singularity will occur as 𝑒 = 0 and ̇𝑒 ̸= 0. To avoid
the singularly problem, the approach proposed in [40] is used
in this paper. Define a new auxiliary variable 𝑒 to replace the
original 𝑒, which is written as

𝑒 =

{

{

{

{

{

|𝑒|

𝜆−1
̇𝑒 if 𝑒 ̸= 0 and ̇𝑒 ̸= 0

|Δ|

𝜆−1
̇𝑒 if 𝑒 = 0 and ̇𝑒 ̸= 0

0 if 𝑒 = 0 and ̇𝑒 = 0,

(14)

where Δ > 0 is a small positive constant.
It should be noted that the bounded system uncertainty

𝐹𝑑 is always unknown and not available in general.Therefore,
in order to increase the robustness of the controller and
improve the control performance, a slidingmode disturbance
observer is incorporated to estimate the uncertain terms.

3.2. Sliding Mode Disturbance Observer. The SMDO is
designed as an effective way to improve the robustness to
external disturbances and modeling uncertainties which can
finish the estimation in finite time [41, 42]. To design a
SMDO for estimating the bounded system uncertainty 𝐹𝑑, an
auxiliary system is introduced as

𝜎 = 𝑠 + 𝑧,

�̇� = −𝐴 − 𝐵𝑢 − V,
(15)

where 𝜎 and 𝑧 are the auxiliary sliding variable and interme-
diate variable, respectively. V is the auxiliary traditional SMC.

The 𝜎 dynamic is derived, differentiating it with respect
to time, we have

�̇� = ̇𝑠 + �̇� = 𝐹𝑑 − V. (16)

Then the auxiliary traditional sliding mode control V is
designed to stabilize the sliding variable𝜎 at zero in finite time
as follows:

V = (𝐷 + 𝜖) sign (𝜎) , (17)

where 𝜖 > 0. Introduce a Lyapunov function 𝑉 = (1/2)𝜎2
to drive 𝜎 to zero in finite time, and then compute its
differentiating, we have

𝑉 = 𝜎�̇� = 𝜎 (𝐹𝑑 − V) ≤ |𝜎|𝐷 − |𝜎| (𝐷 + 𝜖) = −𝜖 |𝜎| . (18)

It can be conclude by using (17) that 𝜎 converges to zero
in finite time 𝑡𝑓 [41], which is

𝑡𝑓 ≤

|𝜎 (0)|

𝜖

.
(19)
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Therefore, the auxiliary systemdynamics can be governed
by equivalent control Veq. Veq is obtained by filtering the high-
frequency switching control V using a low pass filter, which
is

Veq =
1

𝜏𝑠 + 1

V, (20)

where 𝜏 > 0. For any 𝑡 satisfied 𝑡 > 𝑡𝑓, the system uncertain
term 𝐹𝑑 is estimated by Veq in finite time 𝑡𝑓, which is written
as

̂

𝐹𝑑 = Veq, (21)

where ̂𝐹𝑑 is the estimation of 𝐹𝑑. Then the final continuous
TSM control law with SMDO is designed as

𝑢 = 𝐵

−1
[−𝐴 − 𝑘1𝑠 − 𝑘2sig(𝑠)

𝜌
−

̂

𝐹𝑑] . (22)

Remark 3. The convergence of the auxiliary sliding variable
𝜎must be faster than that of 𝑠 to make sure that the terminal
sliding variable is stabilized to zero only after the system
uncertainty is estimated.

3.3. Stability Analysis

Lemma 4. Suppose that 𝑐1, 𝑐2, . . . , 𝑐𝑛 and 0 < 𝑝 < 2 are all
positive numbers; then the following inequality holds:

(𝑐

2

1
+ 𝑐

2

2
+ ⋅ ⋅ ⋅ + 𝑐

2

𝑛
)

𝑝

≤ (𝑐

𝑝

1
+ 𝑐

𝑝

2
+ ⋅ ⋅ ⋅ + 𝑐

𝑝

𝑛
)

2

.
(23)

Lemma 5. An extended Lyapunov description of finite-time
stability can be given with the form of fast TSM equation (6)
as [36]

̇

𝑉 (𝑥) + 𝑎𝑉 (𝑥) + 𝜇𝑉

𝜆
(𝑥) ≤ 0,

(24)

and the settling time can be given by

𝑇 ≤

1

𝑎 (1 − 𝜆)

ln
𝑎𝑉

1−𝜆
(𝑥0) + 𝜇

𝜇

.
(25)

It is evident that the inequalities (24) and (25)mean exponen-
tial stability as well as faster finite-time stability.

Theorem 6. For a single-input second-order nonlinear system
given by (3), with the terminal sliding surface defined by (10)
and the reaching law given by (11), both the system robust
stability and tracking convergence are guaranteed in finite time
if the control law is designed as (22) based on the combination
of SMDO.

Proof. Consider the following positive definite Lyapunov
function:

𝑉 =

1

2

𝑠

2
. (26)

By taking the time derivative of 𝑉 with respect to time, we
have

̇

𝑉 = 𝑠 ̇𝑠

= 𝑠 (𝐴 + 𝐹𝑑 + 𝐵𝑢)

= 𝑠 {𝐴 + 𝐹𝑑 + 𝐵 [𝐵
−1
(−𝐴 − 𝑘1𝑠 − 𝑘2sig(𝑠)

𝜌
−

̂

𝐹𝑑)]}

= −𝑘1𝑠
2
− 𝑠𝑘2sig(𝑠)

𝜌
+ 𝑠

̃

𝐹𝑑,

(27)

where 𝐴 = −2𝜉𝜔𝑛�̇� − 𝜔
2

𝑛
𝑥 + 𝜇𝜆|𝑒|

𝜆−1
̇

𝑒 − �̈�𝑑. ̃𝐹𝑑 = 𝐹𝑑 − ̂𝐹𝑑
since the sliding variable 𝑠 converges to zero only after the
systemuncertainty𝐹𝑑 is estimated in finite time 𝑡𝑓.Thus,̃𝐹𝑑 =
𝐹𝑑 −

̂

𝐹𝑑 → 0, if 𝑡 > 𝑡𝑓.
Therefore, for any 𝑡 > 𝑡𝑓, from Lemma 4, we have

̇

𝑉 ≤ −2𝑘1𝑉 − 2
(𝜌+1)/2

𝑘2𝑉
(𝜌+1)/2

,
(28)

where 1/2 < 𝜌 < 1. According to Lemma 5, the proposed
terminal sliding surface equation (10) will be reached in the
finite time as follows:

𝑇 ≤

1

𝑘1 (1 − 𝜌)

ln 𝑘1𝑉
(1−𝜌)/2

+ 2

(𝜌−1)/2
𝑘2

2

(𝜌−1)/2
𝑘2

. (29)

Thus, according to the definition of (8), (9), and (10), if 𝑠 →
0 in finite time 𝑇, then 𝑒 → 0 and ̇𝑒 → 0 in finite time
𝑇, and then 𝑒0 → 0 and ̇𝑒0 → 0 in finite time 𝑇; hence,
𝑥 → 𝑥𝑑 and �̇� → �̇�𝑑 in finite time 𝑇. This shows that the
proposed TSM controller combined with the SMDO ensures
both the robust stability of the system and the convergence of
the motion tracking.

4. Simulation Results

In this section, the proposed TSM controller combined with
SMDO is validated through simulations. The results are
shown and discussed in this section.

4.1. PEA Model. For the purpose of simulation, a Bouc-
Wen model which can describe the hysteresis is applied in
this work. Consider the fact that the hysteresis is the major
nonlinearity which can be handled as the uncertainty of the
PEAs system. Thus, the hysteresis is modeled and integrated
into the second-order PEA model for exact simulation. The
Bouc-Wen model has already been verified that it is adaptive
to describe the hysteresis loop of PEAs [43].The piezoelectric
actuator model with nonlinear hysteresis for simulation can
be written as

�̈� + 2𝜉𝜔𝑛�̇� + 𝜔
2

𝑛
𝑥 = 𝜔

2

𝑛
(𝐾𝑢 − ℎ) ,

(30)

̇

ℎ = 𝛼𝑑�̇� − 𝛽 |�̇�| ℎ|ℎ|

𝑛−1
− 𝛾�̇�|ℎ|

𝑛
, (31)

where ℎ is the nonlinear hysteresis which indicates the hys-
teretic loop in terms of displacement whose magnitude and
shape are determined by parameters 𝛼, 𝛽, 𝛾, the parameter
𝑑 is the piezoelectric coefficient, 𝑢 denotes the input voltage,
and the order 𝑛 governs the smoothness of the transition
from elastic to plastic response. For the elastic structure and
material, 𝑛 = 1 is assigned in (31) as usual. These parameters
used in this paper are from [8] and the values of these
parameters are shown in Table 1.
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Figure 2: Simulation responses to step signals with amplitudes of (a) 1 𝜇m, (b) 2𝜇m, (c) 3 𝜇m, and (d) 4 𝜇m.

Table 1: Parameters of the PEA with Bouc-Wen model.

Parameter Value
𝑛 1
𝜉 1.2315 × 10

4

𝜔𝑛 1.2225 × 10

6

𝑘 1.7339 × 10

−6

𝛼 0.3575
𝛽 0.0364
𝛾 0.0272

4.2. Step Responses. The transient response capability of
the proposed controller is examined firstly. The controller
parameters for all simulations of this paper are shown in
Table 2, and the results for steps of different amplitudes are
described in Figure 2 and tabulated in Table 3 for a clear
expression.

The simulation results observed from Figure 2 and
Table 3 show that the proposed controller provides a smooth

Table 2: Parameters of the implemented controller.

Parameter Value
𝜇 1
𝜆 0.85
𝜌 0.5
𝜏 0.01
𝑘0 2.5 × 10

4

𝑘1 1.5 × 10

7

𝑘2 1.5 × 10

7

𝐷 + 𝜖 5

control with chattering free and fast convergence in finite
time. Specifically, it can produce a fast response with a small
overshoot.

4.3. Sinusoidal Tracking. The performances for tracking a
sinusoidal waveform of 4 𝜇m peak-to-peak (p-p) amplitude
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Figure 3: Simulation results of response to a 20Hz sinusoidal signal.
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Figure 4: Simulation results of response to a 50Hz sinusoidal signal.

Table 3: Control performance in step tracking.

Performance
(with different amplitudes)

TSMC
1 𝜇m 2 𝜇m 3𝜇m 4 𝜇m

1% settling time (ms) 1.40 1.27 1.16 0.87
Overshoot 0.50% 0.55% 0.67% 0.72%

in different frequencies using the proposed controller are
depicted in Figures 3-4 and described in Table 4. It can
be observed from the trajectories and tracking errors that

the TSM controller can track the sinusoidal trajectory pre-
cisely and chattering free. It produces a maximum error of
±0.0019𝜇m at 20Hz and 0.0130 𝜇m at 50Hz.

4.4. Responses to Staircase Signal. The staircase signal is
applied to the proposed controller for the PEA. Figures 5(a)
and 5(b) show that a step of the staircase signal covering
the range of 1 𝜇m by 100 steps with each step lasting for
0.01 s. The proposed controller can guarantee the steady-
state error of 0 nm for approximating 80% duration of the
step. Shorter distance positioning response is described in
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Figure 5: Simulation responses to staircase signals covering the range 1 𝜇m with (a)-(b) 100 steps and (c)-(d) 1000 steps.

Table 4: Performance of the controller with sinusoidal signal.

Performance
(with different frequencies)

SMC
RMSE (𝜇m) Max. 𝐸 (𝜇m)

5HZ 1.3791 × 10

−8
−2.1021 × 10

−4

10HZ 1.0575 × 10

−7
−5.0846 × 10

−4

20HZ 1.4110 × 10

−6
±0.0019

50HZ 6.8825 × 10

−5 0.0130
100HZ 0.0012 0.0515

Figures 5(c) and 5(d) in which the amplitude of each step
is 1 nm. The proposed controller can realize the steady-state
error of ±0.5 nm for approximating 85% duration of the step.

Therefore, the steps can be identified which indicates that the
positioning resolution of the proposed controller is less than
1 nm.

4.5. Discussions on Control Performance. In view of the
simulation results, it can be concluded that the proposedTSM
controller can obtain good performances in both positioning
control and tracking control of the PEA. In the step signal
simulations, the proposed controller enables a fast transient
response without much overshoot, and especially, it removes
the chattering without steady-state error.The TSM controller
is also suitable for tracking control because of its small
tracking error, fast response, and high resolution in both
sinusoidal tracking and stair signals tracking.
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5. Conclusions

In this paper, a robust control strategy based on a new TSMC
combined with a SMDO is developed for piezoelectric actua-
tors. In order to get accurate motion tracking performance,
the hysteresis model is considered in the PEA model for
simulation. The step response simulation results show that
the proposed controller can accelerate the transient response
with low overshoot. In addition, it provides a smooth control
and excellent performance in the control implementation
yielding few chattering and fast convergence. The sinusoidal
motion and stair signal tracking simulation results illustrate
that the proposed controller can give a rise to the tracking
performance with a small tracking error and high resolution.
Based on this control strategy, the design of the controller
is simple and convenient to drive the piezoelectric actuator.
Robust stability of the proposed controller is guaranteed with
the nonlinear uncertainties and external disturbance.

In the future research, fault detection and fault tolerant
control of piezoelectric actuators will be an interesting work
based on related results [44, 45].
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