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This paper studied system dynamics characteristics of closed-loop supply chain using repeated game theory and complex
system theory. It established decentralized decision-making game model and centralized decision-making game model and then
established and analyzed the corresponding continuity system. Drew the region local stability of Nash equilibrium and Stackelberg
equilibrium, and a series of chaotic system characteristics, have an detail analysis of the Lyapunov indexwhich is under the condition
of different parameter combination. According to the limited rational expectations theory, it established repeated gamemodel based
on collection price and marginal profits. Further, this paper analyzed the influence of the parameters by numerical simulations and
concluded three conclusions. First, when the collection price is to a critical value, the system will be into chaos state. Second, when
the sale price of remanufacturing products is more than a critical value, the systemwill be in chaos state. Last, the initial value of the
collection price is sensitive, small changes may cause fluctuations of market price. These conclusions guide enterprises in making
the best decisions in each phase to achieve maximize profits.

1. Introduction

The product life cycle becomes shorter with the rapid devel-
opment of market economy. A lot of products have been
washed out before life end. Such condition not only creates a
tremendous waste of resources but also brings great harm to
people. Therefore, the “resources-products-waste products-
remanufacturing product” closed-loop type of economic
growth mode appears. It realizes the economic development
and utilization of resources and environmental protection
in coordination strategy of sustainable development goals.
Enterprise began to take a positive attitude to collect products
from customers. The research on collecting control problem
becomes inevitable.

This paper draws on and contributes to several streams of
literature, each of whom we review below. A growing body
of literature in operations management addresses reverse
logistics management issues for remanufacturable products.
References [1, 2] defined as the supply chain to reverse supply

chain which formed a complete closed-loop system (closed-
loop supply chain, hereinafter referred to as CLSC.) Refer-
ence [3] studied the pricing methods under three collecting
channels which manufacturer, retailer, and third-party col-
lector collected products, respectively. Reference [4] studied
manufacturers should be responsible for the management
of that collecting based on Xerox corporation and Kodak
corporation. Reference [5] studied three kinds of collecting
channels of manufacturers collecting, retailer collecting, and
the third-party collecting in closed-loop supply chain. They
found that the colleting distance was closer from consumers
and the collecting efforts were more effective. References
[6–8] described reverse logistics management mode of the
third party. In this collecting mode, manufacturers entrust a
third party to perform extended producer responsibility and
manage used products.

References [9, 10] studied pricing analysis of reverse
supply chain using the game theory method under retailers
collecting mode and concluded the optimal strategy of single
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stage. Reference [11] established the demand model of new
products and remanufacturing products from social envi-
ronmental protection consciousness and consumers’ utility
function to new products and remanufacturing products
and drew the conclusions. The first is the optimal pricing
strategy in different collecting channels in decentralized
decision-making. The second is the influence of social envi-
ronmental protection consciousness. Reference [12] research
shows that the channel of manufacturers collecting directly
is more favorable to consumers and social environment.
In the autoindustry, independent third parties are handling
used-product collection activities for the original equipment
manufacturers (OEMs). The “big three” automanufacturers
in the United States started to invest in joint research and
remanufacturing partnerships with dismantling centers to
benefit from their scale economies and experience.Third par-
ties such asGENCODistribution System are also preferred by
some consumer goods manufacturers for their experience in
used-product collection. In references [13–15] Analyzed the
complexity of model for a class of delay complex dynamics,
and some valuable conclusions are obtained.

The existing literatures studied major in a single phase
of the mathematical model using game theory under the
assumption that the closed-loop supply chain contains a
manufacturer and a retailer and concludes equilibrium in
perfectly rational state. However, market uncertainty caused
enterprise not to be able to make decisions in perfectly
rational. At present, many manufacturers devote themselves
to the core competitiveness; they contract the collection of
used products to a third party. So this paper sets upmultistage
game model of closed-loop supply chain which consists
of a manufacturer and two competition collectors business
based on limited rationality with China’s remanufacturing
development and studies its complex dynamic characteristics.

2. Model Assumptions and Notation

2.1. Assumption. First, this paper considers only remanu-
facturing products market. That means new products and
remanufacturing product do not form a competitive market.
It is more in line with the actual conditions of China. The
manufacturer manufactures new products and remanufac-
turing products.

Second, the closed-loop supply chain includes a man-
ufacturer and two competitive collecting corporations, the
collecting corporations collect waste products from con-
sumers and return the manufacturer. The manufacturer
transfers payments to the collectors, and she sales directly
to consumers. The manufacturers and two collectors are
independent decision makers, and their strategic space is to
choose the best collecting price. Their goal is to maximize
returns in discrete time period as 𝑡 = 0, 1, 2, . . ..

Third, the number of the collection is increasing function
of collecting price. The collecting capability and manufactur-
ing capability are unlimited. In order to simplify the problem
and emphasize main parameters influence of the system, all
the collecting products can be manufactured, as shown in the
MCTM collecting mode (Figure 1).

Manufacturer Consumers

Third party 

Figure 1: MCTM collecting mode.
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2.2. Notation. 𝑝
0
denotes the retail price of the product, a

constant, and 𝑐
𝑟
the unit cost of remanufacturing a returned

product into a new one, a constant. 𝑝
𝑚
(𝑡) is the collection

price of the manufacturer transfer payment to collectors in
the 𝑡 period, a decision variable of the manufacturer. 𝑝

𝑟𝑖
(𝑡)

is the collection price of collectors in the 𝑡 period. 𝑟
𝑖
(𝑡) is a

decision variable of the collectors; that is, 𝑝
𝑟𝑖
= 𝑝
𝑚
(1 − 𝑟

𝑖
),

𝑖 = 1, 2. 𝐴
𝑖
is the collecting cost of collectors including

logistics cost and so forth, a constant. 𝐺
𝑖
is the collecting

numbers for the waste product in the market as a function
of collecting price, 𝐺

𝑖
= 𝑘
𝑖
+ 𝛽
𝑖
𝑝
𝑟𝑖
(𝑡) − 𝛿

𝑖
𝑝
𝑟𝑗
(𝑡), 𝑖 = 1, 2, 𝑗 =

2, 1, and subscript 𝑖, 𝑗 will take values two collectors, where
𝑘 is the waste products number of return voluntarily when
the collectors’ collecting price is zero; it denotes consumers
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environmental awareness; 𝛽 denotes consumers sensitive
degree to collecting price; 𝛿 is competition coefficient in the
two collectors, which satisfies 𝛽 ≥ 𝛿. The collecting function
of the two collectors is, respectively, as follows:

𝐺
1
= 𝑘
1
+ 𝛽
1
𝑝
𝑟1
(𝑡) − 𝛿

1
𝑝
𝑟2
(𝑡) ,

𝐺
2
= 𝑘
2
+ 𝛽
2
𝑝
𝑟2
(𝑡) − 𝛿

2
𝑝
𝑟1
(𝑡) .

(1)

Π
𝑚

is the profits function of the manufacturer; its
marginal profits are concluded by the first-order conditions,
which are 𝜕Π

𝑚
/𝜕𝑝
𝑚
(𝑡). Π
𝑚
can be stated as

∏

𝑚

= (𝑝
0
− 𝑝
𝑚
− 𝑐
𝑟
)

× (𝑘
1
+ 𝛽
1
𝑝
𝑟1
(𝑡) − 𝛿

1
𝑝
𝑟2
(𝑡)

+ 𝑘
2
+ 𝛽
2
𝑝
𝑟2
(𝑡) − 𝛿

2
𝑝
𝑟1
(𝑡)) .

(2)

Π
𝑟𝑖
is the profits function of the two collectors; marginal

profits are concluded by the first-order conditions, which are
𝜕Π
𝑟𝑖
/𝜕𝑟
𝑖
(𝑡). Π
𝑟𝑖
can be stated as

∏

𝑟1

= (𝑝
𝑚
− 𝑝
𝑟1
(𝑡) − 𝐴

1
) (𝑘
1
+ 𝛽
1
𝑝
𝑟1
(𝑡) − 𝛿

1
𝑝
𝑟2
(𝑡)) ,

∏

𝑟2

= (𝑝
𝑚
− 𝑝
𝑟2
(𝑡) − 𝐴

2
) (𝑘
2
+ 𝛽
2
𝑝
𝑟2
(𝑡) − 𝛿

2
𝑝
𝑟1
(𝑡)) .

(3)

Π is the profits function of the closed-loop supply chain,
which can be stated as

∏ =∏

𝑚

+∏

𝑟1

+∏

𝑟2

. (4)

(𝑝
𝑚
, 𝑟
1
, 𝑟
2
) is a pricing strategy, which can be obtained by

(2) and (3). Furthermore they are satisfied with 𝜕2Π
𝑚
/𝜕𝑝
2

𝑚
=

−2(1 − 𝑟
2
)(𝛽
2
− 𝛿
1
) < 0, 𝜕2Π

𝑟1
/𝜕𝑟
2

1
= −2𝛽

1
𝑝
2

𝑚
(𝑡) < 0, and

𝜕
2
Π
𝑟2
/𝜕𝑟
2

2
= −2𝛽

2
𝑝
2

𝑚
(𝑡) < 0. It can be proved that Π

𝑖
is

concave function for 𝑝
𝑖
.

3. Decentralized Control
Decision-Making Model

3.1. Nash Equilibrium

3.1.1. Model and Analysis

(1) Model. The manufacturer and collectors are equal in
closed-loop supply chain; that is, the two sides make decision
at the same time: manufacturer’s decision is to choose
the collection price 𝑝

𝑖
to maximize returns, and collectors’

decision is to choose 𝑝
𝑟𝑖
to maximize their returns.

Nash equilibrium can be concluded by the first-
order conditions of three reaction functions, which meet
𝜕Π
𝑚
/𝜕𝑝
𝑚

= 0, 𝜕Π
𝑟𝑖
/𝜕𝑟
𝑖
= 0 simultaneously. The Nash

equilibrium is the optimal decision of a game in all kinds of
may guess, thus make it to gain maximum benefit. The Nash
equilibrium is

(𝑝
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𝑚
, 𝑟
∗

1
, 𝑟
∗

2
) = (
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l 1
(𝛼

3
)

(0, 3.296)

0.01 0.02 0.03 0.04 0.05

𝛼3

3.0

2.5

2.0

1.5

1.0

0.5

Figure 4: The change of 𝑙
1
(𝛼
3
) with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.02.

(0, 16.41)

0.01 0.02 0.03 0.04 0.05

𝛼3

l 1
(𝛼

3
)

15

10

5

Figure 5: The change of 𝑙
1
(𝛼
3
) with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.004.

where 𝐴, 𝐵, and 𝐶 are
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In formula (6), 𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
can be expressed as
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In reality, the game between node enterprises in closed-
loop supply chain is continuous, enterprises’ decision-
making is a long-term repeated process, and its action has
long-termmemory. And each node enterprise does not com-
pletely control the market information and also cannot fully
expect future market changes, so based on limited rational
expectations decision we adjust process with marginal gains.
They can make the next-period price decision on the basis of
the local estimate to his marginal profits in current period.
Their price adjustment processes are

𝑝
𝑚
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(8)

where 𝑝
1
(𝑡 + 1), 𝑟

1
(𝑡 + 1), 𝑟

2
(𝑡 + 1), and 𝑝

1
(𝑡), 𝑟
1
(𝑡), 𝑟
2
(𝑡) are

used to present the price in the (𝑡+1)th period and in the (𝑡)th
period. Where 𝛼

𝑖
are positive parameters, 𝑖 = 1, 2, 3, which

denotes adjustment speed, respectively, for the manufacturer
and two collectors.

From the system (8) we can be conclude that the optimal
collecting price of themanufacturer is related to the collection
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price adjustment coefficient, the two collectors’ collecting
price, sale price, and consumers’ environmental protection
awareness. Similarly, the optimal collecting price of collectors
is related to collecting price adjustment parameters, col-
lecting price of the manufacturer, collecting function, con-
sumers’s environmental protection awareness, and collecting
costs.

(2) Model Analysis. In closed-loop supply chain, any enter-
prise decision-making is all according to the maximum
profits, the equilibrium less than zero is not practical sig-
nificance, such as manufacturers to make power mainly
because of benefits, collecting business is also benefit with
collecting. So only research system (8) is the equilib-
rium; system (8) of the eight fixed points, respectively, is
𝐸
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icance. Therefore, we discuss Nash equilibrium which is
𝐸
7
(𝑝
∗

𝑚
, 𝑟
∗

1
, 𝑟
∗

2
); 𝐸
7
is the reaction function intersection of the

manufacturer and collectors, which means marginal profits
of both sides are zero, but this does not mean that the
result of the game will tend to equilibrium. Instead, a party
rational behavior change may cause game process to occur
very complex phenomenon.𝐸
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has local stability, this stability
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1
= 0.03, 𝛼

3
= 0.03.

area. Moreover, the characteristic polynomial will satisfy the
conditions as follows:

𝐹 (1) = 1 + 𝐴 + 𝐵 + 𝐶 > 0,

(−1)
3
𝐹 (−1) = 1 − 𝐴 + 𝐵 − 𝐶 > 0,

1 > |𝐶| ,

1 − 𝐶
2
> |𝐵 − 𝐴𝐶| .

(10)

At present, only a few simple dynamic systems are
analyzed with analytical method, but complex dynamic
system mainly uses the numerical analysis method. This
paper processes numerical simulation on system (8) by
Matlab to expresses the dynamic characteristics. Because
remanufacturing is still initial stage in china, consumers envi-
ronmental protection awareness is lower, and manufacturing
cost (including the fixed and variable cost) is higher; for
autoparts collecting, the parameters of system (8) can be
defined as 𝑝

0
= 70, 𝑐

𝑟
= 30, 𝐴

1
= 1, 𝐴

2
= 0.8, 𝑘

1
= 1, 𝑘

2
= 1,

𝛽
1
= 0.6, 𝛽

2
= 0.55, 𝛿

1
= 0.2, and 𝛿

2
= 0.2 to study the

local stability of equilibrium point. Get the parameter value
into 𝐸

7
(𝑝
∗

𝑚
, 𝑟
∗

1
, 𝑟
∗

2
) and formula (10) to conclude the value for

(17.385, 0.491, 0.489).



6 Abstract and Applied Analysis
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Figure 14: The change of 𝑙
2
(𝛼
1
, 𝛼
2
, 𝛼
3
) with 𝛼

3
, 𝛼
1
, and 𝛼

2
.

0.01 0.02 0.03 0.04 0.05

𝛼3

1.4

1.2

1.0

0.8

0.6

0.4

0.2

l 2
(𝛼

3
)

(0, 1.383)

Figure 15: The change of 𝑙
2
(𝛼
3
) with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.048.

Change the discrete system (8) into a continuous system
and the points of Jacobi matrix for

𝐽 = [

[

−13.317𝛼
1

−17.755𝛼
1

−15.562𝛼
1

−0.775𝛼
2

−177.888𝛼
2

29.68𝛼
2

−0.821𝛼
3

29.599𝛼
3

−164.65𝛼
3

]

]

. (11)

Consider the continuous-time nonlinear dynamical sys-
tem

𝑥̇ = 𝐴𝑥 + 𝑁 (𝑥) , 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛
, 𝑥 ∈ 𝑅

𝑛
. (12)

Let the function𝑁(𝑥) be written as

𝑁(𝑥) =
1

2
𝐵 (𝑥, 𝑥) +

1

6
𝐶 (𝑥, 𝑥, 𝑥) + 𝑂 (‖𝑥‖

4
) , (13)

where 𝐵(𝑥, 𝑦) and 𝐶(𝑥, 𝑦, 𝑧) are bilinear and trilinear func-
tions, respectively. In coordinates, we have

𝐵
𝑖
(𝑥, 𝑦) =

𝑛

∑

𝑗,𝑘=1

𝜕
2
𝑁
𝑖
(𝜉)

𝜕𝜉
𝑗
𝜕𝜉
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜉=0

𝑥
𝑗
𝑦
𝑘
,

𝐶
𝑖
(𝑥, 𝑦, 𝑧) =

𝑛

∑

𝑗,𝑘,𝑙=1

𝜕
3
𝑁
𝑖
(𝜉)

𝜕𝜉
𝑗
𝜕𝜉
𝑘
𝜕𝜉
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜉=0

𝑥
𝑗
𝑦
𝑘
𝑧
𝑙
.

(14)

0.01 0.02 0.03 0.04 0.05

𝛼3

3.0

2.5

2.0

1.5

1.0

0.5

l 2
(𝛼

3
)

(0, 3.304)

Figure 16: The change of 𝑙
2
(𝛼
3
) with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.02.

0.01 0.02 0.03 0.04 0.05

𝛼3

(0, 16.49)

l 2
(𝛼

3
)

15

10

5

Figure 17: The change of 𝑙
2
(𝛼
3
) with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.004.

Supposing that 𝐴 has a pair of complex eigenvalues on
the imaginary axis, they are 𝜆

1,2
= ±𝑖𝜔 (𝜔 > 0), and these

eigenvalues are the only eigenvalues with Re 𝜆 = 0. Let 𝑞 ∈ 𝐶𝑛
be a complex eigenvector to 𝜆

1
= 𝑖𝜔:

𝐴𝑞 = 𝑖𝜔𝑞, 𝐴𝑞 = −𝑖𝜔𝑞. (15)

And the adjoint eigen vector𝑝 ∈ 𝐶𝑛 admits the properties

𝐴
𝑇
𝑝 = −𝑖𝜔𝑝, 𝐴

𝑇
𝑝 = 𝑖𝜔𝑝 (16)

and satisfies the normalization ⟨𝑞, 𝑝⟩ = 1.
The first Lyapunov coefficient at the origin is defined by

𝑙
1
=

1

2𝜔
Re [⟨𝑝, 𝐶 (𝑞, 𝑞, 𝑞)⟩ − 2 ⟨𝑝, 𝐵 (𝑞, 𝐴−1𝐵 (𝑞, 𝑞))⟩

+ ⟨𝑝, 𝐵 (𝑞, (2𝑖𝜔𝐸 − 𝐴)
−1
𝐵 (𝑞, 𝑞))⟩] .

(17)

Next, we calculate 𝑖𝑤𝑞, 𝐽𝑞 = −𝑖𝑤𝑞, 𝐽𝑇𝑝 = −𝑖𝑤𝑝, and
𝐽
𝑇
𝑝 = 𝑖𝑤𝑝; If 𝑞 = (𝑞

1
, 𝑞
2
, 𝑞
3
)
𝑇

̸= 0, calculate 𝑞, 𝑞, 𝑝, 𝑝:

[

[

−13.317𝛼
1
− 𝑖𝑤 −17.755𝛼

1
−15.562𝛼

1

−0.775𝛼
2

−177.888𝛼
2
− 𝑖𝑤 29.68𝛼

2

−0.821𝛼
3

29.599𝛼
3

−164.65𝛼
3
− 𝑖𝑤

]

]

× [

[

𝑞
1

𝑞
2

𝑞
3

]

]

= [

[

0

0

0

]

]

(18)

having nonzero solutions.
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Figure 18: The change of 𝑙
2
(𝛼
1
, 𝛼
2
, 𝛼
3
) with 𝛼

2
, 𝛼
1
, and 𝛼

3
.

(0.05, 34.55)

−10

10

20

30

l 2
(𝛼

1
)

0.01 0.02 0.03 0.04 0.05

𝛼1

Figure 19:The change of 𝑙
2
(𝛼
1
)with 𝛼

1
when 𝛼

2
= 0.004, 𝛼

2
= 0.01.

It means

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−13.317𝛼
1
− 𝑖𝑤 −17.755𝛼

1
−15.562𝛼

1

−0.775𝛼
2

−177.888𝛼
2
− 𝑖𝑤 29.68𝛼

2

−0.821𝛼
3

29.599𝛼
3

−164.65𝛼
3
− 𝑖𝑤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(19)

It can be got from calculating

𝑓
1
(𝑤) = − 375716.354𝛼

1
𝛼
2
𝛼
3
+ 117.77755𝛼

2

2
𝛼
3

+ 13.317𝛼
1
𝑤
2
+ 177.888𝛼

2
𝑤
2
+ 164.65𝛼

3
𝑤
2
= 0,

𝑓
2
(𝑤) = − 2368.9345𝛼

1
𝛼
2
𝑤 + 0.6𝛼

2

2
𝑤

− 28410.761𝛼
2
𝛼
3
𝑤 − 2179.87𝛼

1
𝛼
3
𝑤 + 𝑤

3
= 0.

(20)

(1) When {
𝑤=𝛼
1

𝑓
1
(𝑤) = 0

𝑓
2
(𝑤) = 0

, matrix 𝐽 has pure imaginary eigen-
values ±𝑖𝛼

1
. Calculate 𝑞, 𝑞, 𝑝, 𝑝.

The result is as follows.

𝐿
2
(𝛼
1
, 𝛼
2
, 𝛼
3
)

=
1

2𝜔
[⟨𝑝, 𝐶 (𝑞, 𝑞, 𝑞)⟩ − 2 ⟨𝑝, 𝐵 (𝑞, 𝐴

−1
𝐵 (𝑞, 𝑞))⟩

+ ⟨𝑝, 𝐵 (𝑞, (2𝑖𝜔𝐸 − 𝐴)
−1
𝐵 (𝑞, 𝑞))⟩]

=
(408.75 − 29.6𝑖) 𝛼

1
𝛼
2

(0.82𝑖𝛼
1
− 168.9853𝛼

2
) 𝛼
2

− 2 [
(408.75 − 29.6𝑖) 𝛼

1
𝛼
2

(0.82𝑖𝛼
1
− 168.9853𝛼

2
) 𝛼
2

−
2179.87𝛼

1

375716.354𝛼
1
𝛼
2
− 117.7775𝛼

2

2

+ ( (61899.185 − 4510.5𝑖) 𝛼
2

× (5846897.898𝑖𝛼
2

1

− (1.24 × 10
9
+ 1832.854𝑖) 𝛼

1
𝛼
2

+388107.8𝛼
2

2
)
−1

) ]

+ ( {𝛼
1
[(−4 + 26.634𝑖) 𝛼

1

+ (2179.87 + 329.3𝑖) 𝛼
3
]}

× ({(−53 − 8𝑖) 𝛼
3

1

+ 𝛼
2

1
[(−711.55 + 4737.8𝑖) 𝛼

2

− (658.6 − 4359.7𝑖) 𝛼
3
] − 117.8𝛼

2

2
𝛼
3

+𝛼
1
𝛼
2
(1.2𝑖𝛼

2
+ (375716.354 + 56821.5𝑖) 𝛼

3
) })
−1

)

+ {(− (407.31 + 29.7𝑖) 𝛼
2
)

× (−1.55𝑖𝛼
1
𝛼
2
− 151.97𝛼

2
𝛼
3
)}

× ({(15.6𝑖𝛼
1
+ 3295.3𝛼

2
)

× {(−53.3 − 8𝑖) 𝛼
3

1

+ 𝛼
2

1
[(−711.552 + 4737.9𝑖) 𝛼

2

− (658.6 − 4359.74𝑖) 𝛼
3
]

− 117.77755𝛼
2

2
𝛼
3
+ 𝛼
1
𝛼
2

× [1.2𝑖𝛼
2
+ (375716.354 + 56821.52𝑖) 𝛼

3
] }})
−1

= 𝑙
1
(𝛼
1
, 𝛼
2
, 𝛼
3
) + 𝑚
1
(𝛼
1
, 𝛼
2
, 𝛼
3
) ,

(21)

where𝐿
1
(𝛼
1
, 𝛼
2
, 𝛼
3
) is the Lyapunov exponent function about

𝛼
1
, 𝛼
2
, and 𝛼

3
and 𝑙
1
(𝛼
1
, 𝛼
2
, 𝛼
3
) is the real part. The following

is the figure of 𝑙
1
(𝛼
1
, 𝛼
2
, 𝛼
3
).
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Figure 20:The change of 𝑙
2
(𝛼
1
)with 𝛼

1
when 𝛼

2
= 0.004, 𝛼

2
= 0.03.

(0.05, 34.55)
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30

l 2
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)
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𝛼1

Figure 21: The change of 𝑙
2
(𝛼
1
) with 𝛼

1
when 𝛼

2
= 0.004, 𝛼

2
= 0.05.

(1) Fix the value of 𝛼
1
and 𝛼

2
∈ (0, 0.05), 𝛼

3
∈ (0, 0.05).

(i) 𝛼
1
= 0.02, 𝛼

2
= 0.048, and 𝛼

3
∈ (0, 0.05) (see

Figure 3).
(ii) 𝛼
1
= 0.02, 𝛼

2
∈ (0, 0.05), and 𝛼

3
∈ (0, 0.05) (see

Figure 2).

We can know from Figure 3 that when 𝛼
1
= 0.02,

𝛼
2
= 0.048, and 𝛼

3
is between zero and 0.05, 𝑙

1
(𝛼
3
) is always

equal to 1.375.

(iii) 𝛼
1
= 0.02, 𝛼

2
= 0.02, and 𝛼

3
∈ (0, 0.05) (see Figure 4).

(iv) 𝛼
1
= 0.02, 𝛼

2
= 0.004, and 𝛼

3
∈ (0, 0.05) (see

Figure 5).

From Figures 4 and 5 we can observe the same change of
𝑙
1
(𝛼
3
) as in Figures 2 and 3.
(2) Fix the value of 𝛼

2
and 𝛼

1
∈ (0, 0.05), 𝛼

3
∈ (0, 0.05).

𝛼
2
= 0.004, 𝛼

1
∈ (0, 0.05), and 𝛼

3
∈ (0, 0.05) (see Figure 6).

𝛼
2
= 0.004, 𝛼

3
= 0.01, and 𝛼

1
∈ (0, 0.05) (see Figure 7). 𝛼

2
=

0.004, 𝛼
3
= 0.03, and 𝛼

1
∈ (0, 0.05) (see Figure 8). 𝛼

2
= 0.004,

𝛼
3
= 0.05, and 𝛼

1
∈ (0, 0.05) (see Figure 9).

(3) Fix the value of 𝛼
3
and 𝛼

1
∈ (0, 0.05), 𝛼

2
∈ (0, 0.05).

(i) 𝛼
3
= 0.03, 𝛼

1
∈ (0, 0.05), and 𝛼

2
∈ (0, 0.05) (see

Figure 10).
(ii) 𝛼
3
= 0.03,𝛼

1
= 0.01, and𝛼

2
∈ (0, 0.05) (see Figure 11).

(iii) 𝛼
3
= 0.03, 𝛼

1
= 0.02, and 𝛼

2
∈ (0, 0.05) (see

Figure 12).
(iv) 𝛼

3
= 0.03, 𝛼

1
= 0.03, and 𝛼

2
∈ (0, 0.05) (see

Figure 13).

3 × 107

2 × 107

1 × 107

0
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0.04 𝛼2
0.0
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l2(𝛼1, 𝛼2)

Figure 22: The change of 𝑙
2
(𝛼
1
, 𝛼
2
, 𝛼
3
) with 𝛼

2
, 𝛼
1
, and 𝛼

3
.

0.01 0.02 0.03 0.04 0.05

𝛼2

l 2
(𝛼

2
)

10

8

6

4

2

(0.004, 10.21)

Figure 23: The change of 𝑙
2
(𝛼
2
) with 𝛼

2
when 𝛼

1
= 0.01, 𝛼

3
= 0.03.

(2) When {
𝑤=𝛼
2

𝑓
1
(𝛼
2
) = 0

𝑓
2
(𝛼
2
) = 0

, matrix 𝐽 has pure imaginary eigen-
values ±𝑖𝛼

2
. Calculate 𝑞, 𝑞, 𝑝, 𝑝.

The result is as follows:

𝐿
2
(𝛼
1
, 𝛼
2
, 𝛼
3
)

=
1

2𝜔
[⟨𝑝, 𝐶 (𝑞, 𝑞, 𝑞)⟩ − 2 ⟨𝑝, 𝐵 (𝑞, 𝐴

−1
𝐵 (𝑞, 𝑞))⟩

+ ⟨𝑝, 𝐵 (𝑞, (2𝑖𝜔𝐸 − 𝐴)
−1
𝐵 (𝑞, 𝑞))⟩]

= (0.000851 − 0.175𝑖)

+
37.57 + 0.18𝑖

375716.354𝛼
1
− 117.8𝛼

2

+
(2.42 + 0.012𝑖) 𝛼

1

𝛼
2

+
(0.01293 − 2.74𝑖) 𝛼

2

375716.354𝛼
2

1
− 117.78𝛼

1
𝛼
2
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Figure 24: The change of 𝑙
2
(𝛼
2
) with 𝛼

2
when 𝛼

1
= 0.02, 𝛼

3
= 0.03.
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𝛼2

l 2
(𝛼

2
)

15
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5

(0.004, 22.06)

Figure 25: The change of 𝑙
2
(𝛼
2
) with 𝛼

2
when 𝛼

1
= 0.03, 𝛼

3
= 0.03.

+
4359.74𝛼

1

375716.354𝛼
1
𝛼
2
− 117.77755𝛼

2

2

+ ({𝛼
2

2
[(−0.014 + 0.000066𝑖) 𝛼

2
+ (0.0065 + 1.37𝑖) 𝛼

3
]

+ 𝛼
1
𝛼
2
[(−4 + 0.19𝑖) 𝛼

2
+ (18.784 + 329.2𝑖) 𝛼

3
]

+𝛼
2

1
(26.6𝑖𝛼

2
+ 2179.87𝛼

3
)})

× {𝛼
1
𝛼
2
[(−53.268 + 4737.87𝑖) 𝛼

1
𝛼
2

− (711.552 + 9.2𝑖) 𝛼
2

2

+ (375716.354 + 4359.74𝑖) 𝛼
1
𝛼
3

− (776.38 − 56821.52𝑖) 𝛼
2
𝛼
3
]}
−1

= 𝑙
2
(𝛼
1
, 𝛼
2
, 𝛼
3
) + 𝑚
2
(𝛼
1
, 𝛼
2
, 𝛼
3
) ,

(22)

where𝐿
2
(𝛼
1
, 𝛼
2
, 𝛼
3
) is the Lyapunov exponent function about

𝛼
1
, 𝛼
2
, and 𝛼

3
and 𝑙
2
(𝛼
1
, 𝛼
2
, 𝛼
3
) is the real part. The following

is the figure of 𝑙
2
(𝛼
1
, 𝛼
2
, 𝛼
3
).

(1) Fix the value of 𝛼
1
and 𝛼

2
∈ (0, 0.05), 𝛼

3
∈ (0, 0.05).

(i) 𝛼
1
= 0.02, 𝛼

2
∈ (0, 0.05), and 𝛼

3
∈ (0, 0.05) (see

Figure 14).

l3(𝛼2, 𝛼3)

0.
00
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04

𝛼3
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0.02

0.04
𝛼2

1.5 × 107

1.0 × 107

5.0 × 106

0

Figure 26: The change of 𝑙
3
(𝛼
1
, 𝛼
2
, 𝛼
3
) with 𝛼

1
, 𝛼
2
, and 𝛼

3
.

0.01 0.02 0.03 0.04 0.05

𝛼3

1.4

1.2

1.0

0.8
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0.4

0.2

l 3
(𝛼

3
)

(0, 1.38)

Figure 27:The change of 𝑙
2
(𝛼
3
)with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.048.

(ii) 𝛼
1
= 0.02, 𝛼

2
= 0.048, and 𝛼

3
∈ (0, 0.05) (see

Figure 15).
(iii) 𝛼

1
= 0.02, 𝛼

2
= 0.02, and 𝛼

3
∈ (0, 0.05) (see

Figure 16).
(iv) 𝛼

1
= 0.02, 𝛼

2
= 0.004, and 𝛼

3
∈ (0, 0.05) (see

Figure 17).

(2) Fix the value of 𝛼
2
and 𝛼

1
∈ (0, 0.05), 𝛼

3
∈ (0, 0.05).

(i) 𝛼
2
= 0.004, 𝛼

1
∈ (0, 0.05), and 𝛼

3
∈ (0, 0.05) (see

Figure 18).
(ii) 𝛼
2
= 0.004, 𝛼

3
= 0.01, and 𝛼

1
∈ (0, 0.05) (see

Figure 19).
(iii) 𝛼

2
= 0.004, 𝛼

1
∈ (0, 0.05), and 𝛼

3
= 0.03 (see

Figure 20).
(iv) 𝛼

2
= 0.004, 𝛼

3
= 0.05, and 𝛼

1
∈ (0, 0.05) (see

Figure 21).

(3) Fix the value of 𝛼
3
and 𝛼

1
∈ (0, 0.05), 𝛼

3
∈ (0, 0.05).

(i) 𝛼
3
= 0.03, 𝛼

1
∈ (0, 0.05), and 𝛼

3
∈ (0, 0.05) (see

Figure 22).
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Figure 28: The change of 𝑙
2
(𝛼
3
) with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.02.
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l 3
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3
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(0, 16.48)

Figure 29:The change of 𝑙
2
(𝛼
3
)with 𝛼

3
when 𝛼

1
= 0.02, 𝛼

2
= 0.004.

(ii) 𝛼
3
= 0.03, 𝛼

1
= 0.01, and 𝛼

2
∈ (0, 0.05) (see

Figure 23).

(iii) 𝛼
3
= 0.03, 𝛼

1
= 0.02, and 𝛼

2
∈ (0, 0.05) (see

Figure 24).

(iv) 𝛼
3
= 0.03, 𝛼

1
= 0.03, and 𝛼

2
∈ (0, 0.05) (see

Figure 25).

(3)When {
𝑤=𝛼
3

𝑓
1
(𝛼
3
) = 0

𝑓
2
(𝛼
3
) = 0

, matrix 𝐽 has pure imaginary eigen-
values ±𝑖𝛼

3
. Calculate 𝑞, 𝑞, 𝑝, 𝑝.

The result is as follows:

𝐿
3
(𝛼
1
, 𝛼
2
, 𝛼
3
)

=
1

2𝜔
[⟨𝑝, 𝐶 (𝑞, 𝑞, 𝑞)⟩ − 2 ⟨𝑝, 𝐵 (𝑞, 𝐴

−1
𝐵 (𝑞, 𝑞))⟩

+ ⟨𝑝, 𝐵 (𝑞, (2𝑖𝜔𝐸 − 𝐴)
−1
𝐵 (𝑞, 𝑞))⟩]

=
408.75𝛼

1
𝛼
2
− 29.6𝑖𝛼

2
𝛼
3

𝛼
2
(−168.9853𝛼

2
+ 0.821𝑖𝛼

3
)

+ {(7183233.84 + 87766𝑖) 𝛼
2

1
𝛼
2

+ (61899.185 + 631.33𝑖) 𝛼
1
𝛼
2

2

0.00

0.02

0.04

0.0
0

0.0
2

0.0
4

0

200

400

𝛼3

𝛼1

l3(𝛼1, 𝛼3)

Figure 30: The change of 𝑙
3
(𝛼
1
, 𝛼
2
, 𝛼
3
) with 𝛼

1
, 𝛼
2
, and 𝛼

3
.

− (414.48 − 33923.1𝑖) 𝛼
2

1
𝛼
3

− (13181 − 1085129.6𝑖) 𝛼
1
𝛼
2
𝛼
3

− (46 − 4510.5𝑖) 𝛼
2

2
𝛼
3
− (5124.6 + 62.25𝑖) 𝛼

1
𝛼
2

3
}

× { (3295.26𝛼
1
𝛼
2
+ 15.562𝑖𝛼

1
𝛼
3
)

× [ (375716.354 + 4737.87𝑖) 𝛼
1
𝛼
2

− (117.78 + 1.2𝑖) 𝛼
2

2
− (53.3 − 4359.74𝑖) 𝛼

1
𝛼
3

− (711.552 − 56821.5𝑖) 𝛼
2
𝛼
3

− (658.6 + 8𝑖) 𝛼
2

3
]}
−1

− 2 [−
2179.867𝛼

1

375716.354𝛼
1
𝛼
2
− 117.78𝛼

2

2

+
408.75𝛼

1
𝛼
2
− 29.6𝑖𝛼

2
𝛼
3

𝛼
2
(−168.9853𝛼

2
+ 0.821𝑖𝛼

3
)

+ (61899.185𝛼
1
𝛼
2
− 4510.5𝑖𝛼

2
𝛼
3
)

× ((−375716.354𝛼
1
+ 117.78𝛼

2
)

× (3295.26𝛼
1
𝛼
2
− 15.562𝑖𝛼

1
𝛼
3
))
−1

]

= 𝑙
3
(𝛼
1
, 𝛼
2
, 𝛼
3
) + 𝑚
3
(𝛼
1
, 𝛼
2
, 𝛼
3
) ,

(23)

where𝐿
3
(𝛼
1
, 𝛼
2
, 𝛼
3
) is the Lyapunov exponent function about

𝛼
1
, 𝛼
2
, and 𝛼

3
and 𝑙
3
(𝛼
1
, 𝛼
2
, 𝛼
3
) is the real part. The following

is the figure of 𝑙
3
(𝛼
1
, 𝛼
2
, 𝛼
3
).

(1) Fix the value of 𝛼
1
and 𝛼

2
∈ (0, 0.05), 𝛼

3
∈ (0, 0.05).

(i) 𝛼
1
= 0.02, 𝛼

2
∈ (0, 0.05), and 𝛼

3
∈ (0, 0.05) (see

Figure 26).
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Figure 31: The change of 𝑙
3
(𝛼
1
) with 𝛼

1
when 𝛼

2
= 0.004, 𝛼

3
= 0.01.
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l 3
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Figure 32:The change of 𝑙
3
(𝛼
1
)with 𝛼

1
when 𝛼

2
= 0.004, 𝛼

3
= 0.03.

(ii) 𝛼
1
= 0.02, 𝛼

2
= 0.048, and 𝛼

3
∈ (0, 0.05) (see

Figure 27).
(iii) 𝛼

1
= 0.02, 𝛼

2
= 0.02, and 𝛼

3
∈ (0, 0.05) (see

Figure 28).
(iv) 𝛼

1
= 0.02, 𝛼

2
= 0.004, and 𝛼

3
∈ (0, 0.05) (see

Figure 29).

(2) Fix the value of 𝛼
2
and 𝛼

1
∈ (0, 0.05), 𝛼

3
∈ (0, 0.05).

(i) 𝛼
2
= 0.004, 𝛼

1
∈ (0, 0.05), and 𝛼

3
∈ (0, 0.05) (see

Figure 30).
(ii) 𝛼
2
= 0.004, 𝛼

3
= 0.01, and 𝛼

1
∈ (0, 0.05) (see

Figure 31).
(iii) 𝛼

2
= 0.004, 𝛼

3
= 0.03, 𝛼

1
∈ (0, 0.05) (see Figure 32).

(iv) 𝛼
2
= 0.004, 𝛼

3
= 0.05, and 𝛼

1
∈ (0, 0.05) (see

Figure 33).

(3) Fix the value of 𝛼
3
and 𝛼

1
∈ (0, 0.05), 𝛼

2
∈ (0, 0.05).

(i) 𝛼
3
= 0.03, 𝛼

1
∈ (0, 0.05), and 𝛼

2
∈ (0, 0.05) (see

Figure 34).
(ii) 𝛼
3
= 0.03, 𝛼

1
= 0.01, and 𝛼

2
∈ (0, 0.05) (see

Figure 35).
(iii) 𝛼

3
= 0.03, 𝛼

1
= 0.02, and 𝛼

2
∈ (0, 0.05) (see

Figure 36).
(iv) 𝛼

3
= 0.03, 𝛼

1
= 0.03, and 𝛼

2
∈ (0, 0.05) (see

Figure 37).

Premising 𝛼
3
= 0.01, the stable area in the 𝛼

1
, 𝛼
2
plane

is determined by inequality group (10). Figure 38 shows the
system fixed point in the area of the asymptotic stability.

(0.05, 34.53)

−20
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60

l 3
(𝛼
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)

0.01 0.02 0.03 0.04 0.05

𝛼1

Figure 33:The change of 𝑙
3
(𝛼
1
)with 𝛼

1
when 𝛼

2
= 0.004, 𝛼

3
= 0.05.
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𝛼20.0

2
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4
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l3(𝛼1, 𝛼2)

Figure 34: The change of 𝑙
3
(𝛼
1
, 𝛼
2
, 𝛼
3
) with 𝛼

1
, 𝛼
2
, and 𝛼

3
.

3.1.2. Numerical Simulation. UsingMatlab, parameters influ-
ence on the system (8) can be analyzed through numerical
simulation.

(1) 𝛼
1
, 𝛼
2
, and 𝛼

3
Influence on the Collecting Market. The

second collector on the assumption that the manufacturer
and the first collector stem variables parameters is fixed with
𝛼
1
= 0.01, 𝛼

3
= 0.01, her system variables parameters

𝛼
2
is at [0, 0.05]. Manufacturers’ initial collecting price 𝑝

𝑚
,

collector 1 and 2 for manufacturers of the collecting price
of depreciate rate for 20, 0.35, respectively, 0.3. And, as
shown in Figure 39 changes Figures 39(a), 39(b), and 39(c)
shows, the corresponding Lyapunov index as shown in
Figure 39(d). Figure 39 showing, when 0 < 𝛼

2
< 0.0097,

the system is in stable state. after multi game, 𝑝
𝑚
, 𝑟
1
and 𝑟
2

is stable at the point of (17.4, 0.4904, 0.4825). When 𝛼
1
=

0.01, 𝛼
2
= 0.0097, 𝛼

3
= 0.0097, the system (8) occurs the first

bifurcation, then after cycle 2, 4 cycle, and so forth, the system
is gradually into the chaotic state. Figure 39(d) is Lyapunov
index spectrum distribution which can also confirmed the
phenomena. at 𝛼

2
= 0.0099, the max Lyapunov index is zero,

the system is in critical condition. At 𝛼
2
= 0.0133, most of

Lyapunov index greater than zero which explains system at
chaos state (Figure 39 and Figure 44).
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Figure 35: The change of 𝑙
3
(𝛼
2
) with 𝛼

2
when 𝛼

1
= 0.01, 𝛼

3
= 0.03.
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Figure 36: The change of 𝑙
3
(𝛼
2
) with 𝛼

2
when 𝛼

1
= 0.02, 𝛼

3
= 0.03.

When initial setup and other parameters are the same
and 𝛼

1
, 𝛼
3
, and 𝛼

3
are adjusted in the interval [0, 0.05]

simultaneously, system variables of the manufacturers and
two collectors change as shown in Figures 40(a), 40(b), and
40(c), and Lyapunov index is as in Figure 40(d). When 0 <

𝛼
2
< 0.0098, the system is in stable state at the point of

(17.4, 0.4904, 0.4825). When the value of 𝛼
1
, 𝛼
2
, and 𝛼

3
is

0.0098, the system (8) occurs the first bifurcation, then after
cycle 2, 4 cycle, and so forth, the system is gradually into
the chaotic state. Figure 40(d) is Lyapunov index spectrum
distribution which can also confirm the phenomena. At 𝛼

2
=

0.0099, the max Lyapunov index is zero, and the system is in
critical condition. Comparing with Figure 39, system steady
equilibrium does not change, keeps for (17.4, 0.4904, 0.4825).

(2) System Variables Power Spectrum. According to the
numerical simulation, not only system variables graph in
the phase space along with time can be drawn, but also
power spectrum graph of system variables can be estimated
by period chart method. When 𝛼

1
= 0.01, 𝛼

2
= 0.014, and

𝛼
3
= 0.01, power spectrum graph of the manufacturer and

two collectors is shown as in Figures 41(a), 41(b), and 41(c).
According to the numerical results, no matter how large

the collection price adjustment parameters are, the collection
price traverses the whole value area over time, but 𝑝

𝑚
, 𝑟
1
, and

𝑟
2
in the system (10) always limit in a certain range, which also

0.01 0.02 0.03 0.04 0.05

𝛼2

l 3
(𝛼

2
)

15

20

10

5

(0.004, 22.09)

Figure 37: The change of 𝑙
3
(𝛼
2
) with 𝛼

2
when 𝛼

1
= 0.03, 𝛼

3
= 0.03.

0 0.01 0.02 0.03 0.04 0.05
0

0.002
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0.006

0.008

0.01

Stability areas 𝛼2

𝛼1

Figure 38: 𝛼
3
= 0.01, the stable area in 𝛼

1
, 𝛼
2
plane.

verifies boundedness and ergodicity of chaos. Because 𝛼
2
>

𝛼
3
and 𝑟
1
amplitude is larger than 𝑟

2
, the adjustment of system

variables must be limited in a certain range.

(3) The Influence of Initial Setup. The butterfly effect is an
important symbol of chaotic motions, which is sensitive to
initial state, and small changes of the initial conditions may
cause the adjacent orbital evolution to index form separate
after multiple episodes. For the above conditions, when 𝛼

1
=

0.01, 𝛼
2
= 0.014, and 𝛼

3
= 0.01, sensitive dependence

on initial value of 𝑝
𝑚
, 𝑟
1
, and 𝑟

2
is as shown in Figures

42(a), 42(b), and 42(c). 𝑝
𝑚
value is, respectively, taken 20

and 20.001, after 96 cycles iteration, 𝑝
𝑚
difference value is

0.1335 which is 133.5 times than the initial difference value.
𝑟
1
and 𝑟
2
value is, respectively, taken 0.35 and 0.351, 0.3 and

0.301, respectively, experience in 44 and 45 iteration, 𝑟
1
and

𝑟
2
difference values is respective 0.2826 and 0.1364 which are

282 times and 136 times than the initial difference values.
Furthermore, from Figure 42 we can conclude that system
variables values are approximate in the first period, with
increase of iterations the difference increase obviously.
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Figure 39: The max Lyapunov index.

3.2. Stackelberg Equilibrium

3.2.1. Model and the Analysis. Suppose that the manufacturer
and collectors have principal and subordinate relationship,
the manufacturer is Stackelberg leader, and collectors are
followers; then they process sequential dynamic game; the
game equilibrium is Stackelberg equilibrium. In this game,
the manufacturer makes the decision of sales price and
collection price according to the market informa Lyapunov
exponent function abouttion; then two collectors make deci-
sion according to the decision-making of the manufacture:

max ∏

𝑟1

= (𝑝
𝑚
− 𝑝
𝑟1
(𝑡) − 𝐴

1
) (𝑘
1
+ 𝛽
1
𝑝
𝑟1
(𝑡) − 𝛿

1
𝑝
𝑟2
(𝑡))

max ∏

𝑟2

= (𝑝
𝑚
− 𝑝
𝑟2
(𝑡) − 𝐴

2
) (𝑘
2
+ 𝛽
2
𝑝
𝑟2
(𝑡) − 𝛿

2
𝑝
𝑟1
(𝑡))

s.t. 𝑝
𝑚
∈ arg max∏

𝑟1

s.t. 𝑝
𝑚
∈ arg max∏

𝑟2

.

(24)

The result is

𝑟
∗∗

1
= (𝑝
𝑚
(2𝛽
1
𝛽
2
− 2𝛽
2
𝛿
1
+ 𝛿
1
𝛽
2
− 𝛿
1
𝛿
2
)

+2𝛽
2
𝑘
1
+ 2𝛽
1
𝛽
2
𝐴
1
+ 𝑘
2
𝛿
1
+ 𝛽
2
𝐴
2
𝛿
1
)

× (𝑝
𝑚
(4𝛽
1
𝛽
2
− 𝛿
1
𝛿
2
))
−1

,
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Figure 40: (a) 𝛼
1
, 𝛼
2
, 𝛼
3
is [0, 0.05], 𝑝

1
, (b) 𝛼

1
, 𝛼
2
, 𝛼
3
is [0, 0.05], 𝑟

1
, (c) 𝛼

1
, 𝛼
2
, 𝛼
2
is [0, 0.05], 𝑟

2
, and (d) 𝛼

1
, 𝛼
2
, 𝛼
3
is [0, 0.05], the max Lyapunov

index.

𝑟
∗∗

2
= (𝑝
𝑚
(2𝛽
1
𝛽
2
− 2𝛽
1
𝛿
2
+ 𝛿
2
𝛽
1
− 𝛿
1
𝛿
2
)

+2𝛽
1
𝑘
2
+ 2𝛽
1
𝛽
2
𝐴
2
+ 𝑘
1
𝛿
2
+ 𝛽
1
𝐴
2
𝛿
2
)

× (𝑝
𝑚
(4𝛽
1
𝛽
2
− 𝛿
1
𝛿
2
))
−1

.

(25)

Formula (25) is reaction function of the collectors. Put
formula (25) into formula (2) and the following can be
obtained:

𝑝
∗∗

𝑚
=
(𝑝
0
− 𝑐
𝑟
)

2

− ((𝛽
1
− 𝛿
2
) (2𝛽
2
𝑘
1
+ 2𝛽
2
𝛽
1
𝐴
1
+ 𝛿
1
𝑘
2
+ 𝛿
1
𝛽
2
𝐴
2
)

+ (𝛽
2
− 𝛿
1
) (2𝛽
1
𝑘
2
+ 2𝛽
2
𝛽
1
𝐴
2
+ 𝛿
2
𝑘
1
− 𝛿
2
𝛽
1
𝐴
1
)

− (4𝛽
1
𝛽
2
− 𝛿
1
𝛿
2
) (𝑘
1
+ 𝑘
2
))

× ((2𝛽
1
𝛽
2
+ 2𝛽
2
𝛿
1
− 𝛿
1
𝛽
2
) (𝛽
2
− 𝛿
1
)

+ (2𝛽
1
𝛽
2
+ 2𝛽
1
𝛿
2
− 𝛿
2
𝛽
1
) (𝛽
1
− 𝛿
2
))
−1

.

(26)

With Nash equilibrium value the parameters values are
𝑝
0
= 70, 𝑐

𝑟
= 30, 𝐴

1
= 1, 𝐴

2
= 0.8, 𝑘

1
= 1, 𝑘

2
= 1, 𝛽

1
= 0.6,

𝛽
2
= 0.55, 𝛿

1
= 0.2, 𝛿

2
= 0.2. Then we put the values into

Stackelberg equilibrium (𝑝
∗∗

𝑚
, 𝑟
∗∗

1
, 𝑟
∗∗

2
); the equilibrium value

is (19.17, 0.48, 0.48).
Themanufacturer makes decision based on limited ratio-

nal expectations. She adjusts the game process on the basis of
marginal gains. If themarginal profits of 𝑡 period are positive,
in the 𝑡 + 1 period this strategy action will be used. And if
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Figure 41: (a) 𝛼
1
= 0.01, 𝛼

2
= 0.014, and 𝛼

3
= 0.01, power spectrum of 𝑝

𝑚
; (b) 𝛼

1
= 0.01, 𝛼

2
= 0.014, and 𝛼

3
= 0.01, power spectrum of 𝑟

1
;

and (c) 𝛼
1
= 0.01, 𝛼

2
= 0.014, and 𝛼

3
= 0.01, power of spectrum 𝑟

2
.

0 10 20 30 40 50 60 70 80 90 100
t

−0.15

−0.05

0

0.05

0.1

0.15

p
m

−0.1

−0.2

X: 96
Y: −0.1335

(a)

0 10 20 30 40 50 60 70 80 90 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

r 1

X: 17
Y: 0.4806

(b)

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

r 2

X: 55
Y: −0.105

(c)

Figure 42: (a) 𝛼
1
= 0.01, 𝛼

2
= 0.014, and 𝛼

3
= 0.01, the initial value sensitivity of 𝑝

𝑚
, (b) 𝛼

1
= 0.01, 𝛼

2
= 0.014, and 𝛼

3
= 0.01, the initial

value sensitivity of 𝑟
1
; and (c) 𝛼

1
= 0.01, 𝛼

2
= 0.014, and 𝛼

3
= 0.01, the initial value sensitivity 𝑟

2
.
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Figure 43: (a) 𝛼 = [0, 0.05], 𝑝
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2
.

0 0.05 0.1 0.15 0.2
−2

−1.5

−1

−0.5

0

0.5

1

𝛼
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Figure 45: (a) 𝛼 = 0.15, the power spectrum of 𝑝
𝑚
, (b) 𝛼 = 0.15, the spectrum of 𝑟

1
; and (c) 𝛼 = 0.15, the power spectrum of 𝑟

2
.

the 𝑡 period marginal profits are negative, in the 𝑡 + 1 period
the collection price will be lowered.The repeated gamemodel
of dynamic adjustment is

𝑝
𝑚
(𝑡 + 1) = 𝑝

𝑚
(𝑡) + 𝛼𝑝

𝑚
(𝑡)

× (((1 − 𝑟
1
) (𝛽
1
− 𝛿
2
) + (1 − 𝑟

2
) (𝛽
2
− 𝛿
1
))

× (𝑝
0
− 2𝑝
𝑚
(𝑡) − 𝑐

𝑟
) − 𝑘
1
− 𝑘
2
) .

(27)

In formula (27), 𝛼 is adjustment coefficient of collection
price and 𝑟

1
, 𝑟
2
are as follows:

𝑟
1
(𝑡) = (𝑝

𝑚
(𝑡) (2𝛽

1
𝛽
2
− 2𝛽
2
𝛿
1
+ 𝛿
1
𝛽
2
− 𝛿
1
𝛿
2
)

+2𝛽
2
𝑘
1
+ 2𝛽
1
𝛽
2
𝐴
1
+ 𝑘
2
𝛿
1
+ 𝛽
2
𝐴
2
𝛿
1
)

× (𝑝
𝑚
(𝑡) (4𝛽

1
𝛽
2
− 𝛿
1
𝛿
2
))
−1

,

(28)

𝑟
2
(𝑡) = (𝑝

𝑚
(𝑡) (2𝛽

1
𝛽
2
− 2𝛽
1
𝛿
2
+ 𝛿
2
𝛽
1
− 𝛿
1
𝛿
2
)

+2𝛽
1
𝑘
2
+ 2𝛽
1
𝛽
2
𝐴
2
+ 𝑘
1
𝛿
2
+ 𝛽
1
𝐴
2
𝛿
2
)

× (𝑝
𝑚
(𝑡) (4𝛽

1
𝛽
2
− 𝛿
1
𝛿
2
))
−1

.

(29)

Substitution parameters value into system (17) can be con-
cluded which is as follows:
𝑝
𝑚
(𝑡 + 1) = 𝑝

𝑚
(𝑡) + 𝛼𝑝

𝑚
(𝑡) (17.403 − 0.908𝑝

𝑚
(𝑡)) ,

𝑟
1
(𝑡) = 0.398 +

1.617

𝑝
𝑚
(𝑡)
,

𝑟
2
(𝑡) = 0.391 +

1.703

𝑝
𝑚
(𝑡)
.

(30)

From system (30) it can be concluded that the manufacture
firstly makes decision and the decision variables directly
relate to 𝛼. But collectors’ decision variables directly relate to
𝑝
𝑚
. The following simulates complex dynamics characteris-

tics of system (30) through numerical simulation.
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Figure 46: (a) 𝛼 = 0.15, the initial value sensitivity of 𝑝
𝑚
, (b) 𝛼 = 0.15, the initial value sensitivity of 𝑟

1;
and (c) 𝛼 = 0.15, the initial value

sensitivity of 𝑟
2
.

3.2.2. Numerical Simulation

(1) 𝛼 Influence on the Collecting Market. When 𝛼 = [0, 0.05],
the initial values of 𝑝

𝑚
, 𝑟
1
, and 𝑟

2
are 20, 0.4, and 0.5; 𝑝

𝑚
, 𝑟
1
,

and 𝑟
2
are as shown in Figures 43(a), 43(b), and 43(c). From

the figures, we can conclude that the system is in stable state
when 0 < 𝛼 < 0.113, and the stable values of 𝑝

𝑚
, 𝑟
1
, and 𝑟

2
are

19.17, 0.4824, and 0.4799. When 𝛼 = 0.113, the system occurs
the first bifurcation, then after cycle 2, 4 cycle, and so forth,
the system is gradually into the chaotic state.

(2) System Variables Power Spectrum. According to the
numerical simulation, not only system variables graph in the
phase space along with time can be drew, but also power
spectrum graph of system variables can be estimated by
period chart method.When 𝛼 = 0.15, power spectrum graph
of the manufacturer and two collectors is shown in Figures
45(a), 45(b), and 45(c). According to the numerical results, no
matter how large the collection price adjustment parameters
are, the collection price traverses the whole value area over
time, but 𝑝

𝑚
, 𝑟
1
, and 𝑟

2
in the system (19) always limit in a

certain range, which also verifies boundedness and ergodicity
of chaos.

(3) The Influence of Initial Setup. When 𝛼 = 0.15, sensitive
dependence on initial value of 𝑝

𝑚
, 𝑟
1
, and 𝑟

2
is as shown in

Figures 46(a), 46(b), and 46(c). 𝑝
𝑚
values are, respectively,

taken to be 20 and 20.001, after 36 cycles iteration, 𝑝
𝑚
dif-

ference value is 3.35 which is 3350 times the initial difference
value. 𝑟

1
and 𝑟
2
difference values are 69 times and 73 times

the initial difference values. Furthermore, from Figure 46 we
can conclude that system variables values are approximate

in the first period; with increase of iterations the difference
increases obviously. The influence to the manufacturer is far
greater than collectors because of the collectors’ decision-
making later than the manufacturer’s. After the collectors
observe action of the manufacturer, they make decision. The
collectors’ decision-making is superior to the manufacturer.

3.3. Model Comparison and Analysis

(1) Profits Analysis of Nash Equilibrium. When 𝛼 = [0, 0.05],
profits of the manufacturer and two collectors are as shown
in Figures 47(a), 47(b), 47(c), and 47(d). Figure 47(a) shows
that profits of the manufacturer in the stable state are not
the best; it means Nash equilibrium is not optimal solution;
the optimal solution of single cycle may not bring enterprise
maximum returns. Furthermore, from Figure 47(a) it can
be concluded that, with collecting price increasing, profits
state instead into chaos state, the optimal price is 19.64 in
the chaotic state, and the corresponding profits are 208.6.
Compared to Figure 47(b), profits of the manufacture before
chaotic state are 216.4, so the internal randomness of chaotic
system cannot react to the actual situation of the market.

(2) Profits Analysis of Stackelberg Equilibrium. When 𝛼 =

[0, 0.05], profits of the manufacturer and two collectors are
as shown in Figures 48(a), 48(b), 48(c), and 48(d). Figure 48
shows that profits of the manufacturer in the stable state
are the best; it means Stackelberg equilibrium is the optimal
solution, and the optimal solution of the closed-loop supply
chain is optimal. Figures 48(a), 48(b), 48(c), and 48(d) are
consistent.
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Figure 47: (a)∏
𝑚
graph with 𝑝

𝑚
, (b)∏
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1
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2
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graph with 𝛼

3
.

Through numerical simulation and comparison analysis,
it can be concluded that Stackelberg game equilibrium is bet-
ter thanNash equilibrium from the point of view of the profits
and collecting price.Three conclusions can be summarized as
follows. First, when the manufacturer and the two collectors
make decision by static game, the collection price and profits
of the three parties are lower than the optimal of dynamic
game equilibrium. Second, as the manufacturer and the two
collectors independently make decisions, the three parties
will try to lower the collecting price in order to obtain the
maximum profits. Third, as the manufacturer and the two
collectors independently make decisions, the system more
easily reaches chaos, and the cycle of stable state is shorter.

4. Centralized Control Decision-Making Model

Centralized control is that the manufacturers and the collec-
tors codetermine to realize profitsmaximization of the supply

chain system.We get formulas (2) and (3) into the formula (4)
and attain the profits function of supply chain as follows:

∏ =∏

𝑚

+∏

𝑟1

+∏

𝑟2

= 𝑘
1
(𝑝
0
− 𝑐
𝑟
− 𝐴
1
) + 𝑘
2
(𝑝
0
− 𝑐
𝑟
− 𝐴
2
)

+ 𝑝
𝑚
(𝑡) (1 − 𝑟

1
(𝑡))

× ((𝑝
0
− 𝑐
𝑟
) (1 − 𝛿

2
) − 𝑘
1
− 𝐴
1
− 𝐴
2
𝛿
2
)

− 𝑝
𝑚
(𝑡)
2
(𝛽
1
(1 − 𝑟

1
(𝑡))
2

+ 𝛽
2
(1 − 𝑟

2
(𝑡))
2

)

+ 𝑝
𝑚
(𝑡) (1 − 𝑟

2
(𝑡))

× ((𝑝
0
− 𝑐
𝑟
) (1 − 𝛿

1
) − 𝑘
2
− 𝐴
2
− 𝐴
1
𝛿
1
)

+ 𝑝
𝑚
(𝑡)
2
(𝛿
1
+ 𝛿
2
) (1 − 𝑟

1
(𝑡)) (1 − 𝑟

2
(𝑡)) .

(31)
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The second-order derivatives about 𝑝
𝑚
, 𝑟
1
, and 𝑟

2
in formula

(31) are 𝜕2Π/𝜕𝑝
𝑚
(𝑡)
2
= −2(𝛽

1
(1 − 𝑟

1
(𝑡))
2 + 𝛽
2
(1 − 𝑟

2
(𝑡))
2
) +

2(𝛿
1
+𝛿
2
)(1 − 𝑟

1
(𝑡))(1 − 𝑟

2
(𝑡)) 𝜕
2
Π/𝜕𝑟
1
(𝑡)
2 = −2𝛽

1
𝑝
𝑚
(𝑡)
2
< 0,

𝜕
2
Π/𝜕𝑟
2
(𝑡)
2
= −2𝛽

2
𝑝
𝑚
(𝑡)
2
< 0. When meeting the condition

of (𝛿
1
+𝛿
2
)(1−𝑟

1
(𝑡))(1−𝑟

2
(𝑡)) < 𝛽

1
(1−𝑟
1
(𝑡))
2
+𝛽
2
(1−𝑟
2
(𝑡))
2,

Π is strictly concave function about 𝑝
𝑚
, 𝑟
1
, and 𝑟

2
. Therefore,

the optimal solutions of 𝑝
𝑚
, 𝑟
1
, and 𝑟

2
can be obtained by

𝜕Π/𝜕𝑝
𝑚
(𝑡) = 0, 𝜕Π/𝜕𝑟

1
= 0 𝜕, and Π/𝜕𝑟

2
= 0The process is

as follows:

𝜕Π

𝜕𝑝
𝑚

= (1 − 𝑟
1
(𝑡)) ((𝑝

0
− 𝑐
𝑟
) (1 − 𝛿

2
) − 𝑘
1
− 𝐴
1
− 𝐴
2
𝛿
2
)

+ (1 − 𝑟
2
(𝑡)) ((𝑝

0
− 𝑐
𝑟
) (1 − 𝛿

1
) − 𝑘
2
− 𝐴
2
− 𝐴
1
𝛿
1
)

− 2𝑝
𝑚
(𝑡) (𝛽
1
(1 − 𝑟

1
(𝑡))
2

+ 𝛽
2
(1 − 𝑟

2
(𝑡))
2

)

+ 2𝑝
𝑚
(𝑡) (𝛿
1
+ 𝛿
2
) (1 − 𝑟

1
(𝑡)) (1 − 𝑟

2
(𝑡)) = 0,

𝜕Π

𝜕𝑟
1

= − 𝑝
𝑚
(𝑡) ((𝑝

0
− 𝑐
𝑟
) (1 − 𝛿

2
) − 𝑘
1
− 𝐴
1
− 𝐴
2
𝛿
2
)

+ 2𝑝
𝑚
(𝑡)
2
𝛽
1
(1 − 𝑟

1
(𝑡))

− 𝑝
𝑚
(𝑡)
2
(𝛿
1
+ 𝛿
2
) (1 − 𝑟

2
(𝑡)) = 0,

𝜕Π

𝜕𝑟
2

= − 𝑝
𝑚
(𝑡) ((𝑝

0
− 𝑐
𝑟
) (1 − 𝛿

1
) − 𝑘
2
− 𝐴
2
− 𝐴
1
𝛿
1
)

+ 2𝑝
𝑚
(𝑡)
2
𝛽
2
(1 − 𝑟

2
(𝑡))

− 𝑝
𝑚
(𝑡)
2
(𝛿
1
+ 𝛿
2
) (1 − 𝑟

1
(𝑡)) = 0.

(32)

Value with above the top: 𝑝
0
= 90, 𝑐

𝑟
= 30, 𝐴

1
= 1,

𝐴
2
= 0.8, 𝑘

1
= 1, 𝑘

2
= 1, 𝛽

1
= 0.6, 𝛽

2
= 0.55, 𝛿

1
= 0.2,

𝛿
2
= 0.2. 𝑝

𝑚
(1) = 20, 𝑟

1
(1) = 0.35, and 𝑟

2
(1) = 0.3.

The equilibrium solution of formula (22) is (𝑝
𝑚
, 𝑟
1
, 𝑟
2
) =

(20, 0.35, 0.35).
Manufacturers and collecting business make decision

based on rational expectations, and the decision-making
basis is marginal profits. Figure 16 indicates that 𝑝

𝑚
, 𝑟
1
,

and 𝑟
2
three-dimensional changes with time. 𝑋, 𝑌, and 𝑍,

respectively, show 𝑟
1
, 𝑟
2
, and 𝑝

𝑚
. Figure 49 describes system

profits Π; 𝑟
1
and 𝑟

2
change with time. Maximum system

profits are 919.3. In this condition, 𝑟
1
, 𝑟
2
are, respectively,

0.1411 and 0.1411. In the centralized control decision-making
model, we can conclude that the collecting business profits
are suffered, but the manufacturer profits are superior to
decentralized control decision-making model.Therefore, not
only the system profitsmaximization but also business profits
are considered in reality.

5. Conclusions

This paper researches on that used products collecting pricing
game model and complexity analysis in a closed-loop supply
chain which consist of a manufacturer and two collectors.
Corresponding to the discrete system, we have established
and analyzed in detail the corresponding continuity system.

Through quantitative analysis of collecting price, time
sequence diagram, and Lyapunov index, the paper describes
game evolution rule in the closed-loop supply chain. We
describe a series of chaotic system characteristics, based
on which, we have a detailed analysis of the Lyapunov
index which is under the condition of different parameter
combination, and draw the figure under different conditions.
The analysis found that, first, when the collection price is to
a critical value, the system into chaos state. Second, the sale
price of remanufacturing products are more than a critical
value, the system into chaos state. Last, the collection price
system of the initial value of which is sensitive, small changes
in the initial value may cause market price fluctuations.

It also draws conclusions that business profits, supply
chain system profits, collecting price in Stackelberg game
model are superior to Nash game model. In Nash equi-
librium, the manufacturer and the collectors all lower the
collecting price to gain, respectively, maximum profits. The
system is easier into chaos state than Stackelberg, and stable
state period is shorter.

Through comparing centralized decision-making with
decentralized decision-making, we have concluded that the
collecting price and system profits of the latter are lower.This
conclusion for the supply chain guide enterprises sure each
phase of the best provide decision basis for the collection
price, in order to achieve maximize returns.
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