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The current electric gas pressure regulator often adopts the conventional PID control algorithm to take drive control of the core part
(micromotor) of electric gas pressure regulator. In order to further improve tracking performance and to shorten response time,
this paper presents an improved PID intelligent control algorithmwhich applies to the electric gas pressure regulator.The algorithm
uses the improved RBF neural network based on PSO algorithm tomake online adjustment on PID parameters.Theoretical analysis
and simulation result show that the algorithm shortens the step response time and improves tracking performance.

1. Introduction

With the implementation of the strategy on Western devel-
opment and west-east gas transmission project, the city gas
has developed rapidly. How to use gas for higher energy
saving and environmental protection and ensure the safety
and reliability of the system has been a key problem and this
brings opportunity to gas pressure regulating. Gas pressure
regulating is one of the most important parts of city gas
pipeline system and the key technology of highly efficient
use of natural gas resources. The gas pressure regulating can
ensure the output pressure in special range; when the pressure
reaches a certain value, it can be effectively shut off to ensure
safe delivery of gas. Currently, the accuracy of gas pressure
regulators at home and abroad that adopt the traditional
direct- or indirect-acting regulating principle is not high and
susceptible to external environmental factors.The accuracy of
gas pressure regulator affects the downstream gas supply sys-
tem directly and reduces the efficiency of energy conversion,
thus resulting in energy waste and environmental pollution
and even possible supply security issues [1, 2]. In order to
solve the problems of mechanical gas regulator, electric gas
pressure regulating has become the main direction of the
future pressure regulating technology.The focus and difficult

problem of this field is how to improve the precision and
stability and shorten the response time [3, 4]. We had an in-
depth study in electric gas pressure regulator under the joint
support of national innovation fund and Chongqing science
and technology research project and achieved a series of
research results; this paper discussed the control algorithms
of electric gas pressure regulator.

The current electric gas pressure regulator often adopts
the conventional PID control mode to take drive control of
the core part (micromotor) of electric gas pressure regulator
[5, 6]. For piped gas, because of the unpredictable changes
of downstream load, the pipe friction, and temperature, the
system is time-varying, nonlinear, and it’s difficult to build a
precise mathematical model.The parameters of conventional
PID controller, set by experts, cannot be modified online,
which brings much difficulty to achieve the expected effects
[7]. The conventional PID controller ameliorating is needed
to further improve accuracy and stability and to shorten
response time.

Researches show that RBF [8, 9], with fast conver-
gence speed and strong global approximation capability, can
approximate any continuous and nonlinear networks with
arbitrary precision and shows better performance in the
nonlinear system problem-solving [10–12]. Compared with
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Figure 1: Self-actuated regulator.
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Figure 2: The principle diagram of electric gas pressure regulating system.

back propagation (BP) neural network, radial basis function
(RBF) neural network has many advantages: faster conver-
gence speed, less training iteration, stronger robustness, and
no local minimum, and so forth [13–15]. RBF is extremely
sensitive to the base-width vector, the center vector, the radial
basis layer, and the selection of the initial value of connection
weights of output layer [16–18]. If the parameters of this
system are selected inappropriately, the convergence rate of
the network will be slow and easy to fall into local minima. To
this end, we put forward a kind of improved PID intelligent
control algorithm which applies to the electric gas pressure
regulator. The algorithm uses the RBF neural network based
on PSO [19, 20] to determine the initial parameters of the
network [21] and then makes online adjustment on PID
parameters to improve the control accuracy, response speed,
and tracking performance of the system.

2. Electric Gas Pressure Regulating System

The basic principle of traditional pressure regulating is
mechanical balance. The electric gas pressure regulating
system range from simple single stage [22] to more complex
multistage [23], and the principle of operation is the same in
all [24, 25].The internal structure is shown in Figure 1. When
the outlet pressure P2 is stable, the upward force P2 acting on
the film is balanced against the spring force. If P2 decreases,

the spring force is greater than the upward force of the film.
Then the spring will move down and pull the valve to move
upward to increase valve opening and the downstream flow,
thereby increasing the gas outlet pressure until the system
reaches a new mechanical equilibrium. Obviously, as time
goes on, the loss of accuracy of the regulator occurs because of
the reduced elasticity of the spring and the friction’s damage
on diaphragm.Therefore, we replace the original mechanical
pressure regulating components with stepping motor and
driving system (part 1 of Figure 1) thereof by rebuilding core
parts of pressure regulator. The system principle diagram
of the improved electric gas pressure regulating is shown
in Figure 2. We use the intelligent air pressure sensor array
and adopts the information fusion algorithm to detect the
electric gas regulator’s inlet and outlet pressure [26]. Making
differential operation with set pressure value and the result
value as the input parameter of controller is to adjust the
rotation angle of the stepping motor according to the control
algorithm. If the outlet pressure value is less than the set
pressure value, the stepping motor will rotate forward, on the
contrary, it will reverse. The motor, through the driving sys-
tem, transforms the angle of motor into linear displacement
of output shaft which drives the valve rod to control the valve
opening and adjust the outlet pressure. From the working
principle, we can draw that the regulator system is a single
input/single output closed-loop control system.
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For static and dynamic analysis of the system, we need
to model the system that mainly includes drive motor model,
transmissionmodel, and regulator valvemodel. According to
the pneumatic dynamics, the transfer function of controlled
object system of pressure valve [27] can be approximately
expressed as

𝐺
𝐻 (𝑠) =

𝑌
1
𝐾
1

𝑍
4
𝑠4 + 𝑍

3
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0

. (1)

3. PID Controller Based on PSO-RBF
Neural Network

3.1. Parameters Tuning of PID Controller by RBF Neural
Network. Choose the stepper motor as the operator of the
electric gas pressure regulator and use digital incremental
PID control mode; the control algorithm can be expressed by
the following difference equation:

Δ𝑢 (𝑘) = 𝑢 (𝑘) − 𝑢 (𝑘 − 1)

= 𝐾
𝑝
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𝑖
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𝑑 (Δ𝑒 (𝑘) − Δ𝑒 (𝑘 − 1)) .

(2)

In formula (2), 𝐾
𝑝
, 𝐾
𝑖
, and 𝐾

𝑑
are constant parameters which

cannot be adjusted online and expected control effect is
impossible to get when the controlled system is nonlinear or
is with large delay. Therefore, we adjust PID parameters with
RBF neural network online. The performance index of PID
parameter is

𝐸 (𝑘) =
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In formula (3), 𝑟(𝑘) is the set value of outlet pressure, 𝑦(𝑘) is
the actual output value of system, and 𝑘 is the sampling time.
In order to minimize the 𝐸(𝑘), 𝐾

𝑝
, 𝐾
𝑖
, and 𝐾

𝑑
are sets via the

gradient descent method. Consider
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To find Δ𝐾
𝑝
, Δ𝐾
𝑖
, and Δ𝐾

𝑑
in (4), (5), and (6), respectively,

we must figure out 𝜕𝑦/𝜕Δ𝑢 which can be approximately got
by Jacobian matrix of RBF neural network. The radial basis

function is 𝐻 = [ℎ
1
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In formula (8), 𝑦(𝑘) is the actual output of the controlled
object after 𝐾 iterations. In order to make 𝐽 minimum,
according to the gradient descent method, the iterative
algorithm of output weights, center vector, and basis-width
vector parameters is shown as follows:
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In (9), 𝜂 is the learning rate and 𝛼 is the momentum factor.
Since the online identification ability of neural networks in
Jacobian matrix (sensitivity of output versus input change) is
powerful, when the neural network identifier can approach
the object, we can use 𝑦

𝑚
(𝑘) instead of the actual output of

the controlled object in the system 𝑦(𝑘). The Jacobian matrix
algorithm of neural network is
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In formula (10), 𝑥
1

= Δ𝑢(𝑘), Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1). Taking
Jacobian information of the RBF neural network into (4), (5),
and (6), three parameter variations (Δ𝐾

𝑝
, Δ𝐾
𝑖
, Δ𝐾
𝑑
) of PID

can be obtained. Although RBF neural network can adjust
PID parameters online, the selection of the initial parameters
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of RBF network will affect the performance of PID control
directly, so we use the particle swarm algorithm to optimize
RBF neural network to determine initial parameters of the
network.

3.2. Realization of Particle Swarm Algorithm to Optimize RBF
Neural Network. Suppose there are m particles in a swarm;
the information of 𝑖th particle is expressed by 𝐷 vector,
so its position and velocity are expressed, respectively, as
𝑋
𝑖

= (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑑

) and 𝑉
𝑖

= {V
𝑖1

, V
𝑖2

, . . . , V
𝑖𝑑

}. After each
iteration, every particle updates its position and velocity
according to individual extremism (pbest) and group
extremum (gbest), which are shown as follows:
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(11)
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𝑖𝑑 (𝑘) + V
𝑖𝑑 (𝑘) . (12)

In formula (11), 𝑐
1
and 𝑐

2
are learning factors, 𝑟

1
and

𝑟
2

⊂ (0, 1) are random variables, 𝜆 is the inertia factor, and 𝑘

is an iteration number. A large number of experiments show
that: with the algorithm iteration performing, 𝜆 decreases
linearly, improving the convergence of the performance of
the algorithm significantly [28]. Consider

𝜆 = 𝜆max −
𝑘 × (𝜆max − 𝜆min)

𝜆max
. (13)

In formula (13), 𝜆max and 𝜆min are the maximum and
minimum values of 𝜆 and 𝑘max is the total number of
iterations and make 𝜆max = 0.9 and 𝜆min = 0.4. The PSO
algorithm convergence is quick but easy to fall into local
optima. This paper makes individual mutate at a certain
probability by using genetic algorithm variation theory. The
specific steps of center vector, basis-width vector, and output
weights of RBF neural network optimized by particle swarm
optimization are as follows:

(1) particle swarm initialization: determine the number
of particle swarm, the initial position, speed, individ-
ual extremum, and swarm extremum;

(2) map each individual component to the RBF network
parameters and put them into the neural network to
calculate the fitness value;

(3) identify individual extremum and swarm extremum
according to fitness value;

(4) update the particle’s velocities and positions accord-
ing to formulas (11) and (12);

(5) if the number of iterations reaches a predetermined
maximum or meet the performance requirements of
minimum error, stop the iteration and output current
swarm extremum as initial parameters of the RBF
neural network or return to Step (2).

Electric
regulator

Feedback

PID

PSO-RBF

r(k) e(k)

−

−

y(k)u(k)

link

controller

Figure 3: The PID control block diagram set by PSO-RBF online.

3.3. PID Controller Design of PSO-RBF Neural Network. RBF
neural network-based PID control algorithm can solve the
shortage problem of conventional PID control and PSO
algorithm can solve the problem of the initial parameters of
RBF network. The structure of PID controller of PSO-RBF
neural network is shown in Figure 3.

The controller is composed of two parts: the classic PID
controller with 𝐾

𝑃
, 𝐾
𝑖
, and 𝐾

𝑑
modified by PSO-RBF online

and PSO-RBF network; firstly it uses PSO algorithm to
initialize the output weights, the node center, and the basis-
width of the RBF neural network and secondly it utilizes
the gradient information of RBF neural network online
identification to adjust three parameters of PID controller
online, control electric regulator valve opening, and adjust
the downstream outlet pressure quickly and accurately. The
steps of PID intelligent controller algorithm of PSO-RBF
neural network are as follows:

(1) select RBF structure: initialize the input layer node
number 𝑛, the hidden layer node number 𝑚, the
learning rate 𝜂, and the momentum factor 𝛼;

(2) determine the output weights, center node, and initial
value of node basis-width vector of RBF neural net-
work algorithm by using particle swarm algorithm;

(3) take the Jacobian information into formulas (4), (5),
and (6), obtain PID parameter increments Δ𝑘

𝑃
, Δ𝑘
𝑖
,

and Δ𝑘
𝑑
, and correct 𝑘

𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
online;

(4) make 𝑘 = 𝑘 + 1 and return to Step (3) until it reaches
the cycle index or meets the performance index.

4. Simulation Results and Analysis

The function of electric gas pressure regulator system can
refer to formula (1) with the following values: 𝑍

1
= 5.327 ×

10
4,𝑍
2

= 1.135×10
6,𝑍
3

= 8.193,𝑍
4

= 105.7,𝑌
1
𝐾
1

= 1.328×

10
9, and 𝑍

0
= 8.688 × 10

8; then discretize it considering the
sampling period 𝑇 = 0.001 s and get the 𝑍 transform:

𝐺
𝐻 (𝑧) = (5.23 × 10

−7
𝑧
3

+ 5.75 × 10
−6

𝑧
2

+ 5.75 × 10
−6

𝑧 + 5.75 × 10
−7

)

× (𝑧
4

− 3.99𝑧
3

+ 5.98𝑧
2

− 3.99𝑧 + 1.00)
−1

.

(14)

4.1. Step Response. To test the ability of the system response
to a step input, RBF network structure is chosen as 3-6-1.



Abstract and Applied Analysis 5

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Ideal position
Only PID 

RBF-PID 
PSO-RBF-PID

y
d
,y

Figure 4: The step response of three kinds of algorithms.

Suppose 𝜂 = 0.50, 𝛼 = 0.05, 𝜂
𝑝

= 𝜂
𝑖

= 𝜂
𝑑

= 0.15,
and 𝑘

𝑝0
= 𝑘
𝑖0

= 𝑘
𝑑0

= 0.1. Individual information of
particle swarm consists of 30 dimension vectors, which are
mapped to the RBF network parameters and its evaluation
standard is the minimum error of RBF neural network PID
controller. The population size of PSO algorithm is 20 and
the number of iterations is 100, 𝑐

1
= 𝑐
2

= 2, and individual
mutation probability is 0.04. In RBF network, without being
optimized by PSO, its initial value is 𝐶

𝑗
= 9 × rands(3, 6);

𝐵 = 9×rands(3, 6); and𝑊 = 9×rands(6, 1).The conventional
PID parameters 𝐾

𝑝
= 𝐾
𝑖

= 𝐾
𝑑

= 0.1. The step response
of three kinds of algorithms in Figure 4 shows that the step
response curve time of the system is 2.4 s and is in a stable
state under the adaptive control of PID parameter by PSO-
RBF. While without using PSO to optimize RBF or adopting
conventional PID control, the curve reaches a steady state in
12 s and 32 s, respectively. The conclusion is that PSO-RBF-
PID has the shortest response time and the minimum error.

The parameters adaptive tuning curve of PSO-RBF neural
network PID controller is shown in Figure 5; it is set finally
that 𝐾

𝑝
= 0.280, 𝐾

𝑖
= 1.290, and 𝐾

𝑑
= 0.001.

The minimum error evolution of PSO-RBF neural net-
work is shown in Figure 6. The minimum error changes
obviously in the early stage and reaches an optimal value at
63th iteration. RBF network parameters optimized after 100
times are as follows:

𝐶
𝑗

= [

[

0.32 0.11 0.02 −0.21 0.37 0.55

−0.36 −0.13 0.30 −0.03 −0.30 −0.06

−0.35 0.16 0.01 0.03 −0.21 0.20

]

]

;

𝐵 = [0.21 0.11 0.30 0.32 0.36 0.48]
𝑇

;

𝑊 = [−0.39 0.16 0.38 −0.37 −0.57 0.45]
𝑇

.

(15)

4.2. Tracking Performance. According to the actual needs of
the regulator, electric pressure regulator will be formulated
according to the input pressure, fast regulate valve opening,
and make the outlet pressure stable in the range of errors. So
we need to test the tracking performance of the control sys-
tem.The tracking curves of three kinds of control algorithms
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Figure 5: The adaptive tuning curve of PSO-RBF neural network
PID controller.

0 20 40 60 80 100
200

300

400

500

600

700

Iterations

M
in

im
um

 er
ro

r

Figure 6: The minimum error evolution of PSO-RBF neural
network.

are shown in Figure 7. It shows that electric gas pressure
regulator which adopts the PSO-RBF-PID has good dynamic
performance and higher control precision.

5. Conclusion

An in-depth research has been conducted on the mechanism
of electric gas regulator about its nonhigh control precision
and stability and a longer response time. It shows that the
existing electric gas regulators widely use conventional PID
control mode for it is simple and easy to be implemented.
However, it is difficult to establish a precise mathematical
model given that the pressure regulating system is time-
varying and nonlinear. Meanwhile, the conventional PID
controller parameters, usually set in line with human expe-
rience, cannot be modified online. So, it is hard to achieve
the expected control effect to use conventional incremental
PID control mode. Therefore, on the basis of the original
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Figure 7: The tracking curves of three kinds of control algorithm.

incremental PID control mode, the RBF neural network
based on PSO optimization is utilized to determine the initial
parameters of the network, and then again set PIDparameters
online; thus an improved PID intelligent control algorithm
suitable for electric gas pressure regulator is established.
Theoretical analysis and experimental results demonstrate
that the algorithm improves the control accuracy, response
speed, and tracking performance of electric gas pressure
regulator and can be widely applied to the field of electric gas
pressure.
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