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A computationally efficient hybridization of the Laplace transform with two spatial discretization techniques is investigated for
numerical solutions of time-fractional linear partial differential equations in two space variables. The Chebyshev collocation
method is compared with the standard finite difference spatial discretization and the absolute error is obtained for several test
problems. Accurate numerical solutions are achieved in the Chebyshev collocationmethod subject to both Dirichlet and Neumann
boundary conditions. The solution obtained by these hybrid methods allows for the evaluation at any point in time without the
need for time-marching to a particular point in time.

1. Introduction

In recent years, fractional derivatives and fractional partial
differential equations (FPDEs) have received great attention
both in analysis and application (see [1–3] and references
therein). In spite of this, there has been very little work done
on solving FPDEs on a bounded domain. Agrawal [4] makes
use of the Laplace transform and the finite sine transform
to obtain an analytic solution to the fractional diffusion-
wave equation on a bounded domain. Many authors have
applied He’s variational iterative method (VIM) [5] to FPDEs
with great success. However, like the differential transform
method [6] (DTM) and Adomian decompositionmethod [7]
(ADM), VIM assumes the FPDE to lie on an infinite domain.

A great deal of work on hybrid techniques has been
presented where the Laplace transform is coupled with
Legendre wavelets, ADM, VIM [8–12]. Yin et al. [13] also
couple the VIM with Legendre wavelets for the solution of
nonlinear PDEs. Song et al. [14] compare the results obtained
by the fractional VIM andADMconcluding that themethod-
ologies are similar; however, the VIM does not require the
calculation of Adomian polynomials. Atangana andKılıçman
[15] couple the Homotopy perturbation method (HPM)
with the Sumudu transform, an integral transform similar

to the Laplace transform, to obtain solutions to certain
nonlinear heat-like FPDEs. Bhrawy et al. have contributed
a considerable effort to the field, focusing on solutions to
fractional differential equations via the shifted Legendre tau
method and spectral methods for FPDEs [16–20]. Recently,
there has been a large movement toward new techniques
for solving FPDEs (see [21–28]). To the best of the authors’
knowledge, these transform techniques are unable to enforce
Dirichlet or Neumann boundary conditions on a bounded
domain, and as such we investigate a new methodology to
attempt to circumvent this.

The application of diffusion equations to images is abun-
dant [29–34]. However, the application of a time-fractional
partial differential equation has not yet been thoroughly
examined. Preserving the spatial topography of an image
is imperative to maintaining what is deemed to be useful
information in that image. It is with this application in mind
that we focus on the diffusion equation in two dimensions,
where the introduction of an advection term into the model
would propagate information. Similarly, considering the
time-fractional diffusion equation with 1 < 𝛼 < 2, we obtain
the diffusion-wave equation, which again has propagational
properties. We therefore restrict our choice of 𝛼 to be on
[0, 1]. The introduction of a fractional order derivative raises
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the question of how to discretize or transform the derivative
to produce a form that is amenable to existing techniques.

The Grünwald-Letnikov discretization has been used for
numerical schemes for fractional partial differential equa-
tions [35–37] and is given by

𝐷
𝛼

𝑡
𝑢 (𝑡) = lim

Δ𝑡→0

1

Δ𝑡
𝛼

𝑗

∑

𝑘=0

𝜔
𝛼

𝑘
𝑢 (𝑡 − 𝑘Δ𝑡) , (1)

where

𝜔
𝛼

𝑘
= (−1)

𝑘

(
𝛼

𝑘
) , (2)

and 𝑀Δ𝑡 = 𝑡. Computationally, this discretization becomes
extremely expensive for long time simulations as each subse-
quent step in time is dependant on every time step that has
preceded it.

The use of Laplace transform allows one to circumvent
the problems that arise in the time-domain discretization.
However, using the Laplace transform for the fractional order
derivative presents the problem of inverting the transform
to find a solution. Analytic inversion of the transform is
infeasible and hence the numerical scheme for evaluating the
Bromwich integral presented by Weideman and Trefethen in
[38] is put to extensive use. The Bromwich integral is of the
form

𝑢 (𝑡) =
1

2𝜋𝑖
∫

𝜎+𝑖∞

𝜎−𝑖∞

𝑒
𝑠𝑡

𝑈 (𝑠) 𝑑𝑠, 𝜎 > 𝜎
0
, (3)

where 𝜎
0
is the convergence abscissa. Using the parabolic

conformal map

𝑠 = 𝜇(𝑖𝑤 + 1)
2

, −∞ < 𝑤 < ∞, (4)

equation (3) becomes

𝑢 (𝑡) =
1

2𝜋𝑖
∫

∞

−∞

𝑒
𝑠(𝑤)𝑡

𝑈 (𝑠 (𝑤)) 𝑠
󸀠

(𝑤) 𝑑𝑤 (5)

which can then be approximated simply by the trapezoidal
rule, or any other quadrature technique, as

𝑢
ℎ;𝑁
𝑡

(𝑡) =
ℎ

2𝜋𝑖

𝑁
𝑡

∑

𝑘=−𝑁
𝑡

𝑒
𝑠(𝑤
𝑘
)𝑡

𝑈 (𝑠 (𝑤
𝑘
)) 𝑠
󸀠

(𝑤
𝑘
) , 𝑤

𝑘
= 𝑘ℎ.

(6)

On the parabolic contour the exponential factor in (3)
forces a rapid decay in the integrand making it amenable
to quadrature. All that is left is to choose the parameters ℎ
and 𝜇 optimally which is done by asymptotically balancing
the truncation error and discretization errors in each of the
half-planes. The methodology described by Weideman and
Trefethen achieves near optimal results (see [38] and figures
therein) and the interested reader is directed there for a
thorough description of the implementation of the method.
In this work, we make use of the parabolic contour due to the
ease of use and the hyperbolic contour only exhibits a slight
improvement in performance over the parabolic contour.

We present here an extension to the work conducted by
Jacobs and Harley in [39]. This paper extends the aforemen-
tionedwork to the general formof a time-fractional parabolic
partial differential equation as well as including two types of
boundary conditions, Dirichlet and Neumann.

The following section introduces some preliminary defi-
nitions followed by a description of the methods employed,
including the different cases for boundary conditions in
Section 3. Section 5 presents the results for comparison based
on three fundamentally different examples of linear FPDEs.
A discussion of the results and their relationship to work
beyond this research is presented in Section 6 as well as some
concluding remarks.

2. Preliminaries

In this work we employ Caputo’s definition of a fractional
derivative over the Riemann-Louiville derivative due to the
fact that the Caputo derivative makes use of the physical
boundary conditions, whereas the Riemann-Louiville deriva-
tive requires fractional order boundary conditions.

Definition 1. The Riemann-Louiville integral of order 𝛼 > 0

of a function 𝑢(𝑡) is

𝐽
𝛼

𝑢 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑢 (𝜏) 𝑑𝜏, 𝑥 > 0. (7)

Definition 2. The fractional derivative of 𝑢(𝑡) according to the
Caputo definition with𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ N, is

𝜕
𝛼

𝑢 (𝑡)

𝜕𝑡
𝛼

= 𝐽
𝑚−𝛼

𝐷
𝑚

𝑢 (𝑡) = 𝐷
𝛼

∗
𝑢 (𝑡)

:=
1

Γ (𝑚 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑢
(𝑚)

(𝜏) 𝑑𝜏.

(8)

If 𝛼 = 1, the Caputo fractional derivative reduces to
the ordinary first order derivative. Podlubny [2] illustrates
the pleasing property of the Laplace Transform of a Caputo
derivative, as can be seen in (9). In our case, where 0 < 𝛼 < 1,
we have

L{
𝜕
𝛼

𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
𝛼

} = 𝑠
𝛼

𝑈 (𝑥, 𝑦) − 𝑠
𝛼−1

𝑢 (𝑥, 𝑦, 0) . (9)

This property allows one to treat fractional order derivatives
algebraically.

Definition 3. The generalized Mittag-Leffler function of the
argument 𝑧 is

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 𝛽)
. (10)

3. Methods: Semidiscrete Hybrid
Transform Method

This section introduces the methodologies used for a two-
dimensional FPDE, where the one-dimensional case is a
simple reduction of the methods presented here.
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Consider the time-fractional differential equation of the
form

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
= 𝐿 (𝑢, 𝑢

𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑦
, 𝑢
𝑦𝑦
) , (𝑥, 𝑦) ∈ Ω ⊂ R

2 (11)

with

𝑢 (𝑥, 𝑦, 0) = 𝑓 (𝑥, 𝑦) , (12)

where 𝐿 is a linear function of its arguments, Ω = [−1, 1] ×

[−1, 1] to satisfy the domain required by the Chebyshev
polynomials, and 𝑓(𝑥, 𝑦) is a functional representation of
our image data or a multivariable function. The boundary
conditionsmay be taken to be Dirichlet or Neumann and will
be discussed later. We may now apply a Laplace transform to
(11) to obtain

𝑠
𝛼

𝑈(𝑥, 𝑦) − 𝑠
𝛼−1

𝑓 (𝑥, 𝑦) = L {𝐿 (𝑢, 𝑢
𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑦
, 𝑢
𝑦𝑦
)} ,

(13)

𝑠
𝛼

𝑈(𝑥, 𝑦) − 𝑠
𝛼−1

𝑓 (𝑥, 𝑦) = 𝐿 (𝑈,𝑈
𝑥
, 𝑈
𝑥𝑥
, 𝑈
𝑦
, 𝑈
𝑦𝑦
) , (14)

where

L {𝑢 (𝑥, 𝑦, 𝑡)} = 𝑈 (𝑥, 𝑦, 𝑠) . (15)

Boundary conditions may be in the form of Dirichlet condi-
tions as follows:

𝑢 (−1, 𝑦, 𝑡) = 𝑎, 𝑢 (1, 𝑦, 𝑡) = 𝑏,

𝑢 (𝑥, −1, 𝑡) = 𝑐, 𝑢 (𝑥, 1, 𝑡) = 𝑑,

(16)

and hence,

𝑈 (−1, 𝑦) = L {𝑎} , 𝑈 (1, 𝑦) = L {𝑏} , (17)

𝑈 (𝑥, −1) = L {𝑐} , 𝑈 (𝑥, 1) = L {𝑑} . (18)

Alternatively, Neumann boundary conditions give

𝑢
𝑥
(−1, 𝑦, 𝑡) = 𝑎, 𝑢

𝑥
(1, 𝑦, 𝑡) = 𝑏,

𝑢
𝑦
(𝑥, −1, 𝑡) = 𝑐, 𝑢

𝑦
(𝑥, 1, 𝑡) = 𝑑,

(19)

with

𝑈
𝑥
(−1, 𝑦) = L {𝑎} , 𝑈

𝑦
(1, 𝑦) = L {𝑏} ,

𝑈
𝑦
(𝑥, −1) = L {𝑐} , 𝑈

𝑦
(𝑥, 1) = L {𝑑} .

(20)

The parameters 𝑎, 𝑏, 𝑐, and 𝑑 are potentially the functions of
the temporal variable and one of the spatial variables; that is,
𝑎 = 𝑎(𝑦, 𝑡). Without loss of generality, we however assume
that 𝑎, 𝑏, 𝑐, and 𝑑 are constant.

The spatial components of this model are discretized in
two ways: by Chebyshev collocation and by finite differences.

3.1. Chebyshev Collocation. Chebyshev polynomials form a
basis on [−1, 1] and hence we dictate the domain of our PDE
to be Ω. We note here, however, that any domain in R2 can

be trivially deformed to match Ω. We discretize our spatial
domain using Chebyshev-Gauss-Lobatto points:

𝑥
𝑖
= cos( 𝑖𝜋

𝑁
𝑥

) , 𝑖 = 0, 1, . . . , 𝑁
𝑥
,

𝑦
𝑗
= cos(

𝑗𝜋

𝑁
𝑦

) , 𝑗 = 0, 1, . . . , 𝑁
𝑦
.

(21)

Note here that 𝑥
0
= 1, 𝑥

𝑁
𝑥

= −1, 𝑦
0
= 1, and 𝑦

𝑁
𝑦

= −1

indicating that the domain is in essence reversed and one
must use caution when imposing the boundary conditions.

Given that our input function or image has been mapped
to Ω, we may assume that 𝑁

𝑥
= 𝑁
𝑦
; that is, we have equal

number of collocation points in each spatial direction. We
now define a differentiation matrix𝐷(1) = 𝑑

𝑘𝑙
:

𝑑
𝑘𝑙
=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑐
𝑘
(−1)
𝑘+𝑙

𝑐
𝑙
(𝑥
𝑘
− 𝑥
𝑙
)
, 𝑘 ̸= 𝑙,

−
𝑥
𝑘

2 (1 − 𝑥
2

𝑘
)
, 𝑘 = 𝑙,

1

6
(2𝑁
2

𝑥
+ 1) , 𝑘 = 𝑙 = 0,

−
1

6
(2𝑁
2

𝑥
+ 1) , 𝑘 = 𝑙 = 𝑁

𝑥
,

where 𝑐
𝑘
= {

2, 𝑘 = 0,𝑁
𝑥
,

1, 𝑘 = 1, . . . , 𝑁
𝑥
− 1.

(22)

Bayliss et al. [40] describe a method for minimizing the
round-off errors incurred in the calculations of the dif-
ferentiation matrix. Since we write 𝐷

(2)

= 𝐷
(1)

⋅ 𝐷
(1),

we implement the method, described in [40], in order to
minimize propagation of round-off errors for the second
derivative in space.

The derivative matrices in the 𝑥 direction are

𝐷
(1)

𝑥
= 𝐷
(1)

, 𝐷
(2)

𝑥
= 𝐷
(2)

, (23)

where 𝐷(1) is the Chebyshev differentiation matrix of size
(𝑁
𝑥
+ 1) × (𝑁

𝑦
+ 1).

Because we have assumed 𝑁
𝑥

= 𝑁
𝑦
, we derive the

pleasing property that𝐷(1)
𝑦

= (𝐷
(1)

𝑥
)
𝑇

and𝐷(2)
𝑦

= (𝐷
(2)

𝑥
)
𝑇

.
Writing the discretization of (14) in matrix form yields

𝐷
(2)

𝑥
U + U𝐷(2)

𝑦
− 𝑠
𝛼U = −F, (24)

where

𝐹
𝑖𝑗
= 𝑠
𝛼−1

𝑓 (𝑥
𝑖
, 𝑦
𝑗
) . (25)

By expanding (24) in summation notation, we have

𝑁
𝑥

∑

𝑘=0

𝑑
(2)

𝑖𝑘
𝑈(𝑥
𝑘
, 𝑦
𝑗
) +

𝑁
𝑦

∑

𝑘=0

𝑑
(2)

𝑘𝑗
𝑈 (𝑥
𝑖
, 𝑦
𝑘
) − 𝑠
𝛼

𝑈(𝑥
𝑖
, 𝑦
𝑗
)

= −𝑠
𝛼−1

𝑓 (𝑥
𝑖
, 𝑦
𝑗
) ,

(26)
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for 𝑖 = 0, 1, . . . , 𝑁
𝑥
, 𝑗 = 0, 1, . . . , 𝑁

𝑦
. By extracting the first

and last terms in sums, we obtain

𝑑
(2)

𝑖0
𝑈(𝑥
0
, 𝑦
𝑗
) + 𝑑
(2)

𝑖𝑁
𝑥

𝑈(𝑥
𝑁
𝑥

, 𝑦
𝑗
) + 𝑑
(2)

0𝑗
𝑈 (𝑥
𝑖
, 𝑦
0
)

+ 𝑑
(2)

𝑁
𝑦
𝑗
𝑈(𝑥
𝑖
, 𝑦
𝑁
𝑦

) +

𝑁
𝑥
−1

∑

𝑘=1

𝑑
(2)

𝑖𝑘
𝑈(𝑥
𝑘
, 𝑦
𝑗
)

+

𝑁
𝑦
−1

∑

𝑘=1

𝑑
(2)

𝑘𝑗
𝑈 (𝑥
𝑖
, 𝑦
𝑘
) − 𝑠
𝛼

𝑈(𝑥
𝑖
, 𝑦
𝑗
) = −𝑠

𝛼−1

𝑓 (𝑥
𝑖
, 𝑦
𝑗
) ,

(27)

for 𝑖 = 1, . . . , 𝑁
𝑥
− 1, 𝑗 = 1, . . . , 𝑁

𝑦
− 1. We use the form of

(27) to impose the boundary conditions.
The solution Ũ = {𝑈(𝑥

1
, 𝑦
1
), 𝑈(𝑥

1
, 𝑦
2
), . . . , 𝑈(𝑥

𝑁
𝑥
−1
,

𝑦
𝑁
𝑦
−1
)}, which is the matrix of unknown interior points of

U, can be obtained by solving the system

(Ã − s𝛼I) Ũ + ŨB̃ = −F̃, (28)

where Ã is the matrix of interior points of D̂(2)
𝑥

and B̃ is the
matrix of interior points of D̂(2)

𝑦
, so that Ã and B̃ match the

dimensions of Ũ. Also
𝐹
𝑖𝑗
= 𝑠
𝛼−1

𝑓 (𝑥
𝑖
, 𝑦
𝑗
) + 𝑑
(2)

𝑖0
𝑈(𝑥
0
, 𝑦
𝑗
)

+ 𝑑
(2)

𝑖𝑁
𝑥

𝑈(𝑥
𝑁
𝑥

, 𝑦
𝑗
) + 𝑑
(2)

0𝑗
𝑈(𝑥
𝑖
, 𝑦
0
) + 𝑑
(2)

𝑁
𝑦
𝑗
𝑈(𝑥
𝑖
, 𝑦
𝑁
𝑦

) ,

(29)

for 𝑖 = 1, . . . , 𝑁
𝑥
− 1, 𝑗 = 1, . . . , 𝑁

𝑦
− 1. By using

Kronecker tensor products, denoted by⊗, and a lexicographic
reordering, or reshaping, of Ũ and −F̃ we may write this as

((Ã − s𝛼I) ⊗ I + I ⊗ B̃T
) Ũ = −F̃, (30)

which is a linear system that is readily solved
by LinearSolve in Mathematica 9.

3.1.1. Dirichlet Boundary Conditions. Dirichlet boundary
conditions can be imposed directly by substituting (16) into
(27) and collecting all the known terms in F̃.

3.1.2. Neumann Boundary Conditions. Neumann boundary
conditions given by (17) are discretized as

𝜕𝑈

𝜕𝑥
(𝑥
𝑁
𝑥

= −1, 𝑦
𝑗
) ≈

𝑁
𝑥

∑

𝑘=0

𝑑
𝑁
𝑥
𝑘
𝑈(𝑥
𝑘
, 𝑦
𝑗
) = L {𝑎} ,

𝜕𝑈

𝜕𝑥
(𝑥
0
= 1, 𝑦

𝑗
) ≈

𝑁
𝑥

∑

𝑘=0

𝑑
0𝑘
𝑈(𝑥
𝑘
, 𝑦
𝑗
) = L {𝑏} .

(31)

Similarly for (18), we have

𝜕𝑈

𝜕𝑦
(𝑥
𝑖
, 𝑦
𝑁
𝑦

= −1) ≈

𝑁
𝑦

∑

𝑘=0

𝑑
𝑘𝑁
𝑦

𝑈 (𝑥
𝑖
, 𝑦
𝑘
) = L {𝑐} ,

𝜕𝑈

𝜕𝑦
(𝑥
𝑖
, 𝑦
0
= 1) ≈

𝑁
𝑦

∑

𝑘=0

𝑑
𝑘0
𝑈 (𝑥
𝑖
, 𝑦
𝑘
) = L {𝑑} .

(32)

By extracting the first and last terms in the sum, the
discretizations can be written as

(

𝑑
𝑁
𝑥
0
𝑑
𝑁
𝑥
𝑁
𝑥

𝑑
00

𝑑
0𝑁
𝑥

)(

𝑈(𝑥
0
, 𝑦
𝑗
)

𝑈 (𝑥
𝑁
𝑥

, 𝑦
𝑗
)
)

=(

L {𝑎} −

𝑁
𝑥
−1

∑

𝑘=1

𝑑
𝑁
𝑥
𝑘
𝑈(𝑥
𝑘
, 𝑦
𝑗
)

L {𝑏} −

𝑁
𝑥
−1

∑

𝑘=1

𝑑
0𝑘
𝑈(𝑥
𝑘
, 𝑦
𝑗
)

) ,

(
𝑑
0𝑁
𝑦

𝑑
𝑁
𝑦
𝑁
𝑦

𝑑
00

𝑑
𝑁
𝑦
0

)(

𝑈(𝑥
𝑖
, 𝑦
0
)

𝑈 (𝑥
𝑖
, 𝑦
𝑁
𝑦

)
)

=(

L {𝑐} −

𝑁
𝑦
−1

∑

𝑘=1

𝑑
𝑘𝑁
𝑦

𝑈 (𝑥
𝑖
, 𝑦
𝑘
)

L {𝑑} −

𝑁
𝑦
−1

∑

𝑘=1

𝑑
𝑘0
𝑈(𝑥
𝑖
, 𝑦
𝑘
)

).

(33)

The solutions to these linear systems are then substituted into
(27).

3.2. Finite Difference Discretization. Below we make use of
the following finite difference formulae:

𝜕𝑈

𝜕𝑥
≈

1

2Δ𝑥
(𝑈
𝑖+1,𝑗

− 𝑈
𝑖−1,𝑗

) ,

𝜕𝑈

𝜕𝑦
≈

1

2Δ𝑦
(𝑈
𝑖,𝑗+1

− 𝑈
𝑖,𝑗−1

) ,

𝜕
2

𝑈

𝜕𝑥
2
≈

1

Δ𝑥
2
(𝑈
𝑖+1,𝑗

− 2𝑈
𝑖,𝑗
+ 𝑈
𝑖−1,𝑗

) ,

𝜕
2

𝑈

𝜕𝑦
2
≈

1

Δ𝑦
2
(𝑈
𝑖,𝑗+1

− 2𝑈
𝑖,𝑗
+ 𝑈
𝑖,−1𝑗

) ,

(34)

where Δ𝑥 = 2/𝑁
𝑥
and Δ𝑦 = 2/𝑁

𝑦
.

3.2.1. Dirichlet Boundary Conditions. Discretizing (14) using
a standard central-difference scheme and writing in matrix
notation, we deduce

(C̃ − s𝛼I) Ũ + ŨD̃ = −G̃, (35)

where C̃ and D̃ are tridiagonal matrices corresponding to
the finite difference differential matrix with dimension (𝑁

𝑥
−

1,𝑁
𝑦
− 1) and

G̃
𝑖𝑗
= 𝑠
𝛼−1

𝑓 (𝑥
𝑖
, 𝑦
𝑗
) , 𝑖 = 1, . . . , 𝑁

𝑥
− 1, 𝑗 = 1, . . . , 𝑁

𝑦
− 1.

(36)

We write this as a linear system to be solved, again
using LinearSolve in Mathematica 9, as follows:

((C̃ − s𝛼I) ⊗ I + I ⊗ D̃T
) Ũ = −G̃. (37)
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The boundary conditions, (16), can be enforced directly onto
the matrix U, where the interior points of U are Ũ.

3.2.2. Neumann Boundary Conditions. By discretizing the
boundary conditions (17) and (18) using a standard central-
difference scheme we derive

𝑈
−1,𝑗

= 𝑈
1,𝑗
− 2Δ𝑥L {𝑎} ,

𝑈
𝑁
𝑥
+1,𝑗

= 𝑈
𝑁
𝑥
−1,𝑗

+ 2Δ𝑥L {𝑏} ,

𝑈
𝑖,−1

= 𝑈
𝑖,1
− 2Δ𝑦L {𝑐} ,

𝑈
𝑖,𝑁
𝑦
+1
= 𝑈
𝑖,𝑁
𝑦
−1
+ 2Δ𝑦L {𝑑} .

(38)

Including the above conditions in the matrices C andD each
with dimension (𝑁

𝑥
+1,𝑁

𝑦
+1)we canwrite the entire system

as

(C − s𝛼I)U + UD = −G, (39)

where

G
𝑖𝑗
= 𝑠
𝛼−1

𝑓 (𝑥
𝑖
, 𝑦
𝑗
) , 𝑖 = 0, . . . , 𝑁

𝑥
, 𝑗 = 0, . . . , 𝑁

𝑦
. (40)

This may be solved as a linear system by writing

((C − s𝛼I) ⊗ I + I ⊗DT
)U= −G. (41)

4. Analysis

4.1. Solvability. We have reduced all four cases to a system of
linear systems, presented in (30), (37), and (41). Asmentioned
in the previous sections, we implemented the Mathematica
solver LinearSolve, which analyzes the matrix structure
and adaptively selects the most appropriate method of solu-
tion. We have compared a number of standard solution
methods, such as SOR, without finding an algorithm that is
faster than LinearSolve. A system Mx = b has a unique
solution, x = M−1b, provided the matrix M has an inverse
M−1 that exists. In the following analysis we denote the length
in one dimension of the respective matrixM by 𝐿, since this
length is scheme dependent.

Proposition 4. If M is an irreducible diagonally dominant
matrix for which |𝑚

𝑖𝑖
| > ∑

𝐿

𝑘 = 1

𝑘 ̸= 𝑖

|𝑚
𝑖𝑘
| for at least one 𝑖, then

M is invertible [41].

The proof of the above proposition may be found in
[41]. All that is left is to show that our matrix M is always
irreducible and satisfies Proposition 4 for some 𝑖. A useful
characterization of an irreducible matrix is as follows: given
a system Mx = b, the matrix M is irreducible if a change in
any component of b will cause a change in the solution x.

Proof. LetMx = b and considerMx̃ = b + 𝜖; then,M(x− x̃) =
𝜖. Assuming x− x̃ = 0, thenM(x− x̃) = 0, a contradiction. So
x ̸= x̃ and any change in b will result in a change in x. Hence
M is irreducible.
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Figure 1: Integration contour in the real-imaginary plane noninter-
secting with the lower bound for 𝛼 = 0.75.

4.1.1. Finite Difference Scheme. The structure of the matrix
on the right-hand side of (37) and (41) reduces our diagonal
dominance criterion

󵄨󵄨󵄨󵄨𝑚𝑖𝑖
󵄨󵄨󵄨󵄨 >

𝐿

∑

𝑘 = 1

𝑘 ̸= 𝑖

󵄨󵄨󵄨󵄨𝑚𝑖𝑘
󵄨󵄨󵄨󵄨 (42)

to

󵄨󵄨󵄨󵄨4 + 𝑠
𝛼󵄨󵄨󵄨󵄨 > 2. (43)

In approximating the Bromwich integral by the trapezoidal
rule, we truncate the limits of integration from (−∞,∞) to
[−𝑁
𝑡
, 𝑁
𝑡
]. The contour path of the integral is defined to be

a parabola, denoted as 𝑠 above, in the complex plane with a
minimum proportional to the truncation parameter 𝑁

𝑡
and

inversely proportional to the final time we are integrating to,
𝑡
1
. This means that provided the ratio 𝑁

𝑡
/𝑡
1
is sufficiently

large the parabola will traverse the complex space avoiding
the lower bound required by the condition (43). Hence, the
finite difference scheme is solvable provided one chooses
parameters for the evaluation of the Bromwich integral
that satisfy the above condition. An example of the above
condition is illustrated in Figure 1 where the quarter-circle of
radius 2 represents the lower bound required by the above
condition.

4.1.2. Chebyshev Collocation. In the case of Chebyshev col-
location the solvability criterion is a little more difficult to
satisfy, and hence we are only able to derive a necessary
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criterion that our choice of inversion parameters must satisfy.
Once again the structure of (30) dictates that the condition

󵄨󵄨󵄨󵄨𝑚𝑖𝑖
󵄨󵄨󵄨󵄨 >

𝐿

∑

𝑘 = 1

𝑘 ̸= 𝑖

󵄨󵄨󵄨󵄨𝑚𝑖𝑘
󵄨󵄨󵄨󵄨 (44)

reduces to

󵄨󵄨󵄨󵄨󵄨
2𝑑
(2)

𝑖𝑖
− 𝑠
𝛼
󵄨󵄨󵄨󵄨󵄨
>

𝐿

∑

𝑘 = 1

𝑘 ̸= 𝑖

2
󵄨󵄨󵄨󵄨𝑑𝑖𝑘

󵄨󵄨󵄨󵄨 . (45)

The above condition is easy to verify in practice; however, due
to the dependence of the derivative matrix on the resolution
parameters 𝑁

𝑥
and 𝑁

𝑦
, it is difficult to write a general

condition in closed form. Appropriate choices of parameters
in the inversion resolution ensure that the scheme is solvable
as described in the previous section. Given that the derivative
matrix for Chebyshev collocation is full, the right-hand side
of the solvability condition (45) produces a lower bound
with a much larger magnitude than in the finite difference
case; moreover, the lower bound grows with 𝑁

𝑥
. Examples

of contours are given for𝑁
𝑥
= 5 in Figure 2 and for𝑁

𝑥
= 20

in Figure 3 illustrating the adherence of a well-constructed
contour to the solvability condition (45).

4.2. Accuracy

4.2.1. Finite Difference Scheme. Theoretically, the accuracy of
the method is well known to be O(Δ𝑥2) + O(Δ𝑦2) [41]. The
errors obtained in Section 5 concur with theoretical bounds.

4.2.2. Chebyshev Collocation. The work of Breuer and Ever-
son [42] and Don and Solomonoff [43] both present argu-
ments on the accuracy of Chebyshev collocation. In practice,
the accuracy of the method is measured by numerically
differentiating a function and comparing the numerical
derivative with the analytic result. The results obtained in
the current work are consistent with the results presented in
[42, 43] obtaining very good errors for small values of 𝑁

𝑥

and𝑁
𝑦
. The errors in Chebyshev collocation tend to increase

rather drastically for very large values of𝑁
𝑥
contradicting the

typical rule of thumb.The aforementioned work explains that
while the truncation error decreases as resolution increases,
the round-off errors accumulate dramatically and dominate.

5. Results

Example 5 (one-dimensional time-fractional diffusion equa-
tion with homogenous Neumann boundary conditions). We
consider first the time-fractional diffusion equation in one
dimension:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
=
𝜕
2

𝑢

𝜕𝑥
2
, (46)

subject to the boundary conditions

𝑢
𝑥
(−1, 𝑡) = 0, 𝑢

𝑥
(1, 𝑡) = 0 (47)

Table 1: Maximum absolute error in the presented method’s
solution of the problem described by Example 5 at time 𝑡 = 0.5.

𝑁
𝑥

Error in finite difference Error in Chebyshev collocation
5 0.009927020087821425 0.0009403962041890646
10 0.002471078174960284 2.5800430680789077 × 10

−8

15 0.0010985435173019864 9.547918011776346 × 10
−15

20 0.0006179865325516287 8.992806499463768 × 10
−15

and initial condition

𝑢 (𝑥, 0) = cos(𝜋
2
(𝑥 + 1)) . (48)

The results obtained by finite differences and Chebyshev
collocation were compared to the exact solution given by
Kazemi and Erjaee [44] as

𝑢 (𝑥, 𝑡) = cos(𝜋
2
(𝑥 + 1)) (1 − 𝑡

𝛼

𝐸
𝛼,1+𝛼

(−𝑡
𝛼

)) , (49)

where 𝐸
𝛼,𝛽
(𝑧) is the generalized Mittag-Leffler function of

the argument 𝑧. We select 𝛼 = 0.8 in line with [44];
however, experimental results indicate that the methods are
robust for virtually any value of 0 < 𝛼 ≤ 1. We note
here that the domain was originally [0, 𝜋] and hence a linear
transformation in the spatial variables is required to map the
domain to [−1, 1], which is in accordance with the domain of
the Chebyshev polynomials.The errors in the finite difference
and Chebyshev schemes are tabulated in Table 1.

Figures 4 and 5 illustrate the diminishing error incurred
in the process of inverting the Laplace transform. Inversion
of the Laplace transform, even in the analytic case, can lead
to a singularity at 𝑡 = 0.This arises in the numerical inversion
and results in a relatively large error in the present schemes
near 𝑡 = 0. However, this error diminishes rapidly and our
schemes obtain an accurate solution.

Example 6 (diffusion-advection equation with Dirichlet
boundary conditions). This example considers the time-
fractional diffusion-advection equation in one dimension:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
=
𝜕
2

𝑢

𝜕𝑥
2
+
𝜕𝑢

𝜕𝑥
, (50)

subject to

𝑢 (−1, 𝑡) = 𝑒
−1

, 𝑢 (1, 𝑡) = 𝑒
−1

,

𝑢 (𝑥, 0) = 𝑒
−𝑥
2

.

(51)

To the authors’ knowledge, no exact solution exists for the
time-fractional diffusion-advection equation. Comparing the
present methods with NDSolve in Mathematica 9 yields
satisfactory results for 𝛼 = 1, but no solution can be found
for fractional 𝛼. We instead compare our solutions in the
Laplace domain, where we obtain an exact solution to the
transformed equation using DSolve in Mathematica 9.
This allows one to compare the performance of the present
methods for various values for 𝛼. The errors obtained, for
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Figure 2: Integration contour in the real-imaginary plane noninter-
secting with the lower bound for 𝛼 = 0.75 and𝑁

𝑥
= 5.

𝛼 = 0.7, are presented in Table 2. Given that these errors
are valid in the transform domain we note that the numerical
error of O(8.12−𝑁𝑡) is incurred upon inversion of the Laplace
transform, as presented by Weideman and Trefethen in [38]
and where𝑁

𝑡
is typically 50.

Example 7 (two-dimensional time-fractional diffusion equa-
tion with homogenous Dirichlet boundary conditions). We
now consider the two-dimensional time-fractional diffusion
equation

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
=
𝜕
2

𝑢

𝜕𝑥
2
+
𝜕
2

𝑢

𝜕𝑦
2
, (52)

with boundary conditions

𝑢 (−1, 𝑦, 𝑡) = 0, 𝑢 (1, 𝑦, 𝑡) = 0,

𝑢 (𝑥, −1, 𝑡) = 0, 𝑢 (𝑥, 1, 𝑡) = 0

(53)

and initial condition

𝑢 (𝑥, 𝑦, 0) = sin (𝜋 (𝑥 + 1)) sin (𝜋 (𝑦 + 1)) , (54)

so that the boundary conditions are consistent with the initial
condition. The parameter 𝛼 is taken to be 0.8. Momani [45]
gives an exact solution as

𝑢 (𝑥, 𝑦, 𝑡) = sin (𝜋 (𝑥 + 1)) sin (𝜋 (𝑦 + 1)) 𝐸
𝛼
(−2𝑡
𝛼

) , (55)

where 𝐸
𝛼
(𝑧) = 𝐸

𝛼,1
(𝑧) is the Mittag-Leffler function of

order 𝛼. The efficacy of these methods for fractional order
derivatives is illustrated in Table 3.

6. Concluding Remarks

The results above strongly advocate the use of Chebyshev
collocation as a spatial discretization method given the rapid
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Figure 3: Integration contour in the real-imaginary plane noninter-
secting with the lower bound for 𝛼 = 0.75 and𝑁

𝑥
= 20.

0 1 2 3 4 5

0.01

1

Time

Av
er

ag
e a

bs
ol

ut
e e

rr
or

10
−10

10
−8

10
−6

10
−4

Figure 4: Log plot illustrating the diminishing average error in the
Chebyshev collocation scheme with time for Example 5.
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Figure 5: Log plot illustrating the diminishing average error in the
finite difference scheme with time for Example 5.
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Table 2: Maximum absolute error in the presented method’s
solution of the problem described by Example 6 in the Laplace
domain at 𝑠 = 50.

𝑁
𝑥

Error in finite difference Error in Chebyshev collocation
5 0.0002846591036554467 0.000031320115677323235
10 0.0003424383347704913 5.981351275385904 × 10

−9

15 0.00028950142395197005 5.763522471780025 × 10
−12

20 0.0002476113730374256 5.538704044016907 × 10
−12

Table 3: Maximum absolute error in the presented method’s
solution of the problem described by Example 7 at time 𝑡 = 0.5.

𝑁
𝑥

Error in finite difference Error in Chebyshev collocation
5 0.038120869340055985 0.0064580077147820825
10 0.009341572386976915 8.103172060291985 × 10

−7

15 0.004521845750043552 3.937461467984349 × 10
−12

20 0.002567981542938025 6.517009154549669 × 10
−13

error reduction with increasing spatial resolution. These
hybrid methods present a robust way in which one can
solve linear time-fractional partial differential equations on
a bounded domain with Neumann or Dirichlet boundary
conditions, particularly given discrete initial data.

Chebyshev collocation presents extremely small errors
when compared to the exact solution. We use numerical
experiments as substantiation of the method for applying
discrete initial conditions where an exact solution may not
exist. Figure 6 illustrates the decreasing error with increasing
number of collocation points for the examples presented in
the previous section.

The efficiency of the Laplace transformwithin the context
of this hybridized method over a time-marching scheme
is threefold. First, we are able to treat the fractional order
derivative algebraically. The error incurred in the tempo-
ral dimension is only attributed to the evaluation of the
Bromwich integral and, furthermore, this error drops off
rapidly with increased resolution as illustrated in [38]. Finally
the solution obtained is a function of time so that we may
evaluate our solution at any time rather than needing to
march to that time. The Grünwald-Letnikov discretization
presented in (1) is an example of a time-marching scheme.
The computational time required for a long time solution
via the Grünwald-Letnikov discretization is enormous, due
to the fractionality being dependant on every time step that
precedes the current time. Moreover, every time step incurs
a truncation error, so that the further the solution marches
the greater the error is; contrastingly, the present method’s
error diminishes as time evolves. As a counter-point, if one
were seeking a solution after a very short time, then a time-
marching scheme may be better suited.

Themethod described and implemented above is a direct
one and is therefore free of any iterative scheme. Hence
the convergence of the scheme is difficult to speak of.
Figure 6 illustrates how the approximate solution obtained
converges to the exact solution with increasing number of
collocation points for the present examples. However, due to
the well-known phenomenon of the Chebyshev collocation
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Figure 6: Log plot illustrating the increasing accuracy with increas-
ing collocation points for all examples.

method exhibiting large round-off errors for large number of
collocation points, 𝑁

𝑥
> 100, due to finite-precision error

accumulation [42, 43], the collocation hybrid scheme is not
consistent with any given problem for𝑁

𝑥
→ ∞ orΔ𝑥 → 0.

This research has presented a numerical experimental
comparison between the standard finite difference method
and the Chebyshev collocation method as a means of spatial
discretization when hybridized with the Laplace transform.
These methods enjoy the benefits of an exact transform in
temporal variable and furthermore allow one to easily and
efficiently deal with a fractional order derivative, at the cost
of numerically inverting the Laplace transform.

The goal of these methods is to apply a fractional
order diffusion equation to an image on a bounded two-
dimensional domain. The use of a discretization is therefore
unavoidable given that the initial condition may in fact be
discrete.

The solution to the discretized equations is found by
writing a two-dimensional systemof size𝑁

𝑥
×𝑁
𝑥
and𝑁

𝑦
×𝑁
𝑦

as a one-dimensional system of size 𝑁
𝑥
𝑁
𝑦
× 𝑁
𝑥
𝑁
𝑦
. While

this is more computationally expensive, it does exhibit an
elegance in construction. An alternative approach would be
to implement an alternating-direction implicit (ADI) type
scheme [46], where each dimension is acted on in turn rather
than at once.

Due to the Laplace transform being a linear operator,
this method is not suitable for nonlinear problems, nor is it
applicable to FPDEs with both fractional spatial derivatives
and fractional temporal derivatives.

We have shown a hybrid method combining the Laplace
transform and a spatial discretization which can be extremely
effective at solving linear FPDEs on a two-dimensional
bounded domain with Dirichlet or Neumann boundary
conditions.
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