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The role of multiplicative noise in the synchronization of unidirectionally coupled ring with three nodes is studied. Based on
the theory of stochastic differential equations, we demonstrate that noise plays a positive role in complete synchronization. In
numerical simulations, the Lorenz system, Rössler like system, and Hindmarsh-Rose neuron model are employed to demonstrate
the correctness of our theoretical result.

1. Introduction

Synchronization is an omnipresent phenomenon in non-
linear systems wherein two or more systems coupled by a
suitable configuration or driven by external forcing adjust
one property of their motion to a common behavior [1, 2].
With the development of chaos synchronization, different
kinds of synchronization have been found, such as complete
synchronization [2–5], phase synchronization [6], lag syn-
chronization [7, 8], and generalized synchronization [9, 10].
The synchronization of nonlinear systems hasmany potential
applications in different areas, such as secure communication
[11, 12], biological systems [13, 14], chemical reactions [15],
and physical systems [16]. Due to the potential applications of
synchronization, some synchronization methods have been
proposed, such as active control [17], adaptive control [18],
sliding control [19], and integral observer [20].

Since noise is ubiquitous in real-world systems, the
synchronization of coupled systems is unavoidably affected
by different kinds of noise. Therefore, the role of noise in
synchronization is very important and has been extensively
studied. Intuitively, noise is random disturbance, which
should play a destroyed role in the synchronization of coupled

systems. However, some recent studies have shown that syn-
chronization can be induced by noise. Firstly, noise-induced
synchronization was found in periodic systems [21, 22]. With
the development of chaos synchronization, the phenomenon
of noise-induced synchronization was extended to chaotic
map [23]. The result in [23] has spurred a long-standing
dispute since it was found. Firstly, Pikovsky pointed out
that the result in [23] is not right, because the largest
Lyapunov exponent is positive [24]. Some other authors
argued that synchronization in [23] is caused by biased
noise. One explanation is that biased noise can move the
system into “convergence region,” so unbiased noise can not
induce synchronization [25–27]. However, some recent work
showed that some chaotic systems can be synchronized by
unbiased additive noise [28, 29]. With the extensive study of
noise’s effect on synchronization, the phenomenon of noise-
induced synchronization has been extended to generalized
synchronization [30, 31], phase synchronization [32, 33], and
lag synchronization [34]. However, the above studies mostly
concentrate on the case of additive noise, and most of results
are based on numerical simulations and experiments.

Recently, the study of noise’s effect on synchronization
is extended to multiplicative noise. In [35], the authors
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studied two coupled chaotic systems perturbed bymultiplica-
tive noise. Based on the invariance principle of stochastic
differential equations, the sufficient condition ensuring the
complete synchronization was established. Sooner, above
method was generalized to coupled chaotic systems with
multiple time delays [36] and linear generalized synchro-
nization [37]. In [38], the sufficient conditions of complete
synchronization of linear stochastic coupled network under
adaptive control were established. However, the role of
noise in synchronization was not discussed. In [39], the
positive role of multiplicative noise in synchronization was
revealed in two unidirectionally coupled chaotic systems, and
authors proposed a good analytical method to analyze this
phenomenon. In [40], two bidirectionally coupled chaotic
systems were studied by above method. In this paper, the
method in [39] will be extended to three coupled chaotic
systems with unidirectional ring structure. The coupled ring
has been usedwidely inmodeling physiological, biochemical,
and biological phenomena [13, 14]. Though many real-world
systems should be described by the networkwithmany nodes
and complex structure, the ring with three nodes is the
network motifs of some complex networks.The investigation
of the synchronization of ring with three nodes is helpful to
understand the collective behavior in complex networks [41].

2. Theoretical Analysis

The unidirectionally coupled ring with three nodes can be
described as follows:

ẋ
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𝑇 is the
vector function which describes the dynamic of uncoupled
system. 𝑐 is a positive constant, which is usually called
coupling strength. Consider that the real-world systems are
unavoidably disturbed by internal noise which may lead to
the loss of information in transmission process [38]; then the
coupled ring model (1) can be improved as follows:
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where 𝑑 is a constant which describes the noise intensity, and
𝜉(𝑡) is one-dimensional Gaussian white noise with statistical
properties ⟨𝜉(𝑡)⟩ = 0 and ⟨𝜉(𝑡), 𝜉(𝑡)⟩ = 𝛿(𝑡 − 𝑡). In fact, the
assumption of Gaussian white noise is often impractical, but
this assumption is a good approximation of many real-world
situations and generates mathematically tractable models.
The noise term in (2) is of multiplicative form, so (2) can
be interpreted in the sense of Itô or Stratonovich. The Itô
sense is employed here; though this interpretation seems

to be mathematical limiting procedure, this is reasonable
when the rapidity of fluctuation of environment is far less
than the macroscopic time scale of the system, such as the
external fluctuation in many biological systems [39, 42].
In most of real physical systems, the Stratonovich sense is
usually employed. However, the recent study shows that the
multiplicative noise in electric circuit, which usually obeys
the Stratonovich convention, crosses over to obey the Itô
convention when the certain parameters of the systems are
changed [43]. In a word, the Itô interpretation of model is not
totally idealizing but is realizable inmany real-world systems.

To begin the theoretical analysis, the coupled ring (2) and
the vector function f = (𝑓

1
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)

𝑇 need to satisfy the
following assumption.

Assumption. Assume that the coupled ring (2) is bounded,
and for any bounded set Ω ∈ 𝑅

𝑚, there exists a positive
constant 𝑙 such that x, y ∈ Ω satisfies

(x − y)𝑇 [𝑓 (x) − 𝑓 (y)] ≤ 𝑙(x − y)𝑇 (x − y) , (3)

where 𝑙 is a positive constant. Notice that this condition is
very loose; for example, the condition (3) is satisfied as long
as 𝜕𝑓
𝑖
/𝜕𝑥

𝑖
are bounded on Ω. Therefore, most of well-known

chaotic systems satisfy condition (3).

Actually, the coupled ring (2) is said to be synchronized
if x
1
= x
2
= x
3
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𝑚 is
called synchronized manifold which is usually a solution of
uncoupled system; that is, ̇s = f(s). Inspired by [44], the
manifold s(𝑡) = (x

1
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stability of s(𝑡).Thismanifold has some new properties which
is helpful to theoretical analysis. It is easy to see that

̇s (𝑡) = 1
3

3

∑

𝑖=1

f (x
𝑖
) ≜ g (s) . (4)

Define e
𝑖
= x
𝑖
− s(𝑡) to be the error state between the state

of 𝑖th node and manifold s(𝑡). Obviously, the error states are
dominated by the following equation:
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Here, one should notice that error states e
𝑖
(𝑖 = 1, 2, 3) satisfy

the following equality:

e
1
+ e
2
+ e
3
= 0. (6)

This property is very useful in the following theoretical
analysis.

For convenience of expression, (5) is rewritten as the
following matrix form:

̇E (𝑡) = F (x) + C (E) +H (E) ̇W (𝑡) . (7)
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According to the stability theory of stochastic differential
equations [39, 45], the error equation (7) possesses a unique
global solution with any initial state, without loss of general-
ity, denoted by E(𝑡; 𝑡

0
,E
0
). It is easy to see that E(𝑡; 0, 0) ≡ 0

is a trivial solution of the error system (7). The complete
synchronization of dynamical network (2) is achieved, if the
zero solution is asymptotically stable; that is, lim

𝑡→∞
‖E(𝑡)‖ =

0 with probability one.
In the following, the role of noise in the synchronization

of the coupled ring (2) will be analyzed by the theory of
stochastic differential equations. To this end, the following
function is defined:
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in (9). By applying Itô formula to (9) along with system (7)
[39, 45], one has
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and the continuous martingale is
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By the strong law of large numbers [39, 45], one has that
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If the coupled ring (2) is bounded and vector function f
satisfies the condition (3), it yields
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Obviously, if 𝑙 − (3/2)𝑐 − (3/4)𝑑2 < 0, the logarithm function
𝑉(E(𝑡)) approaches to −∞ as 𝑡 → +∞; that is, E(𝑡)
approaches to zero as 𝑡 → +∞. In other words, the trivial
solution E(𝑡; 0, 0) ≡ 0 of error system (7) is asymptotically
stable with probability one when 𝑙 < (3/2)𝑐 + (3/4)𝑑

2.
Moreover, the last term about the noise intensity in inequality
(18) is negative, so the noise term has positive effect on the
synchronization of the coupled ring (2). Particularly, when
coupling strength 𝑐 = 0, the coupled ring (2) can synchronize
with 𝑙 < (3/4)𝑑

2. This means synchronization may be
achieved when all nodes are just coupled by multiplicative
noise.

Remark 1. One should notice that the above inequality (18) is
acquired with bounded assumption of coupled ring (2) and
the condition (3). For large noise intensity, the coupled ring
(2) may become unbounded. Though it is difficult for us to
acquire the bounded condition of coupled ring (2), coupled
ring (2) is usually bounded when noise intensity 𝑑 is small.

3. Numerical Examples

To demonstrate that noise term in coupled ring (2) plays
a positive role in synchronization, the Lorenz systems [46],
Hindmarsh-Rose neuron system [47], andRössler like system
[48] are employed to describe the dynamic of uncoupled
system. In numerical simulations, the weak order 2 Runge-
Kutta scheme with time step Δ𝑡 = 10−2 is adopted to solve
the stochastic differential equations [49].

To simplify the representation, a scale is defined to
measure the synchronization of the coupled ring (2), which
is
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where 𝜔 ∈ Ω, Ω denotes the set of all elementary events, ⟨⋅⟩
represents sample average, and 𝑚 is the dimension of node
system. According the definition, Δ(𝑑) can be used to exhibit
effect of synchronization with respect to noise intensity.

Example 1 (Lorenz system). The famous Lorenz system can
be described as follows:

�̇� = − 𝜎 (𝑥 − 𝑦) ,

̇𝑦 = − 𝑥𝑧 + 𝑟𝑥 − 𝑦,

�̇� = 𝑥𝑦 − 𝑏𝑧.

(20)

Here 𝑥, 𝑦, and 𝑧 make up the system state, and 𝜎, 𝑟, 𝑏 are
positive system parameters. In this example, let 𝜎 = 10, 𝑟 =
24.1, 𝑏 = 8/3. Under this group of parameters, system (20)
has chaotic solution.

In this example, the coupling strength 𝑐 is set to be zero.
10
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Figure 1: The evolution of Δ with respect to 𝑑 in three coupled
Lorenz systems, when 𝑐 = 0, 𝑇

0
= 4 × 10

3, and 𝑇
1
= 5 × 10

3.

[0, 0.3]. In Figure 1, we plot the evolution of Δ with respect
to 𝑑. Form this figure, one can see that the scale Δ decreases
with 𝑑 increasing, and three Lorenz systems just coupled by
internal noise can achieve synchronization when the noise
strength is large enough.

Example 2 (Rössler like system). The Rössler like system is
dominated by

ẋ = Dx + g (x) , (21)

where x = (𝑥
1
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2
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3
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(22)

This system is a modified version of original Rössler system
and has been used to study the synchronization of coupled
chaotic systems in experiment. Under parameters 𝛼 = 1.0,
𝛽 = 1.5, 𝛾 = 0.2, 𝜂 = 1.5, Γ = 0.075, 𝜆 = 0.75, 𝜁 = 18.43, and
𝜃 = 0.5, the system (21) has a chaotic attractor.

In this example, we set coupling strength 𝑐 = 0.045,
and 103 sample paths are computed with initial states x

𝑖
=

(−0.33 + 𝑢

𝑖1
, −0.03 + 𝑢

𝑖2
, 0.01 + 𝑢

𝑖3
), where 𝑢

𝑖𝑗
are randomly

chosen from [0, 0.3]. In Figure 2, we plot the evolution of Δ
with respect to 𝑑. From this figure, one can see that Δ is order
of 10−2 when noise intensity 𝑑 = 0. With increase of 𝑑, the
order of Δ decrease form 10

−2 to 10−11. This demonstrates
that multiplicative noise really plays a positive role in the
synchronization of three coupled Rössler like systems.
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Figure 2: The evolution of Δ with respect to 𝑑 in three coupled
Rössler like systems, when 𝑐 = 0.045, 𝑇
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Figure 3: The evolution of Δ with respect to 𝑑 in three coupled
Lorenz systems, when 𝑐 = 0.002, 𝑇

0
= 4 × 10

3, and 𝑇
1
= 5 × 10

3.

Example 3 (Hindmarsh-Rose (HR) neuron model). The HR
neuron model can be described as follows:

�̇� = 𝑦 − 𝑎𝑥

3
+ 𝑏𝑥

2
− 𝑧 + 𝐼,

̇𝑦 = 𝑐 − 𝑑𝑥

2
− 𝑦,

�̇� = 𝑟 (𝑠 (𝑥 − 𝜒) − 𝑧) ,

(23)

where 𝑥 is the membrane potential and 𝑦, 𝑧 describe the
transport of ions across the membrane through the ion
channels. In this example, let the parameters 𝑎 = 1, 𝑏 = 3,
𝑐 = 1, 𝑑 = 5, 𝑠 = 4, 𝑟 = 0.015, 𝜒 = −1.6, and external forcing
𝐼 = 2.95. Under above parameters, the system (23) exhibits
chaotic spike.

In this example, we set coupling strength 𝑐 = 0.002. 103
sample paths are computed with initial states x

𝑖
= (1.05 +

𝑢

𝑖1
, −4.71 + 𝑢

𝑖2
, 3.26 + 𝑢

𝑖3
) where 𝑢

𝑖𝑗
are randomly chosen

from [0, 0.1].The evolution ofΔwith respect to 𝑑 is plotted in

Figure 3. Form this figure, one can see that Δ is order of 100
when noise intensity 𝑑 = 0. With increase of 𝑑, the order of Δ
decreases to 10−11. This demonstrates that noise really plays
a positive role in the synchronization of coupled HR neuron
systems.

4. Conclusions and Discussions

To summarize, we study the role of multiplicative noise in the
synchronization of unidirectionally coupled ring with three
nodes. Based on the stability theory of stochastic differential
equations, we demonstrate that multiplicative noise really
has positive effect on synchronization. To demonstrate the
correctness of the theoretical result, the Lorenz system, HR
neuron system, and Rössler like system are employed as
numerical examples. In this paper, we just study the coupled
ring with three nodes and common noise. To be more
practical, different nodes should be subjected to different
noise. Moreover, many real systems should be described
by networks with many nodes and complex structures. The
role of multidimensional noise in the synchronization of
complex dynamical network is one of our further works. For
unidirectionally coupled ring with more than three nodes,
we can not demonstrate that noise plays a positive role in
synchronization by present method. We performed some
numerical simulations for ring with many nodes. We found
that noise plays a positive role in the synchronization of
some samples, but some samples become unbounded. Is
this unboundedness raised by artifact of finite precision
of numerical simulation or determined by the structure of
node system and ring? The theoretical result of this paper
is acquired under the assumption of boundedness of ring.
Though the bounded condition of the ring is difficult to
be acquired by theoretical method, the bounded condition
of network (2) is a problem which is worthwhile to be
investigated. Further, the circuit experiment [50] is also best
way to demonstrate the theoretical results, but the design of
circuit is beyond the extent of our knowledge.
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“Stratonovich-to-Itô transition in noisy systems with multi-
plicative feedback,” Nature Communications, vol. 4, Article ID
2733, 2013.

[44] W. Lu and T. Chen, “New approach to synchronization analysis
of linearly coupled ordinary differential systems,” Physica D.
Nonlinear Phenomena, vol. 213, no. 2, pp. 214–230, 2006.

[45] L. Arnold, Stochastic Differential Equation and Application,
Academic, New York, NY, USA, 1972.

[46] R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford univer-
sity press, Oxford, UK, 1994.

[47] J. L. Hindmarsh and R. M. Rose, “A model of neuronal
bursting using three coupled first order differential equations,”
Proceedings of the Royal Society of London B, vol. 221, no. 1222,
pp. 87–102, 1984.

[48] I. A. Heisler, T. Braun, Y. Zhang, G. Hu, and H. A. Cerdeira,
“Experimental investigation of partial synchronization in cou-
pled chaotic oscillators,” Chaos, vol. 13, no. 1, pp. 185–194, 2003.

[49] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic
Differential Equations, Springer, Berlin, Germany, 1995.

[50] B. Nana and P. Woafo, “Synchronization in a ring of four mutu-
ally coupled van der Pol oscillators: theory and experiment,”
Physical Review E, vol. 74, no. 4, Article ID 046213, 2006.


