
Research Article
Algebraic Type Approximation to the Blasius Velocity Profile
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For the Blasius velocity profile we propose a simple algebraic type approximate function which is uniformly accurate over the whole
region. Moreover, for further improvement a correction method based on a weight function is introduced. The availability of the
proposed method is shown by the result of numerical experiments.

1. Introduction

We consider the well-known Blasius problem

𝑁𝑓 (𝑥) := 2𝑓
󸀠󸀠󸀠

(𝑥) + 𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) = 0, 0 ≤ 𝑥 < ∞, (1)

subject to the boundary conditions

𝑓 (0) = 𝑓
󸀠

(0) = 0, 𝑓
󸀠

(∞) = 1. (2)

The so-called Blasius function 𝑓(𝑥) describes the stream
on the boundary layer over a flat plate. There are lots of
analytical approximation methods to the Blasius function
𝑓(𝑥) such as the variational iteration method [1–6], the
Adomian decomposition method [7–9], and the homotopy
analysis method [10–12]. Recently, spectral methods based
on orthogonal functions have been applied in approximation
of solutions for the nonlinear boundary value problems like
the Blasius problem [13–17]. In addition, numerical solutions
of the nonlinear differential equations for the boundary
layer problems such as Falkner-Skan equations, including the
Blasius equation as a special case, have been studied by many
researchers [18–25].

Concerning the streamwise velocity profile𝑓󸀠(𝑥), we note
an approximate analytical solution proposed in the literature
[26] of the form

𝑓
󸀠

𝑌
(𝑥) = tanh (𝑏𝑥)

+ 2𝑐𝑟 sech2 (𝑟𝑥) {tanh3 (𝑟𝑥) + 2tanh7 (𝑟𝑥)} ,
(3)

where 𝑏 and 𝑐 are determined by the known properties of
the Blasius function 𝑓(𝑥) at the wall 𝑥 = 0 and far from

the wall, respectively. The parameter 𝑟 is chosen by minimiz-
ing the residual function

𝑁𝑓
𝑌
(𝑥) = 2𝑓

󸀠󸀠󸀠

𝑌
(𝑥) + 𝑓

𝑌
(𝑥) 𝑓
󸀠󸀠

𝑌
(𝑥) . (4)

Recently, Savaş [27] introduced another approximate analyt-
ical solution for the streamwise velocity profile as

𝑓
󸀠

𝑆,𝑛
(𝑥) = (tanh [(𝛼𝑥)𝑛])1/𝑛, (5)

for the constants (𝛼, 𝑛) = (0.33206, 3/2) or (0.33245, 5/3).
In the next section, motivated by the analytical solutions

(3) and (5), we propose another algebraic type approximate
analytical solution for the velocity profile as given by (6)
and explore its properties with a method to determine
the parameters therein. In Section 3, by using an appro-
priate weight function, we introduce a correction method
to improve the accuracy of the presented approximation.
Moreover, for further improvement we employ an auxiliary
term which appropriately reflects the error of the presented
approximation. Some numerical experiments are performed
to demonstrate the efficiency of the presented method.

2. Approximation to the Velocity Profile

To approximate the velocity profile 𝑓󸀠(𝑥) directly we suggest
an algebraic type analytical function as

𝑓
󸀠

𝐴,𝑚
(𝑥) = [

(𝑎𝑥)
𝑚

(𝑎𝑥)
𝑚
+ 1

]

1/𝑚

(6)
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for a constant 𝑎 > 0 and an exponent𝑚 > 1.Wenote that𝑓󸀠
𝐴,𝑚

satisfies the boundary conditions𝑓󸀠
𝐴,𝑚

(0) = 0 and 𝑓󸀠
𝐴,𝑚

(∞) =

1 given in (2), and its derivative is

𝑓
󸀠󸀠

𝐴,𝑚
(𝑥) =

𝑓
󸀠

𝐴,𝑚
(𝑥)

𝑥 {(𝑎𝑥)
𝑚
+ 1}

=
𝑎

{(𝑎𝑥)
𝑚
+ 1}
1+(1/𝑚)

. (7)

Since 𝑓󸀠󸀠
𝐴,𝑚

(0) = 𝑎, we may set

𝑎 = 𝑓
󸀠󸀠

(0) = 0.332057 . . . (8)

which is a well-known Blasius constant [28]. In addition, the
velocity profile 𝑦 = 𝑓

󸀠

𝐴,𝑚
(𝑥) has an inversion of a simple form

as

𝑥 =
1

𝑎
[

𝑦
𝑚

1 − 𝑦𝑚
]

1/𝑚

, 0 ≤ 𝑦 < 1. (9)

The related approximation 𝑓
𝐴,𝑚

to the Blasius stream
function 𝑓(𝑥) can be obtained by the formula

𝑓
𝐴,𝑚

(𝑥) = ∫

𝑥

0

𝑓
󸀠

𝐴,𝑚
(𝑡) 𝑑𝑡 = ∫

𝑥

0

[
(𝑎𝑡)
𝑚

(𝑎𝑡)
𝑚
+ 1

]

1/𝑚

𝑑𝑡. (10)

In fact, using the symbolic computational software Mathe-
matica (version 9), one can find the analytical form of 𝑓

𝐴,𝑚

as

𝑓
𝐴,𝑚

(𝑥) =
𝑎

2
𝑥
2
𝐹(

1

𝑚
,
2

𝑚
,
𝑚 + 2

𝑚
; −(𝑎𝑥)

𝑚
) , (11)

where 𝐹(𝑝, 𝑞, 𝑟; 𝑧) is the hypergeometric function [29] whose
series expansion is

𝐹 (𝑝, 𝑞, 𝑟; 𝑧) =

∞

∑

𝑘=0

(𝑝)
𝑘
(𝑞)
𝑘

(𝑟)
𝑘
𝑘!

𝑧
𝑘 (12)

and (𝑠)
𝑘
is the shifted factorial defined by

(𝑠)
𝑘
= 𝑠 (𝑠 + 1) (𝑠 + 2) ⋅ ⋅ ⋅ (𝑠 + 𝑘 − 1) , 𝑘 ≥ 1 (13)

with (𝑠)
0
= 1.

For an appropriate parameter 𝑚 in 𝑓
󸀠

𝐴,𝑚
(𝑥) we may

choose a value𝑚 = 𝑚
∗ at which the 𝐿

2
-norm of the residual

function𝑁𝑓
𝐴,𝑚

,

󵄩󵄩󵄩󵄩𝑁𝑓𝐴,𝑚
󵄩󵄩󵄩󵄩

2

2
= ∫

∞

0

{𝑁𝑓
𝐴,𝑚

(𝑥)}
2

𝑑𝑥 (14)

is minimized. To find 𝑚
∗ one can use a package, Mathemat-

ica, for example, and we will obtain the local minimum in
‖𝑁𝑓
𝐴,𝑚

‖
2
at the value𝑚∗ ≈ 4.216.

Figure 1 shows the errors of the presented approximate
velocity profile, 𝑓󸀠

𝐴,𝑚
(𝑥), with integers𝑚 = 4 and𝑚 = 5 near

the value 𝑚∗ ≈ 4.216. The error means difference between
𝑓
󸀠

𝐴,𝑚
(𝑥) and the numerical solution for the velocity profile

𝑓
󸀠
(𝑥) which is regarded as an exact solution. By numerical

experiments for various values of 𝑚, we can see that the
accuracy of 𝑓󸀠

𝐴,𝑚
(𝑥) becomes better far from the wall 𝑥 = 0

as 𝑚 goes large while it becomes better near 𝑥 = 0 as 𝑚 goes
small.
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Figure 1: Errors of the presented approximate velocity profiles,
𝑓
󸀠

𝐴,4
(𝑥) (upper line) and 𝑓

󸀠

𝐴,5
(𝑥) (lower line).

3. Improvement by a Weighted Average

In order to improve the accuracy of the proposed approxi-
mate velocity profile over the whole region, we introduce a
weighted average

𝑓
󸀠

𝐴,𝑚,𝑛
(𝑥) = (1 − 𝜃 (𝑥)) 𝑓

󸀠

𝐴,𝑚
(𝑥) + 𝜃 (𝑥) 𝑓

󸀠

𝐴,𝑛
(𝑥) (15)

for 1 < 𝑚 < 𝑛, where 𝜃(𝑥) is a weight function defined as

𝜃 (𝑥) = 𝜃 (𝑏, 𝑘; 𝑥) =
(𝑥/𝑏)
𝑘

(𝑥/𝑏)
𝑘
+ 1

, 0 ≤ 𝑥 < ∞ (16)

for 𝑏 > 0 and 𝑘 > 0. It follows that 0 ≤ 𝜃(𝑥) < 1 for 0 ≤ 𝑥 < ∞

with 𝜃(𝑏) = 1/2. Moreover, it should be noticed that for a
sufficiently large 𝑘

𝜃 (𝑥) ∼ {
0, for𝑥 < 𝑏,

1, for𝑥 > 𝑏
(17)

and thus

𝑓
󸀠

𝐴,𝑚,𝑛
(𝑥) ∼ {

𝑓
󸀠

𝐴,𝑚
(𝑥) , for 𝑥 < 𝑏,

𝑓
󸀠

𝐴,𝑛
(𝑥) , for 𝑥 > 𝑏.

(18)

This implies that the point 𝑥 = 𝑏 plays the role of a
threshold between two approximate velocity profiles 𝑓

󸀠

𝐴,𝑚

and 𝑓
󸀠

𝐴,𝑛
. On the other hand, the related approximate stream

function 𝑓
𝐴,𝑚,𝑛

can be obtained by numerical integration in
the equation

𝑓
𝐴,𝑚,𝑛

(𝑥) = ∫

𝑥

0

𝑓
󸀠

𝐴,𝑚,𝑛
(𝑡) 𝑑𝑡. (19)

Referring to Figure 1 for the cases of𝑚 = 4 and 𝑛 = 5, we
may take 𝑏 = 3.5134 in (16) which is a center of the points 𝑥 =

4.4033 and 2.6234 at which 𝑓
𝐴,4

(𝑥) and 𝑓
𝐴,5

(𝑥), respectively,
have the maximum absolute errors. Thick lines in Figure 2
indicate errors (i.e., differences from the numerical solution)
of the corrected approximate stream function 𝑓

𝐴,4,5
(𝑥) and

the velocity profile 𝑓
󸀠

𝐴,4,5
(𝑥) with 𝑏 = 3.5134 and 𝑘 = 6

in the weight function 𝜃(𝑥) = 𝜃(𝑏, 𝑘; 𝑥). We can see that
the maximum error is about 0.01 in the velocity profile and
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Figure 2: Errors of the corrected approximate stream function 𝑓
𝐴,4,5

(𝑥) (in (a)) and the velocity profile 𝑓󸀠
𝐴,4,5

(𝑥) (in (b)), indicated by thick
lines. In addition, errors of 𝑓

𝐴,4
(𝑥) and 𝑓

𝐴,5
(𝑥) and those of 𝑓󸀠

𝐴,4
(𝑥) and 𝑓

󸀠

𝐴,5
(𝑥) are, respectively, included in (a) and (b), indicated by thin

lines.
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Figure 3: Errors of the corrected approximate stream function 𝑓
𝐴,4,5

(𝑥) (in (a)) and the velocity profile 𝑓󸀠
𝐴,4,5

(𝑥) (in (b)), indicated by thick
lines, for the parameters 𝑘 = 4, 6, 8 from the top row. Thin lines indicate errors of 𝑓

𝐴,4,5
(𝑥) and 𝑓

󸀠

𝐴,4,5
(𝑥) and dashed lines indicate Savas’s

approximations 𝑓
𝑆,1.5

(𝑥) and 𝑓
󸀠

𝑆,1.5
(𝑥).
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Table 1: Numerical values of the constants 𝑐
1
, 𝑐
2
,𝑀
1
, and𝑀

2
in (20)

for the parameters 3 ≤ 𝑘 ≤ 8.

𝑘 𝑐
1

𝑐
2

𝑀
1

𝑀
2

3 2.3510 4.7054 −0.008444 0.011006
4 2.2706 4.7209 −0.007185 0.009994
5 2.1595 4.7584 −0.006378 0.009134
6 2.0739 4.8167 −0.005948 0.008443
7 2.0241 4.8859 −0.005734 0.007923
8 1.9964 4.9526 −0.005624 0.007553

about 0.02 in the stream function. Comparing these with
the errors of the approximate stream functions 𝑓

𝐴,4
(𝑥) and

𝑓
𝐴,5

(𝑥) in Figure 2(a) and the velocity profiles 𝑓󸀠
𝐴,4

(𝑥) and
𝑓
󸀠

𝐴,5
(𝑥) in Figure 2(b), one can find distinct improvement of

the corrected velocity profile 𝑓󸀠
𝐴,4,5

(𝑥) defined in (15).
In practice, by numerical experiments, we can find better

case of parameters like (𝑚, 𝑛) = (3.8, 5.8), for example, which
results in more accurate approximation with the maximum
errors about 0.003 and 0.005 in the velocity profile and the
stream function, respectively. However, this choice of the
parameters looks rather ambiguous. Thus, for development
of plausible further improvement, we refer to the correction
method proposed in the literature [30] which uses an auxil-
iary term reflecting the error of the presented approximation.
First, observing the behavior of the error 𝐸(𝑥) = 𝑓

󸀠
(𝑥) −

𝑓
󸀠

𝐴,𝑚,𝑛
(𝑥) given in Figure 2, for example, we can have the

numerical values of the critical points (𝑐
1
,𝑀
1
) = (𝑐

1
, 𝐸(𝑐
1
))

and (𝑐
2
,𝑀
2
) = (𝑐
2
, 𝐸(𝑐
2
)) of 𝐸(𝑥). Then, to approximate 𝐸(𝑥)

appropriately, we suggest a function 𝑔
𝑚,𝑛

(𝑥) ≈ 𝐸(𝑥) of the
form

𝑔
𝑚,𝑛

(𝑥) = 𝑀 (𝑥 − 𝑐) 𝑒
−𝑟(𝑥−𝑐)

2

+𝑀, (20)

where

𝑀 =
𝑀
2
−𝑀
1

2
, 𝑀 =

𝑀
1
+𝑀
2

2
,

𝑐 =
𝑐
1
+ 𝑐
2

2
.

(21)

The value of 𝑟 in (20) can be determined by the condition
𝑔
󸀠

𝑚,𝑛
(𝑐
1
) = 𝑔
󸀠

𝑚,𝑛
(𝑐
2
) = 0 which implies that

𝑟 =
2

(𝑐
2
− 𝑐
1
)
2
. (22)

We consider a corrected approximation

𝑓
󸀠

𝐴,𝑚,𝑛
(𝑥) = 𝑓

󸀠

𝐴,𝑚,𝑛
(𝑥) + 𝑔

𝑚,𝑛
(𝑥) . (23)

One may expect that the accuracy of 𝑓󸀠
𝐴,𝑚,𝑛

(𝑥) goes higher as
𝑔
𝑚,𝑛

(𝑥) becomes closer to the error 𝐸(𝑥).
For example, for the case of (𝑚, 𝑛, 𝑘) = (4, 5, 𝑘), 3 ≤ 𝑘 ≤ 8,

we can evaluate numerical values of the constants 𝑐
1
, 𝑐
2
, 𝑀
1
,

and𝑀
2
as given in Table 1. Figure 3 shows errors of 𝑓

𝐴,4,5
(𝑥)

and the velocity profile 𝑓
󸀠

𝐴,4,5
(𝑥) indicated by thick lines,

compared with those of 𝑓
𝐴,4,5

(𝑥) and 𝑓
󸀠

𝐴,4,5
(𝑥) indicated by

thin lines, for the parameters 𝑘 = 4, 6, 8. Additionally, dashed
lines indicate Savas’s approximations 𝑓

𝑆,1.5
(𝑥) and 𝑓

󸀠

𝑆,1.5
(𝑥).

We can find that 𝑓󸀠
𝐴,4,5

(𝑥) and 𝑓
𝐴,4,5

(𝑥) with 𝑘 = 4, 6 have
themaximum errors about 0.002 and 0.005, respectively.This
implies that the correction method (23) can highly improve
the proposed method (15) as a result.
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