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We derive a discretized heroin epidemic model with delay by applying a nonstandard finite difference scheme. We obtain
positivity of the solution and existence of the unique endemic equilibrium. We show that heroin-using free equilibrium is globally
asymptotically stable when the basic reproduction number 𝑅

0
< 1, and the heroin-using is permanent when the basic reproduction

number 𝑅
0
> 1.

1. Introduction

As we all know, the use of heroin and other drugs in Europe
and more specifically in Ireland and the resulting prevalence
are well documented [1–3]. It shows that the use of heroin
is very popular and causes many preventable deaths. Heroin
is so soluble in the fat cells that it crosses the blood-brain
barrier within 15–20 seconds, rapidly achieving a high level
syndrome in the brain and central nervous system which
causes both the “rush” experience by users and the toxicity.
Heroin-related deaths are associated with the use of alcohol
or other drugs [4]. Treatment of heroin users is a huge burden
on the health system of any country.

We often study infectious diseases with mathematical
and statistical techniques; see, for example, [5–11]; however,
little has been done to apply this method to the heroin
epidemics. In 1979,Mackintosh and Stewart [9] considered an
exponentialmodelwhich is simplified from infectious disease
model of Kermack and McKendrick to illustrate how the
heroin-using spreads in epidemic fashion. They arranged a
numerical simulation to showhow the dynamics of spread are
influenced by parameters in the model. White and Comiskey
[5] attempted to extend dynamic disease modeling to the
drug-using career and formulated an ordinary differential
equation. They divided the whole population into three
classes, namely, susceptible, heroin users, and heroin users
undergoing treatment. Their model allows a steady state

(constant) solution which represents an equilibrium between
the number of susceptible, heroin users, and heroin users
in treatment. Furthermore, this ODE model was revisited
by Mulone and Straughan [12]; the authors proved that this
equilibrium solution is stable both linearly and nonlinearly
under the realistic condition in which relapse rate of those in
treatment returning to untreated drug use is greater than the
prevalence rate of susceptible becoming drug users. Recently,
the study of the global properties and permanence of contin-
uous heroin epidemic models attracted the researchers and
have some very good results; see [13–16]. Specially, Samanta
[15] considered a model with time-dependent coefficients
and with different removal rates for three different classes,
introduced some new threshold values 𝑅

∗
and 𝑅

∗, and
obtained the permanence of heroin-using career.

Motivated by Samanta [15] and Zhang and Teng [8],
we alter a nonautonomous heroin epidemic model with
time delay to an autonomous heroin epidemic model. For
convenience, we replace 𝑈

1
and 𝑈

2
by 𝑈 and 𝑉, respectively.

Thus, we obtain the following continuous heroin epidemic
model with a distributed time delay:

̇𝑆 (𝑡) = 𝜆 − 𝛽
1
(𝑈) 𝑆 (𝑡) ∫

ℎ

0

𝑈 (𝑡 − 𝑠) 𝑑𝜂 (𝑠)

− 𝜇
1
𝑆 (𝑡) + 𝜉

1
𝑈 (𝑡) + 𝜉

2
𝑉 (𝑡) ,
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�̇� (𝑡) = 𝛽
1
(𝑈) 𝑆 (𝑡) ∫

ℎ

0

𝑈 (𝑡 − 𝑠) 𝑑𝜂 (𝑠)

+ 𝛽
3
𝑈 (𝑡) 𝑉 (𝑡) − (𝜇

2
+ 𝑃 + 𝜉

1
) 𝑈 (𝑡) ,

�̇� (𝑡) = 𝑃𝑈 (𝑡) − 𝛽
3
𝑈 (𝑡) 𝑉 (𝑡) − (𝜇

3
+ 𝜉
2
) 𝑉 (𝑡) ,

(1)

where 𝑆(𝑡), 𝑈(𝑡), and 𝑉(𝑡) represent the number of sus-
ceptible, heroin users not in treatment, and heroin users in
treatment, respectively. We assume that the time taken to
become heroin user is 𝑠. The function 𝜂(𝑠) : [0, ℎ] →

[0,∞) is nondecreasing and has bounded variation such that
∫
ℎ

0
𝜂(𝑠)𝑑𝑠 = 𝜂(ℎ) − 𝜂(0) = 1.
For understanding more realistic phenomenon of heroin,

a little complicated epidemic model is helpful. By applying
Micken’s nonstandard discretization method [17] to con-
tinuous heroin epidemics model with time delay (1), we
derive the following discretized heroin epidemic model with
a distributed time delay:

𝑆
𝑛+1

− 𝑆
𝑛
= 𝜆 − 𝛽

1
(𝑈
𝑛
) 𝑆
𝑛+1

ℎ

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘

− 𝜇
1
𝑆
𝑛+1

+ 𝜉
1
𝑈
𝑛+1

+ 𝜉
2
𝑉
𝑛+1

,

𝑈
𝑛+1

− 𝑈
𝑛
= 𝛽
1
(𝑈
𝑛
) 𝑆
𝑛+1

ℎ

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘

+ 𝛽
3
𝑈
𝑛+1

𝑉
𝑛+1

− (𝜇
2
+ 𝑃 + 𝜉

1
) 𝑈
𝑛+1

,

𝑉
𝑛+1

− 𝑉
𝑛
= 𝑃𝑈
𝑛+1

− 𝛽
3
𝑈
𝑛+1

𝑉
𝑛+1

− (𝜇
3
+ 𝜉
2
) 𝑉
𝑛+1

,

(2)

where 𝑆
𝑛
is the susceptible class, 𝑈

𝑛
is the class of heroin

users not in treatment, and 𝑉
𝑛
is the class of heroin users

in treatment at 𝑛th step. Since the sufficient condition can
be obtained, independently of the choice of a time step-size,
we let the time step-size be one for the sake of simplicity.
The nonnegative constants 𝜇

1
, 𝜇
2
, and 𝜇

3
denote the death

rate of the susceptible, heroin users not in treatment, and
heroin users in treatment class, respectively. Throughout
the paper, it is biologically natural to assume that 𝜇

1
≤

min{𝜇
2
, 𝜇
3
}. The constant 𝜆 > 0 denotes the recruitment

rate of susceptible population from the general population.
Constant 𝑃 > 0 is the proportion of heroin users who
enter the treatment class. The individuals in treatment who
stop using heroin are susceptible at a constant rate 𝜉

2
≥ 0.

Constant 𝛽
3
represents the transmission rate from heroin

users in treatment to untreated heroin users. 𝛽
1
(𝑈
𝑛
) is the

probability per unit time and the transmission is used with
the form 𝛽

1
(𝑈
𝑛
)𝑆
𝑛+1

∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘
, which includes various

delays. By a natural biologicalmeaning, we assume that𝛽
1
(𝑈)

is a positive function and that there exists a constant 𝑈
𝛽
> 0

such that 𝛽
1
(𝑈) is nondecreasing on the interval [0, 𝑈

𝛽
]. The

integer ℎ ≥ 0 is the time delay. The sequence 𝜂
𝑘
: −∞ < 𝜂

𝑘
<

+∞ (𝑘 = 0, 1, . . . , ℎ) is nondecreasing and has bounded.

The initial conditions of the system (2) are given by

𝑆
𝑛
= 𝜓
(1)

𝑛
, 𝑈

𝑛
= 𝜓
(2)

𝑛
, 𝑉

𝑛
= 𝜓
(3)

𝑛
,

for 𝑛 = −ℎ, −ℎ + 1, . . . , 0,

(3)

where 𝜓
(𝑖)

𝑛
≥ 0 (𝑛 = −ℎ, −ℎ + 1, . . . , 0, 𝑖 = 1, 2, 3). Again, by

biological meaning, we further assume that 𝜓(𝑖)
0

> 0 for all
𝑖 = 1, 2, 3.

The paper is organized as follows. In Section 2, we prove
the positivity and boundedness of the solution of system (2).
In Section 3, we deal with the global asymptotic stability of the
heroin-using free equilibrium. In Section 4, we consider the
permanence of the discrete epidemic model applying Wang’s
technique. In the discretized epidemic model, sufficient
condition for global asymptotic stability and permanence are
the same as for the original continuous epidemic model. We
give some numerical examples and conclusion in Sections 5
and 6.

2. Basic Properties

For system (2), the heroin-using free equilibrium is given by

𝐸
0
= (𝑆
0
, 0, 0) , 𝑆

0
=

𝜆

𝜇
1

. (4)

Define a positive constant 𝐴 ≡ ∑
ℎ

𝑘=0
𝜂
𝑘
. The stability of 𝐸0

is studied by using the next generation method in [7]. The
associated matrix 𝐹 (of the new heroin-using terms) and the
M-matrix 𝑉 (of the remaining transfer terms) are given as
follows, respectively:

𝐹 = (

𝛽
1
(0) 𝜆𝐴

𝜇
1

0

0 0

) , 𝑉 = (
𝜇
2
+ 𝑃 + 𝜉

1
0

−𝑃 𝜇
3
+ 𝜉
2

) .

(5)

Clearly, 𝐹 is nonnegative, 𝑉 is a nonsingular M-matrix, and
𝑉 − 𝐹 has 𝑍 sign pattern. The associated basic reproduction
number, denoted by𝑅

0
, is then given by𝑅

0
= 𝜌(𝐹𝑉

−1
), where

𝜌 is the spectral radius of 𝐹𝑉−1. It follows that

𝑅
0
=

𝛽
1
(0) 𝜆𝐴

𝜇
1
(𝜇
2
+ 𝑃 + 𝜉

1
)
. (6)

Now, we will consider the positivity and boundedness
of solution to system (2). For most continuous epidemic
models, positivity of the solution is clear, but, for system (2),
the positivity of the sequences 𝑆

𝑛
, 𝑈
𝑛
, and 𝑉

𝑛
holds in some

condition.
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Lemma 1. Let (𝑆
𝑛
, 𝑈
𝑛
, 𝑉
𝑛
) be any solution of system (2) with

initial condition (3); then (𝑆
𝑛
, 𝑈
𝑛
, 𝑉
𝑛
) is positive for any 𝑛 ∈ 𝑁

and 𝑉
0
< 𝑃(1 + 𝜇

3
+ 𝜉
2
)/𝛽
3
.

Proof. Let (𝑆
𝑛
, 𝑈
𝑛
, 𝑉
𝑛
) be any solution of system (2) with

initial condition (3). It is evident that system (2) is equivalent
to the following iteration system:

𝑈
𝑛+1

=
𝛽
1
(𝑈
𝑛
) 𝑆
𝑛+1

∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘
+ 𝑈
𝑛

1 − 𝛽
3
𝑉
𝑛+1

+ 𝜇
2
+ 𝑃 + 𝜉

1

,

𝑉
𝑛+1

=
𝑉
𝑛
+ 𝑃𝑈
𝑛+1

1 + 𝛽
3
𝑈
𝑛+1

+ 𝜇
3
+ 𝜉
2

,

𝑆
𝑛+1

=
𝜆 + 𝑆
𝑛
+ 𝜉
1
𝑈
𝑛+1

+ 𝜉
2
𝑉
𝑛+1

1 + 𝛽
1
(𝑈
𝑛
)∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘
+ 𝜇
1

.

(7)

In the following, we will use the induction to prove the
positivity of solution. When 𝑛 = 0, we have

𝑈
1
=

𝛽
1
(𝑈
0
) 𝑆
1
∑
ℎ

𝑘=0
𝑈
−𝑘
𝜂
𝑘
+ 𝑈
0

1 − 𝛽
3
𝑉
1
+ 𝜇
2
+ 𝑃 + 𝜉

2

, (8)

𝑉
1
=

𝑉
0
+ 𝑃𝑈
1

1 + 𝛽
3
𝑈
1
+ 𝜇
3
+ 𝜉
2

, (9)

𝑆
1
=

𝜆 + 𝑆
0
+ 𝜉
1
𝑈
1
+ 𝜉
2
𝑉
1

1 + 𝛽
1
(𝑈
0
)∑
ℎ

𝑘=0
𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1

. (10)

From (8)–(10), we see that, as long as 𝑈
1
is obtained, 𝑉

1
and

𝑆
1
will be obtained too.
If 𝑈
1
> 0, from (9), we directly obtain 𝑉

1
> 0 and, from

(10), we further obtain that 𝑆
1
> 0. Furthermore, we also have

𝑁
1
= 𝑆
1
+ 𝑈
1
+ 𝑉
1
> 0.

Let 𝑥 = 𝑈
1
; then, from (8)–(10), we see that 𝑥 satisfies the

following equation:

𝜓 (𝑥) = 𝑥 − ((1 + 𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1
)𝑈
0

+𝛽
1

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
𝑊
1
(𝑥))

× ((1 + 𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1
)𝑊
2
(𝑥))

−1

,

(11)

where

𝑊
1
(𝑥) = 𝜆 + 𝑆

0
+ 𝜉
1
𝑥 + 𝜉
2
𝑉
1
,

𝑊
2
(𝑥) = 1 + 𝜇

2
+ 𝑃 + 𝜉

1
− 𝛽
3
𝑉
1
,

𝑉
1
=

𝑉
0
+ 𝑃𝑥

1 + 𝛽
3
𝑥 + 𝜇
3
+ 𝜉
2

.

(12)

Substituting 𝑉
1
in𝑊
2
(𝑥) gets

𝑊
2
(𝑥) = 1 + 𝜇

2
+ 𝜉
1
+

𝑃 (1 + 𝜇
3
+ 𝜉
2
) − 𝛽
3
𝑉
0

1 + 𝜇
3
+ 𝜉
2
+ 𝛽
3
𝑥

. (13)

Since 𝑉
0
< 𝑃(1 + 𝜇

3
+ 𝜉
2
)/𝛽
3
, we have

𝑊
2
(0) = 1 + 𝜇

2
+ 𝑃 + 𝜉

1
−

𝛽
3
𝑉
0

1 + 𝜇
3
+ 𝜉
2

> 0, (14)

and because of𝑊
1
(0) = 𝜆 + 𝑆

0
+ 𝜉
2
𝑉
0
/(1 + 𝜇

3
+ 𝜉
2
) > 0, thus

𝜓 (0) = −((1 + 𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1
)𝑈
0

+𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
𝑊
1 (0))

× ((1 + 𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1
)𝑊
2 (0))

−1

< 0.

(15)

Substituting𝑊
1
and𝑊

2
in 𝜓(𝑥) yields

𝜓 (𝑥) =
𝑎𝑥
2
+ 𝑏𝑥 − 𝑐

(1 + 𝛽
1
(𝑈
0
)∑
ℎ

𝑘=0
𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1
) (𝑚𝑥 + 𝑛)

. (16)

Here, constants 𝑎, 𝑏, 𝑐,𝑚, and 𝑛 are as follows:

𝑎 = (1 + 𝜇
2
)(1 + 𝛽

1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1
)+𝜉
1
(1+𝜇
1
) > 0,

𝑏 = (1 + 𝜇
3
+ 𝜉
2
) (1 + 𝜇

1
) (1 + 𝜇

2
+ 𝑃 + 𝜉

1
)

+ (1 + 𝜇
1
)(𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
+ 𝛽
3
𝑆
0
− 𝛽
3
𝑁
0
)

+ 𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
𝑃 (1 + 𝜇

3
)

− 𝛽
3
𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
(𝜆 + 𝑁

0
) ,

𝑐 = 𝛽
1
(𝑈
0
)

ℎ

∑

𝑘=0

𝑈
−𝑘
𝜂
𝑘
[(1 + 𝜇

3
+ 𝜉
2
) (𝜆 + 𝑁

0
) − (1 + 𝜇

3
) 𝑉
0
]

− 𝑈
0
(1 + 𝜇

1
) 𝜉
1
,

𝑚 = 𝛽
3
(1 + 𝜇

2
+ 𝜉
1
) > 0,

𝑛 = (1 + 𝜇
2
+ 𝑃 + 𝜉

1
) (1 + 𝜇

3
+ 𝜉
2
) − 𝛽
3
𝑉
0
> 0.

(17)
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We take the limit on both sides of the above equation:

lim
𝑥→+∞

𝜓 (𝑥)

= lim
𝑥→+∞

𝑎𝑥
2
+ 𝑏𝑥 − 𝑐

(1 + 𝛽
1
(𝑈
0
)∑
ℎ

𝑘=0
𝑈
−𝑘
𝜂
𝑘
+ 𝜇
1
) (𝑚𝑥 + 𝑛)

= +∞;

(18)

this means that 𝜓(𝑥) = 0 has at least one positive solution
𝑥 ∈ (0, +∞). So, we have𝑈

1
= 𝑥 > 0.Therefore, the positivity

of 𝑆
1
> 0,𝑈

1
> 0, and 𝑉

1
> 0 is finally obtained. When 𝑛 = 2,

we have

𝑈
2
=

𝛽
1
𝑆
2
∑
ℎ

𝑘=0
𝑈
1−𝑘

𝜂
𝑘
+ 𝑈
1

1 − 𝛽
3
𝑉
2
+ 𝜇
2
+ 𝑃 + 𝜉

1

,

𝑉
2
=

𝑉
1
+ 𝑃𝑈
2

1 + 𝛽
3
𝑈
2
+ 𝜇
3
+ 𝜉
2

,

𝑆
2
=

𝜆 + 𝑆
1
+ 𝜉
1
𝑈
2
+ 𝜉
2
𝑉
2

1 + 𝛽
1
∑
ℎ

𝑘=0
𝑈
1−𝑘

𝜂
𝑘
+ 𝜇
1

,

(19)

a similar argument as in the above for 𝑈
1
, 𝑉
1
, and 𝑆

1
; we also

can obtain that 𝑈
2
> 0, 𝑉

2
> 0, and 𝑆

2
> 0. Lastly, by using

the induction, we can finally obtain that 𝑆
𝑛
> 0, 𝑈

𝑛
> 0, and

𝑉
𝑛
> 0, for all 𝑛 > 0.
Now, we define the total population as𝑁

𝑛
= 𝑆
𝑛
+𝑈
𝑛
+𝑉
𝑛
.

Then, from system (2), we know that

𝑁
𝑛+1

− 𝑁
𝑛
= 𝜆 − 𝜇

1
𝑆
𝑛+1

− 𝜇
2
𝑈
𝑛+1

− 𝜇
3
𝑉
𝑛+1

. (20)

Notice the assumption that 𝜇
1
≤ min(𝜇

2
, 𝜇
3
); we obtain

𝑁
𝑛
≤

𝜆 + 𝑁
𝑛−1

1 + 𝜇
1

≤
𝜆

1 + 𝜇
1

× {1 +
1

1 + 𝜇
1

+ ⋅ ⋅ ⋅ + (
1

1 + 𝜇
1

)

𝑛−1

}

+ (
1

1 + 𝜇
1

)

𝑛

𝑁
0

=
𝜆

𝜇
1

{1 − (
1

1 + 𝜇
1

)

𝑛

} + (
1

1 + 𝜇
1

)

𝑛

𝑁
0

≤ max{ 𝜆

𝜇
1

, 𝑁
0
} .

(21)

If 𝜆/𝜇
1
≥ 𝑁
0
, it is easy to see that𝑁

𝑛
≤ 𝜆/𝜇

1
= 𝑆
0, for all large

𝑛. If 𝜆/𝜇
1
< 𝑁
0
, from right hand side of system (2), we obtain

𝑁
1
≤

𝜆 + 𝑁
0

1 + 𝜇
1

< 𝑁
0
. (22)

Hence, we have 𝑁
1
< 𝑁
0
and there exists 𝑖 ∈ 𝑁 such that

𝑁
𝑖
≤ 𝜆/𝜇

1
= 𝑆
0. Then, we may use this 𝑁

𝑖
as a starting value

instead of𝑁
0
.This argument leads to the following result.

Lemma 2. For any solution (𝑆
𝑛
, 𝑈
𝑛
, 𝑉
𝑛
) of system (2), the total

population𝑁
𝑛
= 𝑆
𝑛
+ 𝑈
𝑛
+ 𝑉
𝑛
satisfies

lim sup
𝑛→+∞

𝑁
𝑛
≤ 𝑆
0
=

𝜆

𝜇
1

; (23)

thus (𝑆
𝑛
, 𝑈
𝑛
, 𝑉
𝑛
) is ultimately bounded.

Let Ω = {(𝑆
𝑛
, 𝑈
𝑛
, 𝑉
𝑛
) : 𝑆
𝑛
, 𝑈
𝑛
, 𝑉
𝑛
≥ 0, 𝑆

𝑛
+ 𝑈
𝑛
+ 𝑉
𝑛
≤

𝜆/𝜇
1
}; then Ω is the positive invariant set to the solution of

system (2).
In the following, we will examine the existence of

endemic equilibrium for a special case of system (2).

Lemma 3. Assume that 𝛽
1
(𝑈) = 𝛽

1
> 0 is a constant. If

𝑅
0

> 1, system (2) admits a heroin-using equilibrium 𝐸
∗

=

(𝑆
∗
, 𝑈
∗
, 𝑉
∗
) when 𝑉 < 𝑃/𝛽

3
, where 𝐸

∗ satisfies following
equality:

𝜆 − 𝐴𝛽
1
𝑆
∗
𝑈
∗
− 𝜇
1
𝑆
∗
+ 𝜉
1
𝑈
∗
+ 𝜉
2
𝑉
∗
= 0,

𝐴𝛽
1
𝑆
∗
𝑈
∗
+ 𝛽
3
𝑈
∗
𝑉
∗
− (𝜇
2
+ 𝑃 + 𝜉

1
) 𝑈
∗
= 0,

𝑃𝑈
∗
− 𝛽
3
𝑈
∗
𝑉
∗
− (𝜇
3
+ 𝜉
2
) 𝑉
∗
= 0.

(24)

Proof. Consider the following equation:

𝜆 − 𝐴𝛽
1
𝑆𝑈 − 𝜇

1
𝑆 + 𝜉
1
𝑈 + 𝜉
2
𝑉 = 0,

𝐴𝛽
1
𝑆𝑈 + 𝛽

3
𝑈𝑉 − (𝜇

2
+ 𝑃 + 𝜉

1
) 𝑈 = 0,

𝑃𝑈 − 𝛽
3
𝑈𝑉 − (𝜇

3
+ 𝜉
2
) 𝑉 = 0.

(25)

From the first equation and the second equation of the system
(25), we have

𝜆 − 𝜇
1
𝑆 + 𝜉
2
𝑉 + 𝛽

3
𝑈𝑉 − (𝜇

2
+ 𝑃)𝑈 = 0. (26)

From the second equation and the third equation of the
system (25), we obtain

𝐴𝛽
1
𝑆𝑈 − (𝜇

2
+ 𝜉
1
) 𝑈 − (𝜇

3
+ 𝜉
2
) 𝑉 = 0; (27)

thus,

𝑈 =
(𝜇
3
+ 𝜉
2
) 𝑉

𝐴𝛽
1
𝑆 − 𝜇
2
+ 𝜉
1

. (28)

Since𝑈 ̸= 0, from the second equation of the system, we have

𝑆 =
𝜇
2
+ 𝑃 + 𝜉

1
− 𝛽
3
𝑉

𝐴𝛽
1

. (29)
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Substituting 𝑆 in (28), we obtain

𝑈 =
(𝜇
3
+ 𝜉
2
) 𝑉

𝑃 − 𝛽
3
𝑉

. (30)

Substituting 𝑈 and 𝑆 in (26) yields a quadratic equation of 𝑉
as follows:

𝐹 (𝑉) = 𝑎𝑉
2
+ 𝑏𝑉 + 𝑐 = 0, (31)

where the coefficients are given by

𝑎 = 𝜇
1
𝛽
2

3
− 𝐴𝛽
1
𝛽
3
𝜇
3
, 𝑐 = 𝜇

1
𝑃 (𝜇
2
+ 𝑃 + 𝜉

1
) − 𝜆𝐴𝛽

1
𝑃,

𝑏 = 𝜆𝐴𝛽
1
𝛽
3
− 𝜇
1
𝛽
3
(𝜇
2
+ 𝜉
1
) + 𝐴𝛽

1
𝜇
3
(𝜇
2
+ 𝑃) + 𝐴𝛽

1
𝜇
2
𝜉
2
.

(32)

Since 𝑅
0
= 𝜆𝐴𝛽

1
/𝜇
1
(𝜇
2
+ 𝑃 + 𝜉

1
) > 1, then it is easy to see

that 𝑐 < 0 and 𝑏 > 0. According to Descartes’ rule of signs, if
𝑎 ≥ 0, then 𝐹(𝑉) = 0 has a positive solution; if 𝑎 < 0, then
𝐹(𝑉) = 0 has two positive solutions. From the expression of
𝑆 and 𝑈, we note that 𝑉 < 𝑃/𝛽

3
. Since

𝐹 (0) = 𝑐 < 0, 𝐹 (
𝑃

𝛽
3

) =
𝐴𝛽
1
𝑃𝜇
2
(𝜇
3
+ 𝜉
2
)

𝛽
3

> 0. (33)

This means that 𝐹(𝑉) = 0 has a unique positive solution
𝑉
∗

∈ (0, 𝑃/𝛽
3
). Therefore, there exists a unique positive

solution (𝑆
∗
, 𝑈
∗
, 𝑉
∗
) of system (2).

For the local stability of the equilibria, we refer to
Theorem 2 in [7] and have the following results.

Theorem4. Assume that𝛽
1
(𝑈) = 𝛽

1
,𝛽
1
is a positive constant.

The heroin-using free equilibrium 𝐸
0
= (𝑆
0
, 0, 0) of system (2)

is locally asymptotically stable if 𝑅
0
< 1 and unstable if 𝑅

0
> 1.

3. Global Asymptotic Stability of the Heroin-
Using Free Equilibrium

In this section, we still assume that 𝛽
1
(𝑈) = 𝛽

1
> 0, and

obtain a sufficient condition for global asymptotic stability of
the heroin-using free equilibrium 𝐸

0 of system (2).
Using a Lyapunov function similar to that in [11], we can

easily prove the global asymptotic stability of the heroin-
using free equilibrium 𝐸

0.

Theorem 5. If 𝑅
0
< 1, the drug-using free equilibrium 𝐸

0 of
system (2) is globally asymptotically stable.

Proof. Let us take the following Lyapunov function:

𝐻
𝑛
= 𝑈
𝑛
+ 𝑐
1
𝑉
𝑛
+ 𝑐
2

ℎ

∑

𝑘=0

(

𝑛

∑

𝑙=𝑛−𝑘

𝑈
𝑙
)𝜂
𝑘
+

𝑐
3

2
(𝑆
𝑛+1

− 𝑆
0
)
2

,

(34)

where 𝑐
𝑖
> 0 (𝑖 = 1, 2, 3) are the constants to be defined later

and 𝑆
0
= 𝜆/𝜇

1
. Using system (2), the difference of𝐻

𝑛
satisfies

Δ𝐻 = 𝐻
𝑛+1

− 𝐻
𝑛

= 𝑈
𝑛+1

− 𝑈
𝑛
+ 𝑐
1
(𝑉
𝑛+1

− 𝑉
𝑛
)

+ 𝑐
2

ℎ

∑

𝑘=0

(𝑈
𝑛+1

𝜂
𝑘
− 𝑈
𝑛−𝑘

𝜂
𝑘
)

+
𝑐
3

2
{(𝑆
𝑛+1

− 𝑆
0
)
2

− (𝑆
𝑛
− 𝑆
0
)
2

} .

(35)

From 𝑆
𝑛
≤ 𝑁
𝑛
≤ 𝑆
0, for all 𝑛 ≥ 0, we have

Δ𝐻 ≤

ℎ

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘
{𝛽
1
𝑆
𝑛+1

− 𝑐
2
− 𝑐
3
𝛽
1
𝑆
𝑛+1

(𝑆
𝑛+1

− 𝑆
0
)}

+ (1 − 𝑐
1
) 𝛽
3
𝑈
𝑛+1

𝑉
𝑛+1

+ [𝑐
2
𝐴 − 𝜇

2
− 𝑃 − 𝜉

1
+ 𝑐
1
𝑃 + 𝑐
3
𝜉
1
(𝑆
𝑛+1

− 𝑆
0
)]𝑈
𝑛+1

− [𝑐
1
(𝜇
3
+ 𝜉
2
) − 𝑐
3
𝜉
2
(𝑆
𝑛+1

− 𝑆
0
)]𝑉
𝑛+1

− 𝑐
3
𝜇
1
(𝑆
𝑛+1

− 𝑆
0
)
2

≤

𝑛

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘
{𝛽
1
𝑆
𝑛+1

− 𝑐
2
− 𝑐
3
𝛽
1
𝑆
𝑛+1

(𝑆
𝑛+1

− 𝑆
0
)}

+ (1 − 𝑐
1
) 𝛽
3
𝑈
𝑛+1

𝑉
𝑛+1

+ [𝑐
2
𝐴 − 𝜇

2
− 𝑃 − 𝜉

1
+ 𝑐
1
𝑃]𝑈
𝑛+1

− 𝑐
1
(𝜇
3
+ 𝜉
2
) 𝑉
𝑛+1

− 𝑐
3
𝜇
1
(𝑆
𝑛+1

− 𝑆
0
)
2

.

(36)

Let us choose 𝑐
𝑖
> 0 (𝑖 = 1, 2, 3) such that these constants

satisfy the following inequalities:

𝛽
1
𝑆
𝑛+1

− 𝑐
2
− 𝑐
3
𝛽
1
𝑆
𝑛+1

(𝑆
𝑛+1

− 𝑆
0
) < 0, (37)

1 − 𝑐
1
< 0, (38)

𝑐
1
𝑃 + 𝑐
2
𝐴 < 𝜇

2
+ 𝑃 + 𝜉

1
. (39)

From (37), we have 𝑐
3
𝛽
1
𝑆
2

𝑛+1
+(𝑐
3
𝛽
1
𝑆
0
−𝛽
1
)𝑆
𝑛+1

+𝑐
2
> 0; since

𝑆
𝑛+1

> 0, then the following inequality is true:

𝛽
1
(1 + 𝑐

3
𝑆
0
)
2

< 4𝑐
2
𝑐
3
; (40)

that is,

𝛽
1
(𝑆
0
)
2

𝑐
2

3
+ (2𝛽

1
𝑆
0
− 4𝑐
2
) 𝑐
3
+ 𝛽
1
< 0. (41)

Since 𝑅
0
< 1, which implies that 𝛽

1
𝐴𝑆
0
< 𝜇
2
+ 𝑃 + 𝜉

1
, we can

choose 𝑐
2
= 𝛽
1
𝑆
0
+𝜖; here, 𝜖 (0 < 𝜖 < (𝜇

2
+𝜉
1
−𝐴𝛽
1
𝑆
0
)/𝐴) is a

sufficiently small positive number such that𝛽
1
𝐴𝑆
0
+𝐴𝜖 < 𝜇

2
+

(1−𝑐
1
)𝑃+𝜉
1
. Since 𝛽

1
𝑆
0
−2𝑐
2
< 0 and (𝛽

1
𝑆
0
−2𝑐
2
)
2
> (𝛽
1
𝑆
0
)
2,

we can choose 𝑐
3
> 0 to satisfy (41). We may further choose

𝑐
1
> 1 to satisfy (38).Therefore, Δ𝐻 is negative definite and is

equal to zero if and only if 𝑆
𝑛+1

= 𝑆
0, 𝑈
𝑛+1

= 0, and 𝑉
𝑛+1

= 0.
The proof is complete.
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4. Permanence of System (2)
The system (2) is said to be permanent if there are positive
constants𝑚 and𝑀 such that

𝑚 ≤ lim inf
𝑛→∞

𝑆
𝑛
≤ lim sup
𝑛→∞

𝑆
𝑛
≤ 𝑀 (42)

hold for any sequence 𝑆
𝑛
of the system (2), and the same

inequalities hold for 𝑈
𝑛
and 𝑉

𝑛
. For each class 𝑆

𝑛
, 𝑈
𝑛
, and 𝑉

𝑛
,

𝑚 and𝑀 are independent of initial conditions.
Following the method used byWang in [6], we will prove

the permanence of system (2) for the general case; that is,
assume that 𝛽

1
(𝑈) is related to 𝑈.

Theorem 6. If 𝑅
0
> 1, then system (2) is permanent for any

initial condition (3).

Proof. Firstly, from system (2) and Lemmas 1 and 2, for any
𝜖
0
> 0, there exists sufficiently large 𝑛

0
> 0 such that 𝑈

𝑛
≤

𝜆/𝜇
1
+ 𝜖
0
as 𝑛 ≥ 𝑛

0
+ ℎ. Then, we have

𝑆
𝑛+1

=
𝜆 + 𝑆
𝑛
+ 𝜉
1
𝑈
𝑛+1

+ 𝜉
2
𝑉
𝑛+1

1 + 𝛽
1
(𝑈
𝑛
)∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘
+ 𝜇
1

>
𝜆

1 + 𝜇
1
+ 𝛽
1
(𝑈
𝑛
)∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘

.

(43)

Let 𝛽𝑀
1
(𝜖
0
) = max

𝑈∈[0,𝜆/𝜇
1
+𝜖
0
]
𝛽
1
(𝑈). Thus, we have

𝑆
𝑛+1

≥
𝜆

1 + 𝜇
1
+ 𝛽
𝑀

1
∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘

≥
𝜆

1 + 𝜇
1
+ 𝛽
𝑀

1
(𝜆/𝜇
1
+ 𝜖
0
) 𝐴

.

(44)

Notice that 𝜖
0
can be arbitrarily small. Then, we have

lim inf
𝑛→+∞

𝑆
𝑛+1

≥ 𝑚
𝑠
=

𝜆

1 + 𝜇
1
+ 𝛽
𝑀

1
(𝐴𝜆/𝜇

1
)
,

𝛽
𝑀

1
= max
𝑈∈[0,𝜆/𝜇

1
]

𝛽
1
(𝑈) .

(45)

Next, let us consider the positive sequences 𝑆
𝑛
and 𝑈

𝑛
of (2).

According to these sequences, we define

𝐻
𝑛
= 𝑈
𝑛
+

𝜇
2
+ 𝑃 + 𝜉

1

𝐴

ℎ

∑

𝑘=0

(

𝑛

∑

𝑙=𝑛−𝑘

𝑈
𝑙
)𝜂
𝑘
. (46)

Then, for 𝑛 ≥ 0, we obtain

Δ𝐻 = 𝐻
𝑛+1

− 𝐻
𝑛

= 𝑈
𝑛+1

− 𝑈
𝑛
+

𝜇
2
+ 𝑃 + 𝜉

1

𝐴

ℎ

∑

𝑘=0

(𝑈
𝑛+1

𝜂
𝑘
− 𝑈
𝑛−𝑘

𝜂
𝑘
)

= (𝛽
1
(𝑈
𝑛
) 𝑆
𝑛+1

−
𝜇
2
+ 𝑃 + 𝜉

1

𝐴
)

ℎ

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘
+ 𝛽
3
𝑈
𝑛+1

𝑉
𝑛+1

.

(47)

Since𝑅
0
= 𝛽
1
(0)𝐴𝜆/𝜇

1
(𝜇
2
+𝑃+𝜉

1
) > 1, there exist 0 < 𝛼 < 𝑈

𝛽

and 𝜌 > 0 such that

𝐴𝛽
1 (0)

𝜇
2
+ 𝑃 + 𝜉

1

×
𝜆

𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

× {1 − (
1

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

)

𝜌ℎ

} > 1;

(48)

note that

𝑆
Δ
=

𝜆

𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

{1 − (
1

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

)

𝜌ℎ

} . (49)

We claim that it is impossible that 𝑈
𝑛
≤ 𝛼 holds for all

𝑛 ≥ 𝑛
1
≥ [𝜌ℎ]. The function [𝑥] gives the smallest integer not

less than 𝑥. Suppose the contrary, for 𝑛 ≥ 𝑛
1
+ ℎ. Consider

𝑆
𝑛+1

=
𝜆 + 𝑆
𝑛
+ 𝜉
1
𝑈
𝑛+1

+ 𝜉
2
𝑉
𝑛+1

1 + 𝜇
1
+ 𝛽
1
(𝑈
𝑛
)∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘

>
𝜆 + 𝑆
𝑛

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

>
𝜆

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

{1 +
1

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

+(
1

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

)

𝑛−𝑛
1
−ℎ−1

}

+ (
1

1 + 𝜇
1
+ 𝛼𝛽
1 (𝛼) 𝐴

)

𝑛−𝑛
1
−ℎ

𝑆
𝑛
1
+ℎ+1

.

(50)

From Lemma 1, 𝑆
𝑛
satisfies

𝑆
𝑛+1

>
𝜆

𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

{1 − (
1

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

)

𝑛−𝑛
1
−ℎ

} ,

(51)

and we have that, for 𝑛 ≥ 𝑛
1
+ ℎ + [𝜌ℎ], we have

𝑆
𝑛+1

>
𝜆

𝜇
1
+ 𝛼𝛽
1 (𝛼) 𝐴

{1 − (
1

1 + 𝜇
1
+ 𝛼𝛽
1 (𝛼) 𝐴

)

[𝜌ℎ]

}

≥
𝜆

𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

{1 − (
1

1 + 𝜇
1
+ 𝛼𝛽
1
(𝛼) 𝐴

)

𝜌ℎ

} = 𝑆
Δ
.

(52)

Hence, for 𝑛 ≥ 𝑛
1
+ ℎ + [𝜌ℎ], we have

Δ𝐻 ≥ (𝛽
1
(𝑈
𝑛
) 𝑆
𝑛+1

−
𝜇
2
+ 𝑃 + 𝜉

1

𝐴
)

ℎ

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘

> (𝛽
1
(0) 𝑆
Δ
−

𝜇
2
+ 𝑃 + 𝜉

1

𝐴
)

ℎ

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘

=
𝜇
2
+ 𝑃 + 𝜉

1

𝐴
(

𝐴𝛽
1
(0) 𝑆
Δ

𝜇
2
+ 𝑃 + 𝜉

1

− 1)

ℎ

∑

𝑘=0

𝑈
𝑛−𝑘

𝜂
𝑘
.

(53)
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Let 𝜖 = min
𝜃
{𝑈
𝑛
1
+[𝜌ℎ]+ℎ+𝜃

; 𝜃 = −ℎ, −ℎ+1, . . . , 0}. Now, we will
show that 𝑈

𝑛
≥ 𝜖 for all 𝑛 ≥ 𝑛

1
+ [𝜌ℎ] + ℎ. In fact, there is an

integer 𝑛 > 0 such that

𝑈
𝑛
≥ 𝜖, 𝑛

1
+ [𝜌ℎ] + ℎ ≤ 𝑛 ≤ 𝑛

1
+ [𝜌ℎ] + ℎ + 𝑛,

𝑈
𝑛+1

< 𝜖, 𝑛 = 𝑛
1
+ [𝜌ℎ] + ℎ + 𝑛.

(54)

However, for 𝑛 = 𝑛
1
+ [𝜌ℎ] + ℎ + 𝑛, we have

𝑈
𝑛+1

− 𝜖 =
𝛽
1
(𝑈
𝑛
) 𝑆
𝑛+1

∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘
+ 𝑈
𝑛

1 + 𝜇
2
+ 𝑃 + 𝜉

1
− 𝛽
3
𝑉
𝑛+1

− 𝜖

≥
𝛽
1
(𝑈
𝑛
) 𝑆
𝑛+1

∑
ℎ

𝑘=0
𝑈
𝑛−𝑘

𝜂
𝑘
+ 𝑈
𝑛

1 + 𝜇
2
+ 𝑃 + 𝜉

1

−
1 + 𝜇
2
+ 𝑃 + 𝜉

1

1 + 𝜇
2
+ 𝑃 + 𝜉

1

𝜖

≥
𝛽
1
(0) 𝑆
Δ
𝐴 − (𝜇

2
+ 𝑃 + 𝜉

1
)

1 + 𝜇
1
+ 𝑃 + 𝜉

1

𝜖

=
𝜇
2
+ 𝑃 + 𝜉

1

1 + 𝜇
2
+ 𝑝 + 𝜉

1

{
𝛽
1
(0) 𝑆
Δ
𝐴

𝜇
2
+ 𝑃 + 𝜉

1

− 1} 𝜖 > 0.

(55)

Which is a contradiction. Thus, 𝑈
𝑛
≥ 𝜖 for 𝑛 ≥ 𝑛

1
+ [𝜌ℎ] + ℎ.

Therefore, for 𝑛 ≥ 𝑛
1
+ [𝜌ℎ] + ℎ,

Δ𝐻 > (𝜇
2
+ 𝑃 + 𝜉

1
) {

𝐴𝛽
1 (0) 𝑆

Δ

𝜇
2
+ 𝑃 + 𝜉

1

− 1} 𝜖 > 0, (56)

which implies that 𝐻
𝑛

→ +∞ as 𝑛 → +∞. But, from
Lemma 2 and (46), there exists a sufficiently large integer
𝑛


1
> 0 such that, for 𝑛 > 𝑛



1
,

𝐻
𝑛
≤

𝜆

𝜇
1

+
𝜇
2
+ 𝑃 + 𝜉

1

𝐴

ℎ

∑

𝑘=0

(

𝑛

∑

𝑙=𝑛−𝑘

𝜆

𝜇
1

)𝜂
𝑘

≤
𝜆

𝜇
1

{1 + (𝜇
2
+ 𝑃 + 𝜉

1
) (ℎ + 1)} ,

(57)

which is a contradiction. Hence, the claim is proved.
In the rest, we only need to consider the following two

cases:

(i) 𝑈
𝑛
≥ 𝛼 for all large 𝑛.

(ii) 𝑈
𝑛
oscillates about 𝛼 for all large 𝑛.

We show that 𝑈
𝑛
≥ 𝑚
𝑢
for all large 𝑛, where 0 < 𝑚

𝑢
≤

𝛼, is a constant which will be given later. Clearly, we only
need to consider case (ii). Let positive integers 𝑛

1
and 𝑛

2
be

sufficiently large that 𝑈
𝑛
1

≥ 𝛼, 𝑈
𝑛
2

≥ 𝛼, and 𝑈
𝑛

< 𝛼, for
𝑛
1
< 𝑛 < 𝑛

2
.

If 𝑛
2
− 𝑛
1
< ℎ + [𝜌ℎ], since

𝑈
𝑛
=

𝛽
1
(𝑈
𝑛−1

) 𝑆
𝑛
∑
ℎ

𝑘=0
𝑈
𝑛−𝑘−1

𝜂
𝑘
+ 𝑈
𝑛−1

1 + 𝜇
2
+ 𝑃 + 𝜉

1
− 𝛽
3
𝑉
𝑛

≥
𝑈
𝑛−1

1 + 𝜇
2
+ 𝑃 + 𝜉

1

,

(58)

we have

𝑈
𝑛
≥ (

1

1 + 𝜇
2
+ 𝑃 + 𝜉

1

)

𝑛−𝑛
1

𝑈
𝑛
1

> (
1

1 + 𝜇
2
+ 𝑃 + 𝜉

1

)

𝑛
2
−𝑛
1

𝑈
𝑛
1

> 𝑚
𝑢
= (

1

1 + 𝜇
2
+ 𝑃 + 𝜉

1

)

ℎ+[𝜌ℎ]

𝛼.

(59)

Hence, 𝑈
𝑛
> 𝑚
𝑢
for 𝑛 ∈ [𝑛

1
, 𝑛
2
].

If 𝑛
2
− 𝑛
1
> ℎ + [𝜌ℎ], we can easily obtain that 𝑈

𝑛
> 𝑚
𝑢

for 𝑛 ∈ [𝑛
1
, 𝑛
1
+ℎ+ [𝜌ℎ]]. Assume that there exists an integer

𝑛 > 0 such that

𝑈
𝑛
≥ 𝑚
𝑢
, 𝑛

1
+ ℎ + [𝜌ℎ] ≤ 𝑛 ≤ 𝑛

1
+ ℎ + [𝜌ℎ] + 𝑛,

𝑈
𝑛+1

< 𝑚
𝑢
, 𝑛 = 𝑛

1
+ ℎ + [𝜌ℎ] + 𝑛.

(60)

However, for 𝑛 = 𝑛
1
+ ℎ + [𝜌ℎ] + 𝑛,

𝑈
𝑛+1

− 𝑚
𝑢
≥

𝜇
2
+ 𝑃 + 𝜉

1

1 + 𝜇
2
+ 𝑝 + 𝜉

1

{
𝛽
1 (0) 𝑆

Δ
𝐴

𝜇
2
+ 𝑃 + 𝜉

1

− 1}𝑚
𝑢
> 0.

(61)

This is a contradiction to the proposition that 𝑈
𝑛+1

<

𝑚
𝑢
. Therefore, 𝑈

𝑛
≥ 𝑚
𝑢
for 𝑛 ∈ [𝑛

1
, 𝑛
2
]. Since these

positive integers 𝑛
1
and 𝑛

2
are chosen in an arbitrary way,

we conclude that 𝑈
𝑛
≥ 𝑚
𝑢
for all large 𝑛 in case (ii). Hence,

lim inf
𝑛→∞

𝑈
𝑛
≥ 𝑚
𝑢
.

Note that, from that third equation of system (2), we have

lim inf
𝑛→∞

𝑉
𝑛
≥ 𝑚V =

𝑃

𝜇
3
+ 𝜉
2
+ 𝜆𝛽
3
/𝜇
1

𝑚
𝑢
=

𝑃

𝜇
3
+ 𝜉
2
+ 𝛽
3
𝑆0

𝑚
𝑢
.

(62)

From Lemma 2 and the discussion above, we have

𝑚
𝑠
≤ lim inf
𝑛→∞

𝑆
𝑛
≤ lim sup
𝑛→∞

𝑆
𝑛
≤ 𝑆
0
,

𝑚
𝑢
≤ lim inf
𝑛→∞

𝑈
𝑛
≤ lim sup
𝑛→∞

𝑈
𝑛
≤ 𝑆
0
,

𝑚V ≤ lim inf
𝑛→∞

𝑉
𝑛
≤ lim sup
𝑛→∞

𝑉
𝑛
≤ 𝑆
0
.

(63)

The proof is completed.
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5. Numerical Example

In order to confirm the validity of our results, we consider the
following heroin epidemic model with a discrete time delay:

𝑆
𝑛+1

− 𝑆
𝑛
= 𝜆 − 𝛽

1
𝑆
𝑛+1

𝑈
𝑛−ℎ

− 𝜇
1
𝑆
𝑛+1

+ 𝜉
1
𝑈
𝑛+1

+ 𝜉
2
𝑉
𝑛+1

,

𝑈
𝑛+1

− 𝑈
𝑛
= 𝛽
1
𝑆
𝑛+1

𝑈
𝑛−ℎ

+ 𝛽
3
𝑈
𝑛+1

𝑉
𝑛+1

− (𝜇
2
+ 𝑃 + 𝜉

1
) 𝑈
𝑛+1

,

𝑉
𝑛+1

− 𝑉
𝑛
= 𝑃𝑈
𝑛+1

− 𝛽
3
𝑈
𝑛+1

𝑉
𝑛+1

− (𝜇
3
+ 𝜉
2
) 𝑉
𝑛+1

.

(64)

Now, we present a numerical example. For the sake of
simplicity, we choose the parameters as 𝛽

1
= 0.9, 𝛽

3
= 0.8,

𝜆 = 2, 𝜇
1

= 0.1, 𝜇
2

= 0.2, 𝜇
3

= 0.1, 𝑃 = 0.4, 𝜉
1

= 0.1,
and 𝜉
2
= 0.2; we get 𝑅

0
= 25.7143 < 1. Figure 1 shows that

the disease free equilibrium 𝐸
0 of the system (64) is globally

asymptotically stable when 𝑅
0
< 1. Figure 2 shows that the

system (64) is permanent when 𝑅
0
> 1.

6. Conclusions

In this paper, we have modified the Samanta heroin epidemic
model into an autonomous heroin epidemic model with
distributed time delay. Further, we established a discretized
heroin epidemic model with time delay, sufficient conditions
have been obtained to ensure the global asymptotic stability
of heroin-using free equilibrium when 𝑅

0
≤ 1 and 𝛽

1
(𝑈)

is replaced by a positive constant. We also carried out
some discussion about the heroin-using equilibrium, but our
results are only restricted to the existence of this equilibrium
for 𝛽
1
(𝑈) = 𝛽

1
> 0, a special case of system (2). The stability

of heroin-using equilibrium is yet to be studied. As a main
result of this paper, we obtained the permanence of the system
(2). From the expression of 𝑅

0
= 𝛽
1
(0)𝜆𝐴/𝜇

1
(𝜇
2
+ 𝑃 + 𝜉

1
),

we see that a decrease in 𝛽
1
(transmission coefficient from

susceptible population) will cause a decrease of the same
proportion in 𝑅

0
. If the rate of migration or recruitment

is restricted into susceptible community, the spread of the
disease can also be kept under control by reducing 𝜆 and
thereby decreasing𝑅

0
.The spread of the heroin users can also

be controlled by educators, epidemiologists, and treatment
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providers to increase the values of 𝜉 (removal rate of heroin
users not in treatment who stop using heroin but are
susceptible) and 𝑃 (proportion of heroin users who enter
treatment) and thereby to decrease 𝑅

0
. This analysis tells

us that prevention is better than cure; efforts to increase
prevention are more effective in controlling the spread of
habitual drug use than efforts to increase the numbers of
individuals accessing treatment.
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