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We establish a decision making model for evaluating hydrogen production technologies in China, based on interval-valued
intuitionistic fuzzy set theory. First of all, we propose a series of interaction interval-valued intuitionistic fuzzy aggregation operators
comparing themwith somewidely used and cited aggregation operators. In particular, we focus on the key issue of the relationships
between the proposed operators and existing operators for clear understanding of the motivation for proposing these interaction
operators. This research then studies a group decision making method for determining the best hydrogen production technologies
using interval-valued intuitionistic fuzzy approach. The research results of this paper are more scientific for two reasons. First, the
interval-valued intuitionistic fuzzy approach applied in this paper is more suitable than other approaches regarding the expression
of the decision maker’s preference information. Second, the results are obtained by the interaction between the membership
degree interval and the nonmembership degree interval. Additionally, we apply this approach to evaluate the hydrogen production
technologies in China and compare it with other methods.

1. Introduction

One of the important parts of multicriteria decision making
is intuitionistic fuzzymultiattribute decisionmaking, and it is
an important branch of operations research andmanagement
sciences. Intuitionistic fuzzy set (IFS) is a useful technique to
describe the fuzziness of the world and it was characterized
bymembership degree and nonmembership degree [1].Three
years later, Atanassov and Gargov [2] extended the IFS to a
more generalized form and introduced the interval-valued
intuitionistic fuzzy set (IIFS). IIFS is characterized by the
membership degree range and nonmembership degree range.
Therefore, IIFS is more powerful to depict the fuzziness of
the world and has been utilized in many fields, especially in
decision making [3–8].

During the interval-valued intuitionistic fuzzy multi-
criteria decision making process, the experts often pro-
vide their evaluation information which should be aggre-
gated by using the proper aggregation methods. Interval-
valued intuitionistic fuzzy aggregation operators play an

important role in multicriteria decision making. Up to
now, there are many aggregation operators for IIFNs; the
most basic interval-valued intuitionistic fuzzy aggregation
operators are interval-valued intuitionistic fuzzy weighted
average (IIFWA) operator and interval-valued intuitionis-
tic fuzzy weighted geometric (IIFWG) operator proposed
by Xu [9], based on which, a lot of extended operators
are proposed by researchers, such as generalized interval-
valued intuitionistic fuzzy geometric operator [10], interval-
valued intuitionistic fuzzy Einstein ordered weighted geo-
metric (I-IVIFEOWG) operator proposed by Yang and Yuan
[11], induced interval-valued intuitionistic fuzzy Hamacher
ordered weighted geometric (I-IVIFHOWG) operator [12],
the interval-valued intuitionistic fuzzy Einstein weighted
geometric operator, interval-valued intuitionistic fuzzy Ein-
stein ordered weighted geometric operator and interval-
valued intuitionistic fuzzy Einstein hybrid weighted geomet-
ric operator [13], and induced generalized interval-valued
intuitionistic fuzzy hybrid Shapley averaging (IG-IVIFHSA)
operator [14].
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However, the basic aggregation operators IIFWA
and IIFWG for aggregating IIFNs are not perfect since
they cannot deal with some special cases. For example,
suppose �̃�

𝑖
= ([𝑎

𝑖
, 𝑏

𝑖
], [𝑐

𝑖
, 𝑑

𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) are a group

of IIFNs, when one of the IIFNs’ nonmembership degree
ranges reduce to [0, 0], then the nonmembership degree
of the aggregated IIFN (IIFWA(�̃�

𝑖
)) must be [0, 0] without

the consideration of other 𝑛 − 1 nonmembership degree
ranges which is unreasonable. Inspired by the idea of He
et al. [15, 16], we propose some interactive interval-valued
intuitionistic fuzzy aggregation operators for aggregating
IIFNs which are good complement of the existing interval-
valued intuitionistic fuzzy aggregation operators.

Hydrogen technologies evaluations using multicriteria
decision making method is an important research area in
energy management and has attracted much attention from
researchers [17, 18]. Afgan et al. [19] used the multicriteria
assessment technology to select the hydrogen energy systems
from the performance, environment, and market criteria.
McDowall and Eames [20] introduced a new methodology
to assess the alternative future hydrogen energy systems for
the UK. Ren et al. [21] developed a novel fuzzy multiactor
decision making approach to assess the hydrogen technolo-
gies; the feature of the proposed method is that it can deal
with the uncertainties and imprecision. Lee et al. [22] com-
bined the AHP and DEA approaches and proposed a two-
stage multicriteria decision making method for efficiently
allocating energy R&D resources. However, IIFS is more
powerful to express the uncertainties and imprecision in eval-
uating the hydrogen technologies which are the focus of this
paper.

The remainder of this paper is organized as follows.
Section 2 reviews the basic concept of interval-valued intu-
itionistic fuzzy set and the operations for IIFNs. Section 3
presents some new interval-valued intuitionistic fuzzy aggre-
gation operators and numeric examples are presented. Com-
parative studies of these operators with the interval-valued
intuitionistic fuzzy aggregation operators proposed by Xu [9]
are illustrated. In Section 4, we develop a decision making
method for dealing with interval-valued intuitionistic fuzzy
information and we apply this approach to evaluate the
hydrogen production technologies in China and compare
it with other methods. Conclusion and the future research
directions are discussed in Section 5.

2. Some Basic Concepts

Intuitionistic fuzzy set (IFS) proposed by Atanassov [1] is
characterized by the ability of defining the membership
degree 𝜇

𝐴
(𝑥) and nonmembership degree V

𝐴
(𝑥) of an ele-

ment to a set simultaneously, and the 𝜇

𝐴
(𝑥) and V

𝐴
(𝑥) are

the real numbers belonging to a set [0, 1]. Interval-valued
intuitionistic fuzzy set (IIFS), proposed by Atanassov and
Gargov [2], can express the experts’ preference information
more effectively since it uses the interval number instead
of real number to express the membership degree and
nonmembership degree. The definition of the IIFS is shown
as follows.

Definition 1 (Atanassov and Gargov [2]). Let a set𝑋 be fixed;
the concept of interval-valued intuitionistic fuzzy set (IIFS)
̃

𝐴 on 𝑋 is defined as follows:

̃

𝐴 = {⟨𝑥, 𝜇

𝐴 (
𝑥) , Ṽ𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where 𝜇

𝐴
(𝑥) and Ṽ

𝐴
(𝑥) are the degree ranges of membership

and nonmembership and satisfy the following condition:

𝜇

𝐴 (
𝑥) ⊂ [0, 1] , Ṽ

𝐴 (
𝑥) ⊂ [0, 1] . (2)

For convenience, an IIFN �̃� can be denoted by ([𝑎, 𝑏], [𝑐, 𝑑]),
where

[𝑎, 𝑏] ⊂ [0, 1] , [𝑐, 𝑑] ⊂ [0, 1] , 𝑏 + 𝑑 ≤ 1. (3)

Definition 2 (Xu [9]). Let �̃�

1
= ([𝑎

1
, 𝑏

1
], [𝑐

1
, 𝑑

1
]) and �̃�

2
=

([𝑎

2
, 𝑏

2
], [𝑐

2
, 𝑑

2
]) be any two IIFNs; then some operations of

�̃�

1
and �̃�

2
can be defined as

(1) �̃�

1
⊕ �̃�

2
= ([𝑎

1
+ 𝑎

2
− 𝑎

1
𝑎

2
, 𝑏

1
+ 𝑏

2
− 𝑏

1
𝑏

2
], [𝑐

1
𝑐

2
, 𝑑

1
𝑑

2
]);

(2) �̃�

1
⊗ �̃�

2
= ([𝑎

1
𝑎

2
, 𝑏

1
𝑏

2
], [𝑐

1
+ 𝑐

2
− 𝑐

1
𝑐

2
, 𝑑

1
+ 𝑑

2
− 𝑑

1
𝑑

2
]);

(3) 𝜆�̃�

1
= ([1 − (1 − 𝑎

1
)

𝜆
, 1 − (1 − 𝑏

1
)

𝜆
], [𝑐

𝜆

1
, 𝑑

𝜆

1
]), 𝜆 > 0;

(4) �̃�

𝜆

1
= ([𝑎

𝜆

1
, 𝑏

𝜆

1
], [1 − (1 − 𝑐

1
)

𝜆
, 1 − (1 − 𝑑

1
)

𝜆
]), 𝜆 > 0.

Xu [9] introduced the score function 𝑠(�̃�) = (1/2)(𝑎 − 𝑐 +

𝑏 − 𝑑) to get the score of �̃� and defined an accuracy function
ℎ(�̃�) = (1/2)(𝑎 + 𝑏 + 𝑐 + 𝑑) to evaluate the accuracy degree of
�̃�. Xu [9] gave an order relation between two IVIFNs, �̃� and
̃

𝛽.

If 𝑠(�̃�) < 𝑠(

̃

𝛽), then �̃� <

̃

𝛽;

If 𝑠(�̃�) = 𝑠(

̃

𝛽), then

(i) If ℎ(�̃�) = ℎ(

̃

𝛽), then �̃� =

̃

𝛽;
(ii) If ℎ(�̃�) < ℎ(

̃

𝛽), then �̃� <

̃

𝛽.

It should be noted that Definition 2 and the comparing
laws for any IIFNs proposed by Xu [9] have been used and
citedwidely [3, 23–28]. In the otherwords, they had produced
main effect to the development of IIFS theory.

3. Interval-Valued Intuitionistic Fuzzy
Interactive Aggregation Operators

3.1. The New Operations for IIFNs. Though the operations
defined by Xu [9] have been used and cited widely, they still
have some shortcomings. The following examples illustrated
this phenomenon.

Example 3. Suppose �̃�

1
= ⟨[0.2, 0.4], [0.0, 0.0]⟩, �̃�

2
= ⟨[0.1,

0.2], [0.2, 0.4]⟩, �̃�
3

= ⟨[0.0, 0.1], [0.5, 0.8]⟩, and �̃�

4
= ⟨[0.1,

0.3], [0.4, 0.6]⟩ are four IIFNs; then, using operation (1)
defined in Definition 2, we can get

�̃�

1
⊕ �̃�

2
= ⟨[0.28, 0.52] , [0.0, 0.0]⟩ ,

�̃�

1
⊕ �̃�

3
= ⟨[0.20, 0.46] , [0.0, 0.0]⟩ ,

�̃�

1
⊕ �̃�

4
= ⟨[0.28, 0.58] , [0.0, 0.0]⟩ .

(4)
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Example 3 shows that the nonmembership degrees range
of the sumof the two IIFNs is totally decided by the nonmem-
bership degree range of �̃�

1
without any consideration of other

IIFNs, which is not reasonable in reality.

Example 4. Suppose �̃�

1
= ⟨[0.0, 0.0], [0.3, 0.5]⟩, �̃�

2
= ⟨[0.3,

0.5], [0.4, 0.5]⟩, �̃�
3

= ⟨[0.2, 0.7], [0.1, 0.2]⟩, and �̃�

4
= ⟨[0.5,

0.9], [0.0, 0.1]⟩ are four IIFNs; then, using operation (2)
defined in Definition 2, we can get

�̃�

1
⊗ �̃�

2
= ⟨[0.0, 0.0] , [0.58, 0.75]⟩ ,

�̃�

1
⊗ �̃�

3
= ⟨[0.0, 0.0] , [0.37, 0.60]⟩ ,

�̃�

1
⊗ �̃�

4
= ⟨[0.0, 0.0] , [0.30, 0.55]⟩ .

(5)

Example 4 shows that the membership degrees range
of the product of the two IIFNs is totally decided by the
membership degree range of �̃�

1
without any consideration of

other IIFNs, which is not workable.
The above analysis indicates that the definition of IIFNs

introduced by Xu [9] could be improved to some extent, and
we defined some new operations for IIFNs motivated by the
idea of He et al. [15, 16].

Definition 5. Suppose �̃� = ([𝑎, 𝑏], [𝑐, 𝑑]), �̃�
1

= ([𝑎

1
, 𝑏

1
], [𝑐

1
,

𝑑

1
]), and �̃�

2
= ([𝑎

2
, 𝑏

2
], [𝑐

2
, 𝑑

2
]) are three IIFNs; some new

operations were defined as follows:
(1) �̃�

1
⊕�̃�

2
= ⟨[1−(1−𝑎

1
)(1−𝑎

2
), 1−(1−𝑏

1
)(1−𝑏

2
)], [(1−

𝑎

1
)(1 − 𝑎

2
) − (1 − (𝑎

1
+ 𝑐

1
))(1 − (𝑎

2
+ 𝑐

2
)), (1 − 𝑏

1
)(1 −

𝑏

2
) − (1 − (𝑏

1
+ 𝑑

1
))(1 − (𝑏

2
+ 𝑑

2
))]⟩;

(2) �̃�

1
⊗ �̃�

2
= ⟨[(1 − 𝑐

1
)(1 − 𝑐

2
) − (1 − (𝑎

1
+ 𝑐

1
))(1 − (𝑎

2
+

𝑐

2
)), (1−𝑑

1
)(1−𝑑

2
)−(1−(𝑏

1
+𝑑

1
))(1−(𝑏

2
+𝑑

2
))], [1−

(1 − 𝑐

1
)(1 − 𝑐

2
), 1 − (1 − 𝑑

1
)(1 − 𝑑

2
)]⟩;

(3) 𝜆�̃� = ⟨[1 − (1 − 𝑎)

𝜆
, 1 − (1 − 𝑏)

𝜆
], [(1 − 𝑎)

𝜆
− (1 − (𝑎 +

𝑐))

𝜆
, (1 − 𝑏)

𝜆
− (1 − (𝑏 + 𝑑))

𝜆
]⟩;

(4) (�̃�)

𝜆
= ⟨[(1 − 𝑐)

𝜆
− (1 − (𝑎 + 𝑐))

𝜆
, (1 − 𝑑)

𝜆
− (1 − (𝑏 +

𝑑))

𝜆
], [1 − (1 − 𝑐)

𝜆
, 1 − (1 − 𝑑)

𝜆
]⟩.

Example 6. Suppose �̃�

1
= ⟨[0.2, 0.4], [0.0, 0.0]⟩, �̃�

2
= ⟨[0.1,

0.2], [0.2, 0.4]⟩, �̃�
3

= ⟨[0.0, 0.1], [0.5, 0.8]⟩, and �̃�

4
= ⟨[0.1,

0.3], [0.4, 0.6]⟩ are four IIFNs; then, using operation (1)
defined in Definition 5, we can get

�̃�

1
⊕ �̃�

2
= ⟨[0.28, 0.52] , [0.16, 0.24]⟩ ,

�̃�

1
⊕ �̃�

3
= ⟨[0.20, 0.46] , [0.40, 0.48]⟩ ,

�̃�

1
⊕ �̃�

4
= ⟨[0.28, 0.58] , [0.32, 0.36]⟩ .

(6)

Example 6 shows that the drawbacks described in
Example 3 disappeared.
Example 7. Suppose �̃�

1
= ⟨[0.0, 0.0], [0.3, 0.5]⟩, �̃�

2
= ⟨[0.3,

0.5], [0.4, 0.5]⟩, �̃�
3

= ⟨[0.2, 0.7], [0.1, 0.2]⟩, and �̃�

4
= ⟨[0.5,

0.9], [0.0, 0.1]⟩ are four IIFNs; then, using the operation (2)
defined in Definition 5, we can get

�̃�

1
⊗ �̃�

2
= ⟨[0.21, 0.25] , [0.58, 0.75]⟩ ,

�̃�

1
⊗ �̃�

3
= ⟨[0.14, 0.35] , [0.37, 0.60]⟩ ,

�̃�

1
⊗ �̃�

4
= ⟨[0.35, 0.45] , [0.30, 0.55]⟩ .

(7)

Example 7 shows that the drawbacks described in
Example 4 disappeared.

The new operational laws for IIFNs defined in
Definition 5 satisfy Theorem 8.

Theorem 8. Suppose �̃� = ([𝑎, 𝑏], [𝑐, 𝑑]), �̃�
1

= ([𝑎

1
, 𝑏

1
], [𝑐

1
,

𝑑

1
]), and �̃�

2
= ([𝑎

2
, 𝑏

2
], [𝑐

2
, 𝑑

2
]) are three IIFNs; the following

equations are valid:

(1) �̃�

1
⊕ �̃�

2
= �̃�

2
⊕ �̃�

1
;

(2) �̃�

1
⊗ �̃�

2
= �̃�

2
⊗ �̃�

1
;

(3) 𝜆(�̃�

1
⊕ �̃�

2
) = 𝜆�̃�

1
⊕ 𝜆�̃�

2
;

(4) (�̃�

1
⊗ �̃�

2
)

𝜆
= �̃�

𝜆

1
⊗ �̃�

𝜆

2
;

(5) 𝜆

1
�̃� ⊕ 𝜆

2
�̃� = (𝜆

1
+ 𝜆

2
)�̃�;

(6) �̃�

𝜆
1
⊗ �̃�

𝜆
2
= �̃�

(𝜆
1
+𝜆
2
).

Proof. The proof of Theorem 8 is very simple, omitted here.

3.2. Interval-Valued Intuitionistic Fuzzy Interactive Aggrega-
tion Operators. In Section 3.1, we have introduced the new
operations for IIFNs based on the analysis of the imperfec-
tions of the existing operations. The main advantage of the
new operations is that it can handle the extreme cases better
such as the nonmembership degree range or the membership
degree range reduced to the [0, 0]. Furthermore, the new
aggregation operators for IIFNs also need to be addressed.
Therefore, we proposed a series of interaction interval-valued
intuitionistic fuzzy aggregation operators for aggregating the
IIFNs. The comparisons with the existing operators are also
presented.

Definition 9. Suppose (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) is a group of IIFNs and

𝑤 = (𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑛
) is the weight vector of them, such that

𝑤

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝑤

𝑗
= 1. Then,

IIFIWA (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨁

𝑗=1

𝑤

𝑗
�̃�

𝑗
= 𝑤

1
�̃�

1
⊕ 𝑤

2
�̃�

2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑤

𝑛
�̃�

𝑛

(8)

is named an interval-valued intuitionistic fuzzy interactive
weighted average (IIFIWA) operator.

Theorem 10. Suppose (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) is a group of IIFNs; then

their aggregated value by using IIFIWA operator is

IIFIWA (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨁

𝑗=1

𝑤

𝑗
�̃�

𝑗

= (

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,
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[

[

𝑛

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

𝑛

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

) ,

(9)

where 𝑤 = (𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑛
)

𝑇 is the weight vector of
(�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) with 𝑤

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝑤

𝑗
= 1.

Proof. The mathematical induction method is applied to
prove (9).

(1) When 𝑛 = 2, according to the Definition 5, we have

𝑤

1
�̃�

1
= ([1 − (1 − 𝑎

1
)

𝑤
1

, 1 − (1 − 𝑏

1
)

𝑤
1

] ,

[(1 − 𝑎

1
)

𝑤
1

− (1 − (𝑎

1
+ 𝑐

1
))

𝑤
1

,

(1 − 𝑏

1
)

𝑤
1

− (1 − (𝑏

1
+ 𝑑

1
))

𝑤
1

]) ,

𝑤

2
�̃�

2
= ([1 − (1 − 𝑎

2
)

𝑤
2

, 1 − (1 − 𝑏

2
)

𝑤
2

] ,

[(1 − 𝑎

2
)

𝑤
2

− (1 − (𝑎

2
+ 𝑐

2
))

𝑤
2

,

(1 − 𝑏

2
)

𝑤
2

− (1 − (𝑏

2
+ 𝑑

2
))

𝑤
2

]) ,

IIFIWA (�̃�

1
, �̃�

2
)

=

2

⨁

𝑗=1

𝑤

𝑗
�̃�

𝑗
= 𝑤

1
�̃�

1
⊕ 𝑤

2
�̃�

2

= ([1 − (1 − 𝑎

1
)

𝑤
1

, 1 − (1 − 𝑏

1
)

𝑤
1

] ,

[(1 − 𝑎

1
)

𝑤
1

− (1 − (𝑎

1
+ 𝑐

1
))

𝑤
1

,

(1 − 𝑏

1
)

𝑤
1

− (1 − (𝑏

1
+ 𝑑

1
))

𝑤
1

])

⊕ ([1 − (1 − 𝑎

2
)

𝑤
2

, 1 − (1 − 𝑏

2
)

𝑤
2

] ,

[(1 − 𝑎

2
)

𝑤
2

− (1 − (𝑎

2
+ 𝑐

2
))

𝑤
2

,

(1 − 𝑏

2
)

𝑤
2

− (1 − (𝑏

2
+ 𝑑

2
))

𝑤
2

])

= (

[

[

1 −

2

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

2

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,

[

[

2

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

−

2

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

2

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗

−

2

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

) .

(10)

This portrays (9) is valid when 𝑛 = 2.

(2) If (8) holds for 𝑛 = 𝑘, that is,

IIFIWA (�̃�

1
, �̃�

2
, . . . , �̃�

𝑘
)

=

𝑘

⨁

𝑗=1

𝑤

𝑗
�̃�

𝑗
= (

[

[

1 −

𝑘

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

𝑘

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,

[

[

𝑘

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

−

𝑘

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

𝑘

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗

−

𝑘

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

) ,

(11)

then, when 𝑛 = 𝑘 + 1, we have

IIFIWA (�̃�

1
, �̃�

2
, . . . , �̃�

𝑘
, �̃�

𝑘+1
)

=

𝑘+1

⨁

𝑗=1

𝑤

𝑗
�̃�

𝑗
=

𝑘

⨁

𝑗=1

𝑤

𝑗
�̃�

𝑗
⊕ 𝑤

𝑘+1
�̃�

𝑘+1

= (

[

[

1 −

𝑘

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

𝑘

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,

[

[

𝑘

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

−

𝑘

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

𝑘

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗

−

𝑘

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

)

⊕ ([1 − (1 − 𝑎

𝑘+1
)

𝑤
𝑘+1

, 1 − (1 − 𝑏

𝑘+1
)

𝑤
𝑘+1

] ,

[(1 − 𝑎

𝑘+1
)

𝑤
𝑘+1

− (1 − (𝑎

𝑘+1
+ 𝑐

𝑘+1
))

𝑤
𝑘+1

,

(1 − 𝑏

𝑘+1
)

𝑤
𝑘+1

− (1 − (𝑏

𝑘+1
+ 𝑑

𝑘+1
))

𝑤
𝑘+1

])

= (

[

[

1 −

𝑘+1

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

𝑘+1

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,

[

[

𝑘+1

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

−

𝑘+1

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

𝑘+1

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗

−

𝑘+1

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

) .

(12)

In other words, (9) is valid when 𝑛 = 𝑘 + 1. Therefore, (9)
is valid for all 𝑛. Then

IIFIWA (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨁

𝑗=1

𝑤

𝑗
�̃�

𝑗
= (

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,
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[

[

𝑛

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

𝑛

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

) .

(13)

It should be noted that the above proof is largely inspired
by the idea of Zhao et al. [29] and He et al. [15, 16].

Example 11 shows the application ofTheorem 10 in IIFNs
aggregation problem.

Example 11. Let �̃�
1

= ⟨[0.1, 0.2], [0.0, 0.0]⟩, �̃�
2

= ⟨[0.2, 0.4],
[0.2, 0.4]⟩, �̃�

3
= ⟨[0.2, 0.3], [0.4, 0.7]⟩, and �̃�

4
= ⟨[0.1, 0.4],

[0.4, 0.6]⟩ be four IIFNs and 𝑤 = (0.14, 0.36, 0.32, 0.18) their
weight. Use the IIFWA operator [9] to aggregate the four
IIFNs; the result can be obtained as follows:

�̃�

∗
= IIFWA (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= (

[

[

1 −

4

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

4

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,

[

[

𝑛

∏

𝑗=1

(𝑐

𝑗
)

𝑤
𝑗

,

𝑛

∏

𝑗=1

(𝑑

𝑗
)

𝑤
𝑗
]

]

)

= ⟨[0.1693, 0.3438] , [0, 0]⟩ .

(14)

The aggregated result based on the IIFWA operator
is ⟨[0.1693, 0.3438], [0, 0]⟩, and the nonmembership degree
range is [0, 0] which is totally determined by the nonmem-
bership degree of IIFN �̃�

1
. Obviously, it is unreasonable.

Utilize the IIFIWA operator (Definition 9 and
Theorem 10); the aggregated result is as follows:

�̃�

∗
= IIFIWA (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= (

[

[

1 −

4

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

, 1 −

4

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗
]

]

,

[

[

4

∏

𝑗=1

(1 − 𝑎

𝑗
)

𝑤
𝑗

−

4

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

4

∏

𝑗=1

(1 − 𝑏

𝑗
)

𝑤
𝑗

−

4

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

)

= ⟨[0.1693, 0.3438] , [0.1750, 0.4799]⟩ .

(15)

The aggregated result based on the IIFIWA operator is
⟨[0.1693, 0.3438], [0.1750, 0.4799]⟩, and the nonmembership
degree range is [0.1750, 0.4799] which is not totally deter-
mined by the nonmembership degree of one of the single
IIFNs. Obviously, the result is more reasonable than the result
obtained by IIFWA operator.

Definition 12. Suppose (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) is a groupof IIFNs and

𝑤 = (𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑛
) is the weight vector of them, such that

𝑤

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝑤

𝑗
= 1. Then,

IIFIWG (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) =

𝑛

⨂

𝑗=1

�̃�

𝑤
𝑗

𝑗
= �̃�

𝑤
1

1
⊗ �̃�

𝑤
2

2
⊗ ⋅ ⋅ ⋅ ⊗ �̃�

𝑤
𝑛

𝑛

(16)

is named an interval-valued intuitionistic fuzzy interactive
weighted geometric (IIFIWG) operator.

Theorem 13. Suppose (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) is a group of IIFNs; then

their aggregated value by using IIFIWG operator is

IIFIWG (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨂

𝑗=1

�̃�

𝑤
𝑗

𝑗
= (

[

[

𝑛

∏

𝑗=1

(1 − 𝑐

𝑗
)

𝑤
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

𝑛

∏

𝑗=1

(1 − 𝑑

𝑗
)

𝑤
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑐

𝑗
)

𝑤
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑑

𝑗
)

𝑤
𝑗
]

]

) ,

(17)

where 𝑤 = (𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑛
)

𝑇 is the weight vector of
(�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) with 𝑤

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝑤

𝑗
= 1.

Like Example 11, herewe illustrate Example 14 to show the
application of IIFIWG operator in aggregating the IIFNs.

Example 14. Let �̃�
1
= ⟨[0.0, 0.0], [0.2, 0.3]⟩, �̃�

2
= ⟨[0.1, 0.3],

[0.5, 0.6]⟩, �̃�
3

= ⟨[0.2, 0.5], [0.1, 0.4]⟩, and �̃�

4
= ⟨[0.2, 0.3],

[0.2, 0.6]⟩ be four IIFNs and 𝑤 = (0.19, 0.23, 0.34, 0.24) their
weight. Use the IIFWG operator [9] to aggregate the four
IIFNs; the result can be obtained as follows:

�̃�

∗
= IIFWG (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= (

[

[

𝑛

∏

𝑗=1

(𝑎

𝑗
)

𝑤
𝑗

,

𝑛

∏

𝑗=1

(𝑏

𝑗
)

𝑤
𝑗
]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑐

𝑗
)

𝑤
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑑

𝑗
)

𝑤
𝑗
]

]

)

= ⟨[0, 0] , [0.2526, 0.4894]⟩ .

(18)

From Example 14, we can find out that the aggregated
result based on the IIFWG operator is ⟨[0, 0], [0.2526,
0.4894]⟩ and the membership degree range is [0, 0] which is
totally determined by themembership degree of IIFN �̃�

1
.This

was obviously an unreasonable calculated result.
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Based on the IIFIWG operator (Definition 12 and
Theorem 13), the aggregated result is as follows:

�̃�

∗
= IIFIWG (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= (

[

[

4

∏

𝑗=1

(1 − 𝑐

𝑗
)

𝑤
𝑗

−

4

∏

𝑗=1

(1 − (𝑎

𝑗
+ 𝑐

𝑗
))

𝑤
𝑗

,

4

∏

𝑗=1

(1 − 𝑑

𝑗
)

𝑤
𝑗

−

4

∏

𝑗=1

(1 − (𝑏

𝑗
+ 𝑑

𝑗
))

𝑤
𝑗
]

]

,

[

[

1 −

4

∏

𝑗=1

(1 − 𝑐

𝑗
)

𝑤
𝑗

, 1 −

4

∏

𝑗=1

(1 − 𝑑

𝑗
)

𝑤
𝑗
]

]

)

= ⟨[0.1390, 0.3659] , [0.2526, 0.4894]⟩ .

(19)

Obviously, the membership degree range is [0.1390,
0.3659] rather than [0, 0] and was more reasonable than the
result obtained by IIFWG operator.

3.3. Interval-Valued Intuitionistic Fuzzy Interactive Ordered
Weighted Operator. In many real situations, the data should
be ordered before application. In many sports events, such
as gymnastics and diving, the biggest and the smallest
evaluation results given by the experts should be deleted
and the other evaluation results will be aggregated. In these
situations, the evaluation results should be ordered. OWA
operator, proposed by Yager [30], is a very useful aggregation
technique to deal with this situation. The OWA operator
has attracted the interest of many researchers [31–44]. In
the following, based on the idea of OWA operator, we
extended the IIFIWA and IIFIWG operators and proposed
the IIFIOWA and IIFIOWG operators.

Definition 15. Suppose is a group of IIFNs expressed as
(�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
); the interval-valued intuitionistic fuzzy

interactive ordered weighted average (IIFIOWA) operator
and interval-valued intuitionistic fuzzy interactive ordered
weighted geometric (IIFIOWG) operator are defined as
follows:

IIFIOWA (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨁

𝑗=1

𝜔

𝑗
�̃�

𝛿(𝑗)
= 𝜔

1
�̃�

𝛿(1)
⊕ 𝜔

2
�̃�

𝛿(2)
⊕ ⋅ ⋅ ⋅ ⊕ 𝜔

𝑛
�̃�

𝛿(𝑛)
,

IIFIOWG (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨂

𝑗=1

�̃�

𝜔
𝑗

𝛿(𝑗)
= �̃�

𝜔
1

𝛿(1)
⊗ �̃�

𝜔
2

𝛿(2)
⊗ ⋅ ⋅ ⋅ ⊗ �̃�

𝜔
𝑛

𝛿(𝑛)
,

(20)

where 𝜔 = (𝜔

1
, 𝜔

2
, . . . , 𝜔

𝑛
)

𝑇 is the associated weight vector
such that 𝜔

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔

𝑗
= 1. 𝛿 : (1, 2, . . . , 𝑛) →

(1, 2, . . . , 𝑛), �̃�
𝛿(𝑗)

is the 𝑗th largest of �̃�
𝑗
.

Theorem 16. Suppose (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
) is a group of IIFNs; then

their aggregated value by using IIFIOWAoperator or IIFIOWG
operator is

IIFIOWA (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨁

𝑗=1

𝜔

𝑗
�̃�

𝛿(𝑗)

= (

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎

𝛿(𝑗)
)

𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑏

𝛿(𝑗)
)

𝜔
𝑗
]

]

,

[

[

𝑛

∏

𝑗=1

(1 − 𝑎

𝛿(𝑗)
)

𝜔
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑎

𝛿(𝑗)
+ 𝑐

𝛿(𝑗)
))

𝜔
𝑗

,

𝑛

∏

𝑗=1

(1 − 𝑏

𝛿(𝑗)
)

𝜔
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑏

𝛿(𝑗)
+ 𝑑

𝛿(𝑗)
))

𝜔
𝑗
]

]

) ,

IIFIOWG (�̃�

1
, �̃�

2
, . . . , �̃�

𝑛
)

=

𝑛

⨂

𝑗=1

�̃�

𝜔
𝑗

𝑗

= (

[

[

𝑛

∏

𝑗=1

(1 − 𝑐

𝛿(𝑗)
)

𝜔
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑎

𝛿(𝑗)
+ 𝑐

𝛿(𝑗)
))

𝜔
𝑗

,

𝑛

∏

𝑗=1

(1 − 𝑑

𝛿(𝑗)
)

𝜔
𝑗

−

𝑛

∏

𝑗=1

(1 − (𝑏

𝛿(𝑗)
+ 𝑑

𝛿(𝑗)
))

𝜔
𝑗
]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑐

𝛿(𝑗)
)

𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑑

𝛿(𝑗)
)

𝜔
𝑗
]

]

) ,

(21)

where 𝜔 = (𝜔

1
, 𝜔

2
, . . . , 𝜔

𝑛
)

𝑇 is the weight vector of (�̃�

1
,

�̃�

2
, . . . , �̃�

𝑛
) with 𝑤

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝑤

𝑗
= 1.

Example 17. Let �̃�
1

= ⟨[0.2, 0.3], [0.5, 0.6]⟩, �̃�
2

= ⟨[0.5, 0.6],
[0.2, 0.4]⟩, �̃�

3
= ⟨[0.3, 0.4], [0.0, 0.0]⟩, and �̃�

4
= ⟨[0.1, 0.2],

[0.3, 0.5]⟩ be four IIFNs and 𝜔 = (0.14, 0.36, 0.32, 0.18) be
the associate weight of IIFIOWA and IIFIOWG operators.

Since

𝑆 (�̃�

1
) =

1

2

(0.0 + 0.0 − 0.5 − 0.6) = −0.55,

𝑆 (�̃�

2
) =

1

2

(0.5 + 0.6 − 0.2 − 0.4) = 0.25,

𝑆 (�̃�

3
) =

1

2

(0.3 + 0.4 − 0.0 − 0.0) = 0.35,

𝑆 (�̃�

4
) =

1

2

(0.1 + 0.2 − 0.3 − 0.5) = −0.25,

(22)
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Table 1: The interval-valued intuitionistic fuzzy decision matrix ̃

𝐴.

𝑐

1
𝑐

2
𝑐

3
𝑐

4

𝐴

1
([0.1, 0.2], [0.0, 0.0]) ([0.1, 0.3], [0.5, 0.7]) ([0.1, 0.2], [0.6, 0.7]) ([0.0, 0.0], [0.7, 0.8])

𝐴

2
([0.2, 0.3], [0.1, 0.2]) ([0.3, 0.4], [0.2, 0.3]) ([0.2, 0.3], [0.3, 0.5]) ([0.1, 0.2], [0.4, 0.5])

𝐴

3
([0.3, 0.5], [0.2, 0.3]) ([0.1, 0.3], [0.4, 0.6]) ([0.3, 0.4], [0.4, 0.6]) ([0.2, 0.4], [0.3, 0.6])

then,

𝑆 (�̃�

3
) > 𝑆 (�̃�

2
) > 𝑆 (�̃�

4
) > 𝑆 (�̃�

1
) ,

�̃�

𝜎(1)
= �̃�

3
, �̃�

𝜎(2)
= �̃�

2
,

�̃�

𝜎(3)
= �̃�

4
, �̃�

𝜎(4)
= �̃�

1
.

(23)

Based on the IIFOWA operator proposed by Xu [9], we
can get

�̃�

∗
= IIFOWA (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= ⟨[0.2834, 0.3767] , [0.0, 0.0]⟩ .

(24)

This aggregation result indicates that the nonmembership
degree range of the �̃�

∗ is determined by the IIFN �̃�

3
.

Based on the IIFIOWA operator proposed in this paper,
we can get

�̃�

∗
= IIFIOWA (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= ⟨[0.2834, 0.3767] , [0.2644, 0.5652]⟩ .

(25)

Obviously, this result seems more reasonable.
Based on the IIFOWG operator proposed by Xu [9], we

can get

�̃�

∗
= IIFOWG (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= ⟨[0.2644, 0.5652] , [0.0, 0.0]⟩ .

(26)

This aggregation result indicates that the membership
degree range of the �̃�

∗ is determined by the IIFN �̃�

1
.

Based on the IIFIOWG operator proposed in this paper,
we can get

�̃�

∗
= IIFIOWA (�̃�

1
, �̃�

2
, �̃�

3
, �̃�

4
)

= ⟨[0.2644, 0.5652] , [0.2733, 0.4348]⟩ .

(27)

Obviously, this result seems more reasonable.

4. Application of the Proposed
Operators to Evaluate the Hydrogen
Production Technologies

With China’s sustained and rapid economic and social
development, energy resources, and increasing pressure on
the environment, developing light pollution and renewable
energy is of great significance to China’s sustainable develop-
ment. Hydrogen is recognized as clean energy, low carbon,
and zero carbon energy source which has attracted wide

attention in various countries [45–47]. Hydrogen technolo-
gies evaluation involves multiattribute decision making and
many attribute should be evaluated, such as environment,
economic, and social [48].

One high-tech development company in Zhejiang
Province, China, intends to invest in the hydrogen
energy production. Three kinds of hydrogen production
technologies have been identified according to their
own business situation and the famous energy expert’s
suggestions, such as nuclear based high temperature
electrolysis technology (NHTET), electrolysis of water
technology by hydropower, and coal gasification technology,
expressed by 𝐴

1
, 𝐴

2
, and 𝐴

3
. The company wants to

find out the most suitable technique from the three
alternatives mainly according to environment performance
𝐶

1
, economic performance 𝐶

2
, social performance 𝐶

3
, and

the support degree of government policies 𝐶

4
. Meanwhile,

the four attributes have different importance weight and
could be determined by many effective methods, such as
AHP. Here we suppose the weight of the four attributes
is (0.14, 0.36, 0.32, 0.18)

𝑇. The performance of the three
alternatives on the four attributes is expressed by IIFNs and
is shown in Table 1.

First, we use the IIFIWA operator to aggregate the
performance of the four attributes for three kinds of hydrogen
production technologies, respectively,

�̃�

1
= IIFIWA (�̃�

11
, �̃�

12
, . . . , �̃�

14
)

= ([0.0828, 0.2063] , [0.0799, 0.3301]) ,

�̃�

2
= IIFIWA (�̃�

21
, �̃�

22
, . . . , �̃�

24
)

= ([0.2212, 0.3217] , [0.2158, 0.3197]) ,

�̃�

3
= IIFIWA (�̃�

31
, �̃�

32
, . . . , �̃�

34
)

= ([0.2151, 0.3817] , [0.2176, 0.4326]) .

(28)

Next, according to the scores function of IIFNs given in
Section 2, the scores 𝑠(�̃�

𝑖
) (𝑖 = 1, 2, 3) can be calculated as

follows:
𝑠 (�̃�

1
) = −0.0604, 𝑠 (�̃�

2
) = 0.0037,

𝑠 (�̃�

3
) = −0.0267.

(29)

Since
𝑠 (�̃�

2
) > 𝑠 (�̃�

3
) > 𝑠 (�̃�

1
) , (30)

then
𝐴

2
≻ 𝐴

3
≻ 𝐴

1
. (31)

Therefore, the most suitable hydrogen production tech-
nology is 𝐴

2
.
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Table 2: The detailed comparison of 𝐴
1
and 𝐴

2
.

𝑐

1
𝑐

2
𝑐

3
𝑐

4

𝐴

1
([0.1, 0.2], [0.0, 0.0]) ([0.1, 0.3], [0.5, 0.7]) ([0.1, 0.2], [0.6, 0.7]) ([0.0, 0.0], [0.7, 0.8])

𝐴

2
([0.2, 0.3], [0.1, 0.2]) ([0.3, 0.4], [0.2, 0.3]) ([0.2, 0.3], [0.3, 0.5]) ([0.1, 0.2], [0.4, 0.5])

Membership degree range [𝑎

11
, 𝑏

11
] ≺ [𝑎

21
, 𝑏

21
] [𝑎

12
, 𝑏

12
] ≺ [𝑎

22
, 𝑏

22
] [𝑎

13
, 𝑏

13
] ≺ [𝑎

23
, 𝑏

23
] [𝑎

14
, 𝑏

14
] ≺ [𝑎

24
, 𝑏

24
]

Nonmembership degree range [𝑐

11
, 𝑑

11
] ≺ [𝑐

21
, 𝑑

21
] [𝑐

12
, 𝑑

12
] ≻ [𝑐

22
, 𝑑

22
] [𝑐

13
, 𝑑

13
] ≻ [𝑐

23
, 𝑑

23
] [𝑐

14
, 𝑑

14
] ≻ [𝑐

24
, 𝑑

24
]

4.1. Systematic Comparison with Other Research Results.
Based on the IIFWA operator proposed by Xu [9], the result
is inconsistent with the method in this paper

�̃�



1
= IIFWA (�̃�



11
, �̃�



12
, . . . , �̃�



14
)

= ([0.0828, 0.2063] , [0.0, 0.0]) ,

�̃�



2
= IIFWA (�̃�



21
, �̃�



22
, . . . , �̃�



24
)

= ([0.2212, 0.3217] , [0.4298, 0.5555]) ,

�̃�



3
= IIFWA (�̃�



31
, �̃�



33
, . . . , �̃�



34
)

= ([0.2151, 0.3817] , [0.5218, 0.6817]) .

(32)

Next, according to the scores function of IIFNs given in
Section 2, the scores 𝑠(�̃�



𝑖
) (𝑖 = 1, 2, 3) can be calculated as

follows:
𝑠 (�̃�



1
) = 0.1445, 𝑠 (�̃�



2
) = −0.2212,

𝑠 (�̃�



3
) = −0.3034.

(33)

Since

𝑠 (�̃�



1
) > 𝑠 (�̃�



2
) > 𝑠 (�̃�



3
) , (34)

then

𝐴

1
≻ 𝐴

2
≻ 𝐴

3
. (35)

Therefore, the most suitable alternative is 𝐴
1
.

The optimal selection of two different methods is
changed. From the above research results, we can find that
the most suitable alternative is 𝐴

1
when the IIFWA operator

is selected and the most suitable alternative is 𝐴

2
when the

IIFIWA operator is involved.
Table 2 showed the detailed comparison of 𝐴

1
and 𝐴

2
.

From Table 2, we can easily find that the membership degree
range of 𝐴

1
is worse than 𝐴

2
regarding the four attributes.

Meanwhile, three of the four nonmembership degree ranges
of 𝐴

1
are bigger than 𝐴

2
regarding the four attributes.

Therefore, it is hard to accept the result that 𝐴
1
is better than

𝐴

2
.Themain reason for this result is that the nonmembership

degree range of𝐴
1
regarding criteria 𝑐

1
is [0, 0].This indicates

that the IIFWA operator proposed by Xu [9] is too sensitive
to the situation where the nonmembership degree is reduced
to [0, 0].

5. Concluding Remarks and Future Works

In this paper, we have introduced some new aggregation
operators for aggregating IIFNs, based on which a new

MADM method has been proposed. Furthermore, we have
used the MADM method to solve the problem of the
evaluation of hydrogen production technologies. In order to
find the effectiveness and superiority of the MADMmethod,
we compared it with some existing methods. The MADM
method proposed in this paper is meaningful because it can
be used to solve some actual evaluation problems. However,
just like all the existingMADMmethod, theMADMmethod
proposed in this paper cannot be applied to deal with all
decision making problems. Our method can be adapted
from many aspects, such as considering the interconnection
between the attributes. From the author’s point of view, the
future research should be the application of the MADM
proposed in this paper with some necessary modifications,
which is more suitable for concrete research problems.
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