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For the complex industrial process, it has become increasingly challenging to effectively diagnose complicated faults. In this paper,
a combinedmeasure of the original Support VectorMachine (SVM) and Principal Component Analysis (PCA) is provided to carry
out the fault classification, and compare its result with what is based on SVM-RFE (Recursive Feature Elimination) method. RFE is
used for feature extraction, and PCA is utilized to project the original data onto a lower dimensional space. PCA 𝑇2, SPE statistics,
and original SVM are proposed to detect the faults. Some common faults of the Tennessee Eastman Process (TEP) are analyzed
in terms of the practical system and reflections of the dataset. PCA-SVM and SVM-RFE can effectively detect and diagnose these
common faults. In RFE algorithm, all variables are decreasingly ordered according to their contributions.The classification accuracy
rate is improved by choosing a reasonable number of features.

1. Introduction

Now, for the complex industrial production systems, fault
diagnosis and prediction play an extremely important role.
Fault diagnosis is to identify the abnormal circumstances of
a system [1]. To find the fault type and to determine the
cause of the fault as soon as possible have a vital significance
[2]. It can not only reduce the pecuniary loss and avoid the
waste of resources but also ensure the safety of a production.
In recent years, numerous multivariate statistical process
control (MSPC) methods have been developed and have
gotten industry’s attention [3, 4]. There are many MSPC
tools, for example, principal components analysis (PCA) [5],
dynamic principal components analysis (DPCA), correspon-
dence analysis (CA) [6], canonical variate analysis (CVA)
[7], kernel independent component analysis (KICA) [8],
and modified independent component analysis (MICA) [9]
which have been used in the actual industry process [10, 11].
Support vectormachine (SVM) is a form ofmachine learning
technology, which has a robust mathematical foundation and
has many advantages in solving various classification and
regression problems.The generalization ability of SVM is also
great. So,more andmore people start to research on the SVM.

RFE arithmetic is to calculate sorting coefficient based on the
weight vector 𝑤, which is got from the SVM model training
process, and then make the feature variables in descending
order according to the sorting coefficient. The study in this
paper is based on the Tennessee Eastman (TE) process, which
has been extensively applied in process control and statistical
processmonitoring [12, 13]. Datasets of this process have been
used in a variety of machine learning researches.

In this paper, the PCA and RFE algorithm is first
introduced. The fault detection methods by using PCA 𝑇2,
SPE statistic, and original SVM are then outlined followed
by the SVM-RFE method to find out the most relevant
variables of these common faults. The pertinent variables of
these common faults are shown after that. Finally, PCA-SVM
and SVM-RFE methods are utilized for the classification of
several kinds of faults.

2. Related Words

2.1. Support Vector Machine. SVM was firstly proposed by
Cortes and Vapnik in 1995 [14] and developed from the
statistical learning. It is closely associated with two theories.
Thefirst isVCdimension theory, which equals the complexity
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of a problem. That is to say, the higher the VC dimension is,
the weaker its generalization ability becomes. The second is
structural riskminimization theory,which SVMmethodpur-
suits, meaning to minimize the empirical risk and confidence
at the same time. SVM technology has many advantages
in solving the problems of which the size of the dataset is
relatively small or the samples are nonlinear or the dataset
has a high dimension. SVM algorithm firstly maps the low-
dimensional samples onto a higher feature space. In this way,
the samples which cannot be divided into a low-dimensional
space will become linearly separable. A maximum separating
hyperplane will be constructed in the higher dimensional
space. SVM solves the linear nonseparable case by using
slack variables and error penalty. Since the separating plane
is constructed based on the support vectors, SVM is a good
solution to solve the problem of high dimension. Kernel
function is introduced to replace the nonlinear mapping,
which avoids numerous unresolved problems.

Assume that the input vectors have two categories. The
labels of the first category are 𝑙

𝑖
= +1, and the labels of the

second category are 𝑙
𝑖
= −1. 𝑚

𝑖
represents an input vector.

The input samples can be written as follows:

𝐷
𝑖
= (𝑚
𝑖
, 𝑙
𝑖
) . (1)

The classification hyperplane to separate given data is as
follows:

𝑦 = 𝑤
𝑇
𝑚 + 𝑑 = 0, (2)

where𝑤 represented the weight vector and 𝑑 represented the
constant

𝑙
𝑖
𝑦 = 𝑙
𝑖
(𝑤
𝑇
𝑚
𝑖
+ 𝑑) ≥ 1. (3)

Taking into account the samples that cannot be classified,
the slack variable is 𝜁 and the penalty variable is 𝑃. The func-
tion to get optimal hyperplane could be written as follows:

min 1
2
‖𝑤‖
2
+ 𝑃

𝑀
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𝜁
𝑖
,
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𝑖
,

(4)

where 𝜁
𝑖
reflects the distance between 𝑚

𝑖
and the margin,

𝜁
𝑖
≥ 0. 𝑚

𝑖
is the wrong classified samples. The calculation

can be simplified into another problem, which is as follows:

min𝐹 = 1
2
‖𝑤‖
2
−
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+ 𝑑) . (5)

In order to get the value of 𝑤 and 𝑑 which lead (5) to be
minimum, the equation at the extreme point can bewritten as

𝜕𝐹

𝜕𝑤
= 0,

𝜕𝐹

𝜕𝑑
= 0, (6)
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According to (5) and (7), the decision function is devel-
oped into a dual quadratic optimization problem, which will
be

𝑦 = sign(
𝑀

∑

𝑖,𝑗=1

𝛼
𝑖
𝑙
𝑖
(𝑚
𝑖
𝑚
𝑗
) + 𝑑) . (8)

The kernel function plays an important role in solving the
nonlinear problems. The low-dimensional vectors are pro-
jected onto a high-dimensional space according to nonlinear
function Φ(𝑚) = (𝜙

1
(𝑚), . . . , 𝜙

𝑖
(𝑚)). The liner decision

function is replaced as

𝑦 = sign(
𝑀

∑

𝑖,𝑗=1

𝛼
𝑖
𝑙
𝑖
(Φ
𝑇
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) ⋅ Φ (𝑚

𝑗
)) + 𝑑) . (9)

The kernel function could be utilized for solving the
computational problem. The modality of Φ does not need
to be known, when the kernel functions are applied. The
decision can be written as

𝑦 = sign(
𝑀

∑

𝑖,𝑗=1

𝛼
𝑖
𝑙
𝑖
𝐾(𝑚
𝑖
, 𝑚
𝑗
) + 𝑑) . (10)

There are threeways to utilize SVMmethod formulticlass
classification: 1-v-r SVMs, 1-v-1 SVMs, and H-SVMs.

For 1-v-r SVMs classification method, each type of sam-
ples is treated as a class for each time and the other remaining
samples belong to the other class. After the SVM models are
trained in this way, these 𝑘 types of samples will construct 𝑘
classification models. A testing sample will be put into a class
in which the sample has the maximal classification function
value. For 1-v-1 SVMs classification method, since an SVM
classificationmodel is trained for every two kinds of samples,
𝑘 categories of training samples should train 𝑘(𝑘 − 1)/2 SVM
classification models. Then, every classification model will
be used on a testing sample. The kind of category that the
testing sample belongs to depends on the number of votes,
which are cast by the classification models. For H-SVMs, all
categories are divided into two subsets. After testing by SVM
classifier, the subset which the sample belongs to is divided
into another two categories. In this way, the right category is
finally determined [15, 16].

Because of the rigorous mathematical foundation, sup-
port vector machine reflects many unique advantages. It has
been widely used in various researches. In the age of big
data, machine learning methods and support vector machine
technology will have a larger development in the future.

2.2. Principal Components Analysis. PCA was proposed by
Pearson in 1901. PCA aims at decorrelating the industrial
process data, which is highly correlated andmultivariate, and
reducing the dimension of the data. In order to reduce the
dimension and keep more information of the original data
at the same time, a low-dimensional data model needs to be
established and the variance of the data reaches themaximum
value through projection. After dimensional reduction, the
noise and redundant information in the original higher
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dimensional space can be eliminated. Because of this, the
error can be reduced and the recognition accuracy will be
improved. The internal structural characteristics of the data
itself can also be found by dimension reduction method.
Finally, to realize the purpose of improving the calculation
speed, PCA statistics are used as metrics to determine
whether the samples are faulty or not. If the metric of the
testing data outstrips the cordon, the samples will be treated
as faulty [17, 18].

3. Algorithm

3.1. Recursive Feature Elimination Algorithm. RFE arithmetic
is to calculate the sorting coefficient at first according to the
weight vector 𝑤, which is got from the SVM model training
process, then take out the feature variable which has minimal
sorting coefficient in each iteration, and get the descending
order of feature variables finally. The classical SVM-RFE is
based on the linear kernel function, while, in nonlinear case,
the RBF is used as the kernel [19].

In each iteration, the feature variable with minimal sort-
ing coefficient will be removed. The new sorting coefficient
will be obtained by using SVM to train the rest of the feature
variables. By executing this process iteratively, a feature
ranking list is got. According to this ranking list, the relative
degree for each feature with the category will be known.
A plurality of nested feature subsets to the SVM model is
defined. The quality of these subsets can be assessed by the
classification accuracy. So, the optimal feature subset can be
obtained. To TE process, such a feature ranking list is got for
each type of fault. The first feature in the list is taken as the
most relevant one to be analysed [20].

3.2. PCA-SVM Algorithm. PCA aims at decorrelating the
industrial process data, which is highly correlated and mul-
tivariate, and reducing the dimension of the data [21].

First of all, to get a data matrix 𝑋
𝑛𝑚

under normal
conditions, the rows of the matrix represent 𝑛 specimens
and columns represent𝑚 variables. This matrix is autoscaled
firstly. The singular value decomposition of this matrix is as
follows:

1

√𝑛 − 1
𝑋 = 𝑈∑𝑁

𝑇
. (11)

The singular value decomposition of this matrix can be
replaced by the eigenvalue decomposition of the sample’s
covariance matrix 𝑅. Because the sample matrix has been
autoscaled, the eigenvalue decomposition is as follows:

𝑅 =
1

𝑛 − 1
𝑋
𝑇
𝑋 = �̂�𝑁

𝑇
. (12)

Eigenvalues are ranked depending on their values in
descending order. The feature vectors in 𝑁 are ranked cor-
responding to their eigenvalues. Selecting the first 𝑎 linearly
independent eigenvectors �̂� = [𝑛

1
, . . . , 𝑛

𝑎
] to constitute the

principal component space 𝑆, the rest of the vectors are �̃� =
[𝑛
𝑎+1
, . . . , 𝑛

𝑚
] form the residual space 𝑆.

𝑋 is decomposed as follows:

𝑋 = 𝑀𝑁
𝑇
= �̂��̂�

𝑇
+ 𝐸. (13)
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𝑎
represents the scorematrix.

𝐸 is an error matrix which is caused by noise and contains
only a little useful information. It can be removed with little
losses. So,𝑋 can be written as follows:

𝑋 ≈ 𝑚
1
𝑛
𝑇

1
+ 𝑚
2
𝑛
𝑇

2
+ ⋅ ⋅ ⋅ + 𝑚

𝑎
𝑛
𝑇

𝑎
. (14)

After establishing the principal component model, the
undetected data 𝑥 can be written as follows:

𝑥 = 𝑥 + 𝑥 = �̂��̂�
𝑇
+ �̃��̃�

𝑇
= 𝑥�̂��̂�

𝑇
+ 𝑥 (𝐼 − �̂��̂�

𝑇
) . (15)

The vectors 𝑥 and 𝑥 represent the data that is filtered by the
principal component space 𝑆 and the residual space 𝑆.

When PCA-SVM method is used to classify the types of
fault, the dataset should be autoscaled at first.𝑋 is the dataset
that has been autoscaled

𝑋

=

𝑋

std (𝑋)
−mean (std (𝑋)) . (16)

The functions std(⋅) and mean(⋅) are used to calculate the
standard deviation and mean value, respectively. Both the
training data and the testing data should be autoscaled.𝑋tr is
the autoscaled training data and 𝑋te is the autoscaled testing
data.

The PCA decomposition is done to the normal sample
data 𝑋

0
. The number of principal components is set as 𝑎.

The control limit of PCA 𝑇2 statistic is determined by 𝐹
distribution as follows:

𝑇
2

𝛼
=
𝑎 (𝑛 − 1)

𝑛 − 𝑎
𝐹
𝑎,𝑛−𝑎,𝛼

. (17)

The control limit of PCA SPE statistic is calculated as
follows:

SPE
𝛼
= 𝜃
1

[
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where 𝜃
𝑖
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𝑖

𝑗
, 𝑖 = 1, 2, 3, and ℎ

0
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2
.

The autoscaled fault samples 𝑋tr and 𝑋te are map-
ping onto the space constructed by the normal samples.
Dimension reduction method is used for these fault samples
according to (15). The PCA 𝑇2 statistics for the training and
testing samples are calculated as follows:

𝑇
2

𝑖
= 𝑥
𝑖
�̂�Λ
−1

𝑎
�̂�
𝑇
𝑥
𝑇

𝑖
. (19)

The PCA SPE statistics for the training and testing
samples are calculated as follows:

SPE
𝑖
= 𝑥
𝑖
(𝐼 − �̂��̂�

𝑇
) 𝑥
𝑖
. (20)

If the calculated 𝑇2 and SPE values exceed the threshold,
the sample can be categorized as faulty.
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Figure 1: The Tennessee Eastman process.

4. Tennessee Eastman Process

The TE process was created by the Eastman Chemical Com-
pany to provide a realistic industrial process for evaluat-
ing process control and monitoring methods. It was firstly
proposed by Downs and Vogel on the AICHE (American
Institute of Chemical Engineers) [22]. It has been extensively
used in the aspects of control and optimization, process
control, fault diagnosis, statistical process monitoring, data
driven, and so on. The dataset has become a common data
source for these research directions [23].

As shown in Figure 1, the TE plant mainly consists of five
units.There are eight components. A, C, D, and E are gaseous
materials. B is an inert substance. F is a liquid reaction by-
product. G andHare liquid reaction products.The reaction of
H has a lower energy than that of G. G has a higher sensitivity
to temperature.

Due to the presence of a catalyst, the gaseous reactants
will become liquid product when it enters into the reactor.
This catalyst is permanent and soluble in liquid. The reactor
has an internal condenser. It is used to remove the heat
generated by the reaction. Along with the component which
is not completely reacted, the product leaves the reactor in the
form of steam.The product comes to the gas-liquid separator
through a condenser. Part of the steam is condensed and
transported to the stripper. The stream mainly contains A. C
is treated as the stripping stream. The remaining unreacted
components are separated from the bottom of the stripper.
Inert matter and the by-product are mainly out in the form of
gas from the gas-liquid separator [24].

The whole TE process simulation has 21 kinds of prepro-
grammed faults, and it consists of 22 continuous measured

variables, 19 compositionmeasurements, and 12 manipulated
variables. Both continuous measured variables and composi-
tion measurements are belonging to measured variables.

5. Fault Diagnosis

The dataset of the TEP can be got from the internet. All the
variables are taken into account to analyse [24]. Select faults
1, 4, 5, 7, and 11 to research. The training dataset contains 500
samples which are obtained from the normal condition. The
thresholds of the PCA 𝑇2 and SPE statistics are calculated by
this dataset. The testing dataset, using the PCA method to
detect fault, contains 960 samples of each fault. The testing
dataset to detect fault by SVM contains last 800 samples of
each fault. Select 480 samples of each fault, respectively. Treat
these samples as the training dataset of the SVM-PCA and
SVM-RFE algorithm. There are 960 samples of each fault in
the dataset. The first 160 samples which are obtained during
the first 8 hours are normal. So, the last 800 samples are
chosen from the original dataset of each fault as the testing
dataset of the SVM-PCA and SVM-RFE algorithm.

By SVM-RFE algorithm, the feature ranking lists for each
fault can be got, from which the most relevant variables will
be known, as shown in Table 1. According to the relevant
variables, the reasons of each fault could be analysed.

SVMmethod is also used to determine whether a testing
sample is faulty or not. The model has been trained by the
training dataset. The category of the testing samples will be
directly predicted by the model.The sample, which predicted
label is 0, is normal. Otherwise, it is a fault one.

PCA 𝑇2 and SPE statistics are used as the metrics for
fault detection.The threshold can be calculated by the normal
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Table 1: The most relevant variable for each fault.

Fault Variable
Fault 1 19
Fault 4 51
Fault 5 3
Fault 7 45
Fault 11 51
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Figure 2: The PCA statistics under normal conditions.

samples. If the value of a testing sample exceeds either one of
the threshold, this sample will be treated as faulty.

Depending on the normal dataset of the TE process, the
threshold of PCA 𝑇2 and SPE statistics will be got. As shown
in Figure 2, the data which exceeds the red dotted line can
be considered as a fault data. The normal dataset is under the
threshold as awhole except some abnormal individual points.
The threshold of 𝑇2 statistic is 21.666. The threshold of SPE
statistic is 2.5437 ∗ (10−6).

5.1. Fault 1. As shown in Figure 3, the value of variable 19 has
a step change, which means that the ratio of A/C feeds takes
a step change. But, under normal circumstances, variable 19
does not have such a change, which results in the occurrence
of the fault. The training samples also have a step change, so
SVMmodel can learn this change through the training sam-
ples, which results in that the fault samples can be detected.

The changes of the flow rates and compositions of stream
6 can affect the variable in the reactor. The rate of flow in
stream 4 will arrive at a steady-state value, which is lower
than the normal operating conditions. Since many variables
are varied apparently, it will be easy to detect these faults.

As shown in Figure 4, SVM method is used to detect the
fault 1. The accuracy rate of detecting the fault 1 is 92.6%.
Some points fail to be effectively recognised.Themain reason
why some data cannot be correctly distinguished is that the
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Figure 3: TE: plot of variable 19 in fault 1.
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Figure 4: The SVM for fault detection for fault 1.

feature extraction is not efficient and reasonable, so that the
characteristics of the fault are not able to be identified very
well by SVM classification. Compared with the PCAmethod,
the detection rate by SVM is lower.

Figure 5 shows the PCA-based statistics for fault detec-
tion.The dotted line in the figure is the𝑇2 and SPE threshold.
The first eight hours before the fault is produced are under
normal operating conditions. Therefore, all the data are
below the predetermined threshold.The accuracy rate of fault
detection is 99.5% by using this method. The PCA statistic is
more sensitive than the SVM in the detection of fault 1. To
a fault which results in the variable changes obviously, many
methods do well in the fault detection.

5.2. Fault 4. Significant impact of fault 4 is the temperature
step changes of the reactor coolingwater inlet.When the fault
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happens, that temperature increases quickly, but the standard
deviation of the other variables is similar to that under normal
conditions. This enhances the difficulty of fault detection.

As shown in Figure 6, it can be seen that the value of
variable 51 in the testing dataset has an obvious step change.
The changed value of variable 51 was maintained between 44
and 46, while the normal dataset does not have a step change,
and its normal value is between 40 and 42. For the training
samples of fault 4, the value ranges between 44 and 46 and is
different from the normal values. This character helps SVM
classification model distinguish fault samples correctly.

As shown in Figure 7, SVMmethod is used to classify the
fault 4 data from the normal samples. To the majority of the
fault data, SVM can correctly classify them. The recognition
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Figure 7: The SVM for fault detection for fault 4.
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Figure 8: The PCA statistics for fault detection for fault 4.

rate of fault 4 is 99.8%. The detection rate is similar to that
obtained from PCA method.

As shown in Figure 8, the PCA-based statistics are utilized
for fault 4 detection; the dotted line represents the threshold
of 𝑇2 and SPE. After 160 sets of normal samples, the value
of statistics appears a step variety. This change corresponds
to the step change of that temperature. After the fault occurs,
the SPE statistics are higher than the threshold as a whole and
the 𝑇2 statistics are partly higher than its threshold. The fault
can be detected easily from this figure. The detection rate of
fault 4 by PCA is almost 100%.

5.3. Fault 11. The reason of fault 11 is the same as fault 4. As
shown in Figure 9, the fault causes a greater oscillation for
the temperature of the cooling water.The vibration amplitude
is much larger than the vibration under normal conditions.
Under normal circumstances, the range of the variable’s value
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Figure 10: The SVM for fault detection for fault 11.

is between 40 and 42, while the variable’s value is between 35
and 50 when a fault occurs. The other variables are retained
at the level of normal operating conditions.

As shown in Figure 10, the accuracy rate of fault 11 by
SVMmethod is 99.6%.The sample whose label is 0 is treated
as normal data, while the testing dataset consists of 800
faulty samples. These points are put into a wrong class. Data
preprocessing step can be further increased to improve the
accuracy rate of fault detection by SVM.

As is shown in Figure 11, it is sensitive for PCA-based
statistics to detect the samples of fault 11. After the first 160
samples, the 𝑇2 and SPE statistics of the samples have a larger
fluctuation when compared to that under normal conditions.
Most of the data are beyond the red line, and the recognition
rate of this fault is 87%. The detection rate is lower than that
of SVMmethod.
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Figure 11: The PCA statistics for fault detection for fault 11.

According to the simulation results, when compared
with the original SVM classification method, the PCA-based
method reduces the complexity of the classification model.
Different detection methods are suitable for diverse faults;
for instance, the SVM method is more appropriate in the
detection of fault 11 than the PCA method. The method of
SVM on the fault detection could be further strengthened
by adding data preprocessing and choosing an appropriate
feature extraction way to increase the detection accuracy.

5.4. Fault Detection. In the SVM-RFE algorithm, the features
have been ranked in a list by the calculated sorting coefficient,
from which the most relevant variables and the relevance
ranking to corresponding faults can be got. In order to get
themaximum accuracy rate, different numbers of features are
selected to train the classification model. The classification
accuracy rates by simulation for different numbers of features
are as follows.

The first feature in the ranking list is chosen as the most
relevant one to the fault to analyze. The feature ranking in
the front row may not make SVM classifier to obtain the
best classification performance individually. By combining
multiple features together, the classifier achieves optimal
performance. Therefore, SVM-RFE algorithm can select
the best complementary feature combination. As shown in
Table 2, if the dimension is reduced to an improper degree,
useful information will be reduced, and that will lead to the
descent of classification accuracy rate and the faults cannot
be diagnosed very well.

In the PCA-SVM algorithm, the autoscaled data should
be preprocessed. Then, the PCA method is used to take
feature extraction and dimensionality reduction. After the
faulty samples are projected onto the principal component
space which is constructed by the normal samples, both the
dimension and the amount of computation are decreased.
The principal features of each fault are extracted.
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Table 2: TE process: fault detection rate for training and testing data
by SVM-RFE.

The number of variables Training data Testing data
5 94.3 94.8
10 94.9 94.5
15 94.6 93.6
20 94.9 93.4
25 95.3 93.4
30 97.3 95.5
35 97.5 95.2
40 97.6 94.8
52 97.6 94.7

Table 3: TE process: fault detection rate for testing data.

Fault SVM SVM-RFE PCA-SVM
Fault 1 99 99 99
Fault 4 98 99 99
Fault 5 99 100 99
Fault 7 100 100 100
Fault 11 75 79 73
5 Faults 95 96 94

As shown in Table 3, three different methods have been
used to distinguish the samples of the 5 faults. The classifica-
tion accuracy rates for each fault and the entire testing dataset
can be got from this table. From the classification results,
for the faults 1, 4, 5, and 7, these three methods can achieve
high classification accuracy and only some special samples in
the testing data are wrongly classified. For the fault 11, which
has strong sequence correlation, three kinds of methods
are not able to classify well, probably since these three
methods cannot well consider the deviation caused by the
serial correlation. The overall result says that the RFE feature
extractionmethod can improve the accuracy rate by selecting
an appropriate feature vector number, when compared with
the original SVM algorithm. Though the effect of PCA-SVM
method is similar to the original SVM method in detecting
these types of faults, it greatly improves the computing speed.

6. Conclusion

Depending on the method of PCA-SVM and SVM-RFE,
these common faults in the TE process are effectively diag-
nosed. These two methods have been compared in terms
of the classification accuracy rate. The results are relatively
ideal through the simulations of these algorithms. Since the
dimension of the dataset obtained from the TE process is
only 52, it is not reliable to reduce the dimension of the TE
dataset to rapidly improve the classification accuracy simply
by SVM-RFE algorithm. If the selected number of feature is
not appropriate, useful information will be reduced while the
dimension is decreased, which will lead to the disadvantage
of fault diagnosis.

In addition, the threshold of PCA statistics is got by the
normal samples obtained from the TE process. It can be used

to test whether a sample is faulty or normal, which achieves
very ideal detection effect. The original SVM method is also
used to detect the faults. The effect is pretty good. Different
detection methods are suitable for diverse faults. According
to the method of RFE, the most relevant variables to each
fault have been found. These variables have been utilized
to analyse the reason why these faults occur. The methods
in this paper have a few shortcomings. How to quickly and
accurately distinguish all the faults in the TE process by SVM
is the aspect which needs to be studied.
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