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This paper investigates the finite-time stability problemof switching genetic regulatory networks (GRNs)with interval time-varying
delays and unbounded continuous distributed delays. Based on the piecewise Lyapunov-Krasovskii functional and the average dwell
time method, some new finite-time stability criteria are obtained in the form of linear matrix inequalities (LMIs), which are easy
to be confirmed by the Matlab toolbox. The finite-time stability is taken into account in switching genetic regulatory networks for
the first time and the average dwell time of the switching signal is obtained. Two numerical examples are presented to illustrate the
effectiveness of our results.

1. Introduction

In the last decade or so, the genetic regulatory networks
(GRNs) have become an important research area in molec-
ular Biology. On the one hand, how to construct GRNs
from gene expression data; on the other hand, what is the
dynamic characteristics of gene regulatory networks. The
stability is one of vital dynamic characteristics of GRNs and
is researched in this paper.There are also many references on
the stability of GRNs [1–6].

High throughput biological experiments have proved that
time delays were ubiquitous in GRNs. The existence of time
delays influences the stability of GRNs, which can give rise
to oscillatory or unstable networks. Therefore, it is necessary
to study the influences of time delays for the stability of
GRNs. There are a few theoretical results on GRNs with
time delays [7–15]. In [2], random time delays are taken
into account, and some stability criteria for the uncertain
delayed genetic networks with SUM regulatory logic where
each transcription factor acts additively to regulate a gene
were obtained. In [12], some stochastic asymptotic stability
conditions were established for a class of uncertain stochastic
genetic regulatory networks with mixed time-varying delays
by constructing appropriate Lyapunov-Krasovskii function-
als and employing stochastic analysis method. In [13, 14],

authors studied GRNs with constant delay, and asymptotical
stability criteria were proposed for GRNs with interval time-
varying delays and nonlinear disturbance in [10].

Cell-cycle regulatory processes can be viewed as finite-
state processes. So some complex GRNs were described
by continuous time switched system. Usually, a finite state
Markov chain was used to simulate this switch process [16–
19]. In [17], authors investigate the global robust stability of
uncertain stochastic GRNs with Markovian switching pro-
cess. In [19], control theory andmathematical tools were used
to analyze passivity for the stochastic Markovian switching
GRNs with time-varying delays. Some other methods are
also used to prove switched GRNs’ stability. In the literature
[20], authors used an average dwell time approach to consider
exponential stability of switched GRNs with time delays.

Both procedures of these proteins regulate gene expres-
sion and gene translated protein that are sometimes accom-
plished in a relatively short period of time. So it is realistically
significant to research the finite-time stability of GRNs and
some articles have researched the finite-time stability [21, 22].
There are few references about the finite-time stability of
GRNs;we research only the literature [23]. In [23], the authors
considered finite-time robust stability of uncertain stochastic
reaction-diffusion GRNs with time delays. The finite-time
stability of GRNs is the main contents in our paper.
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Motivated by the above discussions, we analyze finite-
time stability of switching genetic regulatory networks with
interval time-varying delays and continuous distributed
delays. Using a novel piecewise Lyapunov-Krasovskii func-
tional and finite-time stable definite, some new finite-time
stability criteria are obtained for the switched GRNs. The
features of this paper can be summarized as follows. (1)
the finite-time stability is researched in the switched GRNs
firstly; (2) continuous distributed delays are concerned; (3)
all sufficient conditions obtained depend on the time delays.

This paper is organized as follows. In Section 2, model
description, some assumptions, definitions, and lemmas are
given. In Section 3, some conditions are obtained to ensure
the finite-time stability of switched GRNs with interval
time-varying delays and continuous distributed delays. Two
numerical examples are given to demonstrate the effective-
ness of our analysis in Section 4. Finally, conclusions are
drawn in Section 5.

Notations. Throughout this paper, R, R𝑛, and R𝑛×𝑚 denote,
respectively, the set of all real numbers, real 𝑛-dimensional
space, and real 𝑛 × 𝑚-dimensional space. Z

+
denote the set

of all positive integers. ‖ ⋅ ‖ denote the Euclidean norms
in R𝑛. For a vector or matrix 𝐴, 𝐴𝑇 denotes its transpose.
For a square matrix 𝐴, 𝜆max(𝐴) and 𝜆min(𝐴) denote the
maximum eigenvalue and minimum eigenvalue of matrix 𝐴,
respectively, and sym (𝐴) is used to represent 𝐴 + 𝐴

𝑇. For
simplicity, in symmetric block matrices, we often use ∗ to
represent the term that is induced by symmetry.

2. Problem Formulation and
Some Preliminaries

We consider the following genetic regulatory networks:

𝑚̇ (𝑡) = −𝐴𝑚 (𝑡) + 𝐵𝑓 (𝑝 (𝑡 − 𝜏
1
(𝑡))) + 𝐼,

𝑝̇ (𝑡) = −𝐶𝑃 (𝑡) + 𝐷𝑚 (𝑡 − 𝜏
2
(𝑡)) ,

(1)

where 𝑚(𝑡) = [𝑚
1
(𝑡), . . . , 𝑚

𝑛
(𝑡)]
𝑇 is the concentrations of

mRNAs, 𝑝(𝑡) = [𝑝
1
(𝑡), . . . , 𝑝

𝑛
(𝑡)]
𝑇 is the concentrations of

proteins, 𝑓(⋅) = [𝑓
1
(⋅), . . . , 𝑓

𝑛
(⋅)]
𝑇 is the regulatory functions

of mRNAs, 𝐴 = diag(𝑎
1
, . . . , 𝑎

𝑛
) is the degradation rates

of mRNAs, 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) is the degradation rates of

proteins, 𝐷 = diag(𝑑
1
, . . . , 𝑑

𝑛
) is the translation rates of

proteins, 𝐼 = [𝐼
1
, . . . , 𝐼

𝑛
]
𝑇 is the basal rate, and 𝜏

1
(𝑡) and 𝜏

2
(𝑡)

are time-varying delays.
For obtaining our conclusions, we make the following

assumptions.

Assumption 1. 𝑓
𝑖
: R → R, 𝑖 = 1, . . . , 𝑛 are monotonically

increasing functions with saturation and satisfy

0 ≤
𝑓
𝑖
(𝑎) − 𝑓

𝑖
(𝑏)

𝑎 − 𝑏
≤ 𝑢
𝑖
, ∀𝑎, 𝑏 ∈ R, 𝑖 = 1, . . . , 𝑛, (2)

where 𝑢
𝑖
, 𝑖 = 1, . . . , 𝑛 are nonnegative constants.

Assumption 2. 𝜏
1
(𝑡) and 𝜏

2
(𝑡) are time-varying delays satisfy-

ing

0 ≤ 𝜏
11
≤ 𝜏
1
(𝑡) ≤ 𝜏

12
, ̇𝜏

1
(𝑡) ≤ 𝜏

13
< ∞,

0 ≤ 𝜏
21
≤ 𝜏
2
(𝑡) ≤ 𝜏

22
, ̇𝜏

2
(𝑡) ≤ 𝜏

23
< ∞.

(3)

Vectors𝑚∗, 𝑝∗ are an equilibrium point of the system (1).
Let 𝑥(𝑡) = 𝑚(𝑡) − 𝑚∗, 𝑦(𝑡) = 𝑝(𝑡) − 𝑝∗; we get

𝑥̇ (𝑡) = −𝐴𝑥 (𝑡) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏
1
(𝑡))) ,

̇𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏
2
(𝑡)) ,

(4)

where 𝑥(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇, 𝑦(𝑡) = [𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡)]
𝑇,

𝑔(⋅) = [𝑔(⋅), . . . , 𝑔(⋅)]
𝑇, and 𝑔

𝑖
(𝑦
𝑖
(𝑡)) = 𝑓

𝑖
(𝑦
𝑖
(𝑡)+𝑝∗

𝑖
) −𝑓
𝑖
(𝑝∗
𝑖
).

According to Assumption 1 and the definition of 𝑔
𝑖
(⋅), we

know that 𝑔
𝑖
(⋅) is bounded; that is, ∃𝐺 > 0, such that |𝑔

𝑖
(⋅)| ≤

𝐺, 𝑖 = 1, . . . , 𝑛 and satisfies the following sector condition:

0 ≤
𝑔
𝑖
(𝑎)

𝑎
≤ 𝑢
𝑖
, ∀𝑎 ∈ R/ {0} , 𝑖 = 1, . . . , 𝑛. (5)

Let 𝑈 = diag(𝑢
1
, . . . , 𝑢

𝑛
).

Sometimes, GRNs were described by continuous time
switched system, as in [17, 24, 25], so system (4) can be
described as switching system with switching signal:

𝑥̇ (𝑡) = −𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑔 (𝑦 (𝑡 − 𝜏
1
(𝑡))) ,

̇𝑦 (𝑡) = −𝐶
𝜎(𝑡)

𝑦 (𝑡) + 𝐷
𝜎(𝑡)

𝑥 (𝑡 − 𝜏
2
(𝑡)) ,

(6)

where 𝜎(𝑡) : [0,∞) → N = {1, . . . , 𝑁} is the switching
signal, which is a piecewise constant function depending on
time 𝑡. For each 𝑖 ∈ N, the matrices 𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, and 𝐷

𝑖

are the 𝑖th subsystem matrices that are constant matrices of
appropriate dimensions.

For the switching signal 𝜎(𝑡), we have the following
switching sequence:

{(𝑖
0
, 𝑡
0
) , . . . , (𝑖

𝑘
, 𝑡
𝑘
) , . . . | 𝑖

𝑘
∈ N, 𝑘 = 0, 1, . . .} , (7)

in otherwords, when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑖
𝑘
th subsystem is activated.

The initial condition of system (6) is assumed to be

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑦 (𝑡) = 𝜓 (𝑡) ,

−𝜌 ≤ 𝑡 ≤ 0, 𝜌 = max {𝜏
12
, 𝜏
22
} .

(8)

For proving the theorem, we recall the following defini-
tion and lemmas.

Definition 3. The system (6) is said to be finite-time stable
with respect to positive real numbers (𝑐

1
, 𝑐
2
, 𝑇), if

󵄩󵄩󵄩󵄩𝜙 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐶
1 +

󵄩󵄩󵄩󵄩𝜑 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐶
1 ≤ 𝑐
1
󳨐⇒ ‖𝑥 (𝑡)‖

2

+
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝑐
2
,

∀𝑡 ∈ [0, 𝑇] ,
(9)

where ‖𝜙(𝑡)‖
𝑐
1 = sup

−𝜌≤𝑡≤0
{‖𝜙(𝑡)‖, ‖ ̇𝜙(𝑡)‖}, ‖𝜑(𝑡)‖

𝑐
1 =

sup
−𝜌≤𝑡≤0

{‖𝜑(𝑡)‖, ‖𝜑̇(𝑡)‖}.
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Remark 4. The Lyapunov stability implies that, by starting
sufficiently close to the equilibrium point, trajectories can
be guaranteed to stay within any specified ball centered at
the equilibrium point. It depicts character of the equilibrium
point of the system. The finite-time stability implies that,
by starting from any specified compact set, trajectories can
be guaranteed to stay within a large enough compact set. It
depicts character of all solutions of the system and is called
the finite-time boundedness in some literatures [21, 22]. In
addition, the Lyapunov stability is considered in infinite
interval, but the finite-time stability is considered in finite
interval.

Remark 5. In [23], the authors considered the finite-time
robust stability of GRNs, but in our paper we considered
the finite-time stability of switching GRNs, which are more
realisticGRNs than that of the [23]. For the first time switched
GRNs’ finite-time stability is researched.

Definition 6. For any 𝑇 ≥ 𝑡 ≥ 0, let 𝑁
𝜎
(𝑡, 𝑇) denote the

number of switching of 𝜎(𝑡) over (𝑡, 𝑇). If

𝑁
𝜎
(𝑡, 𝑇) ≤ 𝑁

0
+
𝑇 − 𝑡

𝜏
𝑎

(10)

holds for 𝑁
0
≥ 0, 𝜏

𝑎
> 0, then 𝜏

𝑎
> 0 is called the average

dwell time and 𝑁
0
is the chatter bound. As commonly used

in the literature, we choose𝑁
0
= 0.

Lemma 7 (see [26]). For any positive definite matrix 𝑀 ∈

R𝑛×𝑛, there exist a scalar 𝑞 > 0 and a vector-valued function
𝜔 : [0, 𝑞] → R𝑛 such that

(∫
𝑞

0

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑀(∫
𝑞

0

𝜔 (𝑠) 𝑑𝑠) ≤ 𝑞∫
𝑞

0

𝜔
𝑇

(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠.

(11)

3. Main Results

In this section, we present a finite time stability theorem
for switching genetic regulatory networks with interval time-
varying delays (6).

Theorem 8. For switching system (6) with Assumptions 1 and
2, given a scalar 𝛼 > 0, if there exist symmetric positive definite
matrices𝑃

1𝑖
,𝑃
2𝑖
,𝑄
1𝑖
,𝑅
1𝑖
,𝑅
2𝑖
,𝑅
3𝑖
,𝑅
4𝑖
, for all 𝑖 ∈ N, the diagonal

matrix Λ
𝑚
= diag(𝜆

𝑚1
, . . . , 𝜆

𝑚𝑛
) ≥ 0, 𝑚 = 1, 2, matrices 𝑄

2𝑖
,

𝑄
3𝑖
, 𝑀
1𝑖
, 𝑖 ∈ 𝑁, and positive scalars 𝜇 ≥ 1 such that the

following inequalities

[
𝑄
2𝑖

𝑀
1𝑖

∗ 𝑄
3𝑖

] ≥ 0, 𝑃
𝑘𝑖
≤ 𝜇𝑃
𝑘𝑗
, 𝑘 = 1, 2,

[
𝑄
2𝑖

𝑀
1𝑖

∗ 𝑄
3𝑖

] ≤ 𝜇 [
𝑄
2𝑗

𝑀
1𝑗

∗ 𝑄
3𝑗

] , 𝑅
𝑙𝑖
≤ 𝜇𝑅
𝑙𝑗
,

𝑙 = 1, . . . , 4, ∀𝑖, 𝑗 ∈ N,

(12)

Ξ = Ω

+ sym {𝐿
𝑇

1
𝑅
1𝑖
𝐿
2
+ 𝐿
𝑇

1

× [𝑃
1𝑖
𝐵
𝑖
− 𝜏
2

21
𝐵
𝑇

𝑖
𝑅
1𝑖
𝐴
𝑖
− (𝜏
22
− 𝜏
21
)
2

𝐵
𝑇

𝑖
𝑅
2𝑖
𝐴
𝑖
]

× 𝐿
10
+ 𝐿
𝑇

2
𝑅
2𝑖
𝐿
3
+ 𝐿
𝑇

3
𝑅
2𝑖
𝐿
4
+ 𝐿
𝑇

3

× [𝑃
2𝑖
𝐷
𝑖
− 𝜏
2

11
𝐷
𝑇

𝑖
𝑅
3𝑖
𝐶
𝑖
− (𝜏
12
− 𝜏
11
)
2

𝐷
𝑇

𝑖
𝑅
4𝑖
𝐶
𝑖
]

×𝐿
5
+ 𝐿
𝑇

5
𝑅
3𝑖
𝐿
6
+ 𝐿
𝑇

5
(𝑀
1𝑖
+ Λ
1
𝑈) 𝐿
9
+𝐿
𝑇

6
𝑅
4𝑖
𝐿
7

+𝐿
𝑇

7
𝑅
4𝑖
𝐿
8
+ 𝐿
𝑇

7
[𝑀
1𝑖
(1 − 𝜏

13
) + Λ

2
𝑈] 𝐿
10
}

< 0, ∀𝑖 ∈ N,
(13)

hold, and the average dwell time of the switching signal 𝜎(𝑡)
satisfies

𝜏
𝑎
> 𝜏
∗

𝑎
=

𝑇 ln 𝜇
ln 𝑐
2
𝜆
2
− ln 𝑐
1
𝜆
1
− 𝛼𝑇

, (14)

where Ω = diag(−2𝑃
1𝑖
𝐴
𝑖
+ 𝑄
1𝑖
+ 𝜏2
21
𝐴𝑇
𝑖
𝑅
1𝑖
𝐴
𝑖
+ (𝜏
22
− 𝜏
21
)
2

𝐴𝑇
𝑖
𝑅
2𝑖
𝐴
𝑖
− 𝑅
1𝑖
− 𝛼𝑃

1𝑖
, −𝑅
1𝑖
− 𝑅
2𝑖
,−𝑄
1𝑖
(1 − 𝜏

23
) + 𝜏2
11
𝐷𝑇
𝑖

𝑅
3𝑖
𝐷
𝑖
+ (𝜏
12
− 𝜏
11
)
2

𝐷𝑇
𝑖
𝑅
4𝑖
𝐷
𝑖
−2𝑅
2𝑖
, −𝑅
2𝑖
,−2𝑃
2𝑖
𝐶
𝑖
+𝑄
2𝑖
+𝜏2
11
𝐶𝑇
𝑖

𝑅
3𝑖
𝐶
𝑖
+ (𝜏
12
− 𝜏
11
)
2

𝐶𝑇
𝑖
𝑅
4𝑖
𝐶
𝑖
−𝑅
3𝑖
− 𝛼𝑃
2𝑖
, −𝑅
3𝑖
−𝑅
4𝑖
,−𝑄
2𝑖
(1 −

𝜏
13
) − 2𝑅

4𝑖
, −𝑅
4𝑖
,𝑄
3𝑖
− 2Λ

1
, −𝑄
3𝑖
(1 − 𝜏

13
) + 𝜏2
21
𝐵𝑇
𝑖
𝑅
1𝑖
𝐵
𝑖
+

(𝜏
22
− 𝜏
21
)
2

𝐵𝑇
𝑖
𝑅
2𝑖
𝐵
𝑖
−2Λ
2
), 𝐿
𝑗
=[0
𝑛×(𝑗−1)𝑛

, 𝐼
𝑛×𝑛

, 0
𝑛×(11−𝑗)𝑛

], 𝑗 =
1, . . . , 10, 𝜆

1
= max

𝑖∈N{𝜆max(𝑃1𝑖) + 𝜏
22
𝜆max(𝑄1𝑖) + 𝜆max

(𝑃
2𝑖
) + 𝜏

12
𝜆max(𝑄2𝑖) + 𝜏

12
𝜆max(𝑄3𝑖) 𝜆max(𝑈𝑈) + 2𝜏

12

𝜆max(𝑀1𝑖) 𝜆max(𝑈) + (1/2) [𝜏3
21
𝜆max(𝑅1𝑖) + (𝜏

22
− 𝜏
21
)
3

𝜆max(𝑅2𝑖) + 𝜏
3

11
𝜆max(𝑅3𝑖) + (𝜏

12
− 𝜏
11
)
3

𝜆max(𝑅4𝑖)]}, 𝜆2 =

min
𝑖∈N[min(𝜆min(𝑃1𝑖), 𝜆min(𝑃2𝑖))]. The equilibrium point of

(6) is finite time stable with respect to positive real numbers
(𝑐
1
, 𝑐
2
, 𝑇).

Proof. Based on the system (6), we construct the following
Lyapunov-krasovskii functional:

𝑉
𝜎(𝑡)

(𝑡) = 𝑉
1𝜎(𝑡)

(𝑡) + 𝑉
2𝜎(𝑡)

(𝑡) + 𝑉
3𝜎(𝑡)

(𝑡) , (15)

where

𝑉
1𝜎(𝑡)

(𝑡) = 𝑥
𝑇

(𝑡) 𝑃
1𝜎(𝑡)

𝑥 (𝑡) + 𝑦
𝑇

(𝑡) 𝑃
2𝜎(𝑡)

𝑦 (𝑡) ,

𝑉
2𝜎(𝑡)

(𝑡) = ∫
𝑡

𝑡−𝜏
2(𝑡)

𝑥
𝑇

(𝑠) 𝑄
1𝜎(𝑡)

𝑥 (𝑡) 𝑑𝑠

+ ∫
𝑡

𝑡−𝜏
1(𝑡)

[𝑦
𝑇

(𝑠) , 𝑔
𝑇

(𝑦 (𝑠))] [
𝑄
2𝜎(𝑡)

𝑀
1𝜎(𝑡)

𝑀
1𝜎(𝑡)

𝑄
3𝜎(𝑡)

]

× [
𝑦 (𝑠)

𝑔 (𝑦 (𝑠))
] 𝑑𝑠,
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𝑉
3𝜎(𝑡)

(𝑡)

= ∫
0

−𝜏
21

∫
𝑡

𝑡+𝜃

𝜏
21
𝑥̇
𝑇

(𝑠) 𝑅
1𝜎(𝑡)

𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫
−𝜏
21

−𝜏
22

∫
𝑡

𝑡+𝜃

(𝜏
22
− 𝜏
21
) 𝑥̇
𝑇

(𝑠) 𝑅
2𝜎(𝑡)

𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫
0

−𝜏
11

∫
𝑡

𝑡+𝜃

𝜏
11

̇𝑦
𝑇

(𝑠) 𝑅
3𝜎(𝑡)

̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫
−𝜏
11

−𝜏
12

∫
𝑡

𝑡+𝜃

(𝜏
12
− 𝜏
11
) ̇𝑦
𝑇

(𝑠) 𝑅
4𝜎(𝑡)

̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃.

(16)

First, when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), taking the derivatives of𝑉
𝑖
, 𝑖 = 1, 2, 3

along the trajectory of system (6), we have that

𝑉̇
1𝜎(𝑡
𝑘
)
(𝑡) = 2𝑥

𝑇

(𝑡) 𝑃
1𝜎(𝑡
𝑘
)
𝑥̇ (𝑡) + 2𝑦

𝑇

(𝑡) 𝑃
2𝜎(𝑡
𝑘
)
̇𝑦 (𝑡) ,

𝑉̇
2𝜎(𝑡
𝑘
)
(𝑡) = 𝑥

𝑇

(𝑡) 𝑄
1𝜎(𝑡
𝑘
)
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝑄

1𝜎(𝑡
𝑘
)
𝑥
𝑇

× (𝑡 − 𝜏
2
(𝑡)) (1 − ̇𝜏

2
(𝑡))

+ [𝑦
𝑇

(𝑡) , 𝑔
𝑇

(𝑦 (𝑡))] [
𝑄
2𝜎(𝑡
𝑘
)
𝑀
1𝜎(𝑡
𝑘
)

∗ 𝑄
3𝜎(𝑡
𝑘
)

]

× [
𝑦 (𝑡)

𝑔 (𝑦 (𝑡))
]

− [𝑦
𝑇

(𝑡 − 𝜏
1
(𝑡)) , 𝑔

𝑇

(𝑦 (𝑡 − 𝜏
1
(𝑡)))]

× [
𝑄
2𝜎(𝑡
𝑘
)
𝑀
1𝜎(𝑡
𝑘
)

∗ 𝑄
3𝜎(𝑡
𝑘
)

] [
𝑦 (𝑡 − 𝜏

1
(𝑡))

𝑔 (𝑦 (𝑡 − 𝜏
1
(𝑡)))

]

× (1 − ̇𝜏
1
(𝑡)) ,

𝑉̇
3𝜎(𝑡
𝑘
)
(𝑡) = 𝜏

2

21
𝑥̇
𝑇

(𝑡) 𝑅
1𝜎(𝑡
𝑘
)
𝑥̇ (𝑠)

− ∫
𝑡

𝑡−𝜏
21

𝜏
21
𝑥̇
𝑇

(𝜃) 𝑅
1𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

+ (𝜏
22
− 𝜏
21
)
2

𝑥̇
𝑇

(𝑡) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝑠)

− ∫
𝑡−𝜏
21

𝑡−𝜏
22

(𝜏
22
− 𝜏
21
) 𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

+ 𝜏
2

11
̇𝑦
𝑇

(𝑡) 𝑅
3𝜎(𝑡
𝑘
)
̇𝑦 (𝑠)

− ∫
𝑡

𝑡−𝜏
11

𝜏
11

̇𝑦
𝑇

(𝜃) 𝑅
3𝜎(𝑡
𝑘
)
̇𝑦 (𝜃) 𝑑𝜃

+ (𝜏
12
− 𝜏
11
)
2

̇𝑦
𝑇

(𝑡) 𝑅
4𝜎(𝑡
𝑘
)
̇𝑦 (𝑠)

− ∫
𝑡−𝜏
11

𝑡−𝜏
12

(𝜏
12
− 𝜏
11
) ̇𝑦
𝑇

(𝜃) 𝑅
4𝜎(𝑡
𝑘
)
̇𝑦 (𝜃) 𝑑𝜃.

(17)

By Lemma 7, we have

− ∫
𝑡

𝑡−𝜏
21

𝜏
21
𝑥̇
𝑇

(𝜃) 𝑅
1𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

≤ −[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏
21
)]
𝑇

𝑅
1𝜎(𝑡
𝑘
)
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏

21
)] ,

(18)

− ∫
𝑡

𝑡−𝜏
11

𝜏
11

̇𝑦
𝑇

(𝜃) 𝑅
3𝜎(𝑡
𝑘
)
̇𝑦 (𝜃) 𝑑𝜃

≤ −[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏
11
)]
𝑇

𝑅
3𝜎(𝑡
𝑘
)
[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏

11
)] ,

(19)

− ∫
𝑡−𝜏
21

𝑡−𝜏
22

(𝜏
22
− 𝜏
21
) 𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

= − (𝜏
22
− 𝜏
21
) [∫
𝑡−𝜏
2
(𝑡)

𝑡−𝜏
22

𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

+ ∫
𝑡−𝜏
21

𝑡−𝜏
2(𝑡)

𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃]

= −∫
𝑡−𝜏
2
(𝑡)

𝑡−𝜏
22

(𝜏
22
− 𝜏
2
(𝑡)) 𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

− ∫
𝑡−𝜏
21

𝑡−𝜏
2(𝑡)

(𝜏
2
(𝑡) − 𝜏

21
) 𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

− ∫
𝑡−𝜏
2
(𝑡)

𝑡−𝜏
22

(𝜏
2
(𝑡) − 𝜏

21
) 𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

− ∫
𝑡−𝜏
21

𝑡−𝜏
2(𝑡)

(𝜏
22
− 𝜏
2
(𝑡)) 𝑥̇
𝑇

(𝜃) 𝑅
2𝜎(𝑡
𝑘
)
𝑥̇ (𝜃) 𝑑𝜃

≤ −[𝑥 (𝑡 − 𝜏
2
(𝑡)) − 𝑥 (𝑡 − 𝜏

22
)]
𝑇

× 𝑅
2𝜎(𝑡
𝑘
)
[𝑥 (𝑡 − 𝜏

2
(𝑡)) − 𝑥 (𝑡 − 𝜏

22
)]

− [𝑥 (𝑡 − 𝜏
21
) − 𝑥 (𝑡 − 𝜏

2
(𝑡))]
𝑇

× 𝑅
2𝜎(𝑡
𝑘
)
[𝑥 (𝑡 − 𝜏

21
) − 𝑥 (𝑡 − 𝜏

2
(𝑡))]

−
𝜏
2
(𝑡) − 𝜏

21

𝜏
22
− 𝜏
21

[𝑥 (𝑡 − 𝜏
2
(𝑡)) − 𝑥 (𝑡 − 𝜏

22
)]
𝑇

× 𝑅
2𝜎(𝑡
𝑘
)
[𝑥 (𝑡 − 𝜏

2
(𝑡)) − 𝑥 (𝑡 − 𝜏

22
)]

−
𝜏
22
− 𝜏
2
(𝑡)

𝜏
22
− 𝜏
21

[𝑥 (𝑡 − 𝜏
21
) − 𝑥 (𝑡 − 𝜏

2
(𝑡))]
𝑇

× 𝑅
2𝜎(𝑡
𝑘
)
[𝑥 (𝑡 − 𝜏

21
) − 𝑥 (𝑡 − 𝜏

2
(𝑡))] .

(20)
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Similar to (20), we can obtain

− ∫
𝑡−𝜏
11

𝑡−𝜏
12

(𝜏
12
− 𝜏
11
) ̇𝑦
𝑇

(𝜃) 𝑅
4𝜎(𝑡
𝑘
)
̇𝑦 (𝜃) 𝑑𝜃

≤ −[𝑦 (𝑡 − 𝜏
1
(𝑡)) − 𝑦 (𝑡 − 𝜏

12
)]
𝑇

× 𝑅
4𝜎(𝑡
𝑘
)
[𝑦 (𝑡 − 𝜏

1
(𝑡)) − 𝑦 (𝑡 − 𝜏

12
)]

− [𝑦 (𝑡 − 𝜏
11
) − 𝑦 (𝑡 − 𝜏

1
(𝑡))]
𝑇

× 𝑅
4𝜎(𝑡
𝑘
)
[𝑦 (𝑡 − 𝜏

11
) − 𝑦 (𝑡 − 𝜏

1
(𝑡))]

−
𝜏
1
(𝑡) − 𝜏

11

𝜏
12
− 𝜏
11

[𝑦 (𝑡 − 𝜏
1
(𝑡)) − 𝑦 (𝑡 − 𝜏

12
)]
𝑇

× 𝑅
4𝜎(𝑡
𝑘
)
[𝑦 (𝑡 − 𝜏

1
(𝑡)) − 𝑦 (𝑡 − 𝜏

12
)]

−
𝜏
12
− 𝜏
1
(𝑡)

𝜏
12
− 𝜏
11

[𝑦 (𝑡 − 𝜏
11
) − 𝑦 (𝑡 − 𝜏

1
(𝑡))]
𝑇

× 𝑅
4𝜎(𝑡
𝑘
)
[𝑦 (𝑡 − 𝜏

11
) − 𝑦 (𝑡 − 𝜏

1
(𝑡))] .

(21)

In addition, for any Λ
𝑚
= diag(𝜆

𝑚1
, . . . , 𝜆

𝑚𝑛
) ≥ 0, 𝑚 = 1, 2,

the following inequality is true from (5):

− 2

𝑛

∑
𝑖=1

𝜆
1𝑖
𝑔
𝑖
(𝑦
𝑖
(𝑡)) [𝑔

𝑖
(𝑦
𝑖
(𝑡)) − 𝑢

𝑖
𝑦
𝑖
(𝑡)]

− 2

𝑛

∑
𝑖=1

𝜆
2𝑖
𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜏
1
(𝑡)))

× [𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜏
1
(𝑡))) − 𝑢

𝑖
𝑦
𝑖
(𝑡 − 𝜏
1
(𝑡))] ≥ 0.

(22)

It can be written as matrix form:

− 2𝑔
𝑇

(𝑦 (𝑡)) Λ
1
[𝑔 (𝑦 (𝑡)) − 𝑈𝑦 (𝑡)] − 2𝑔

𝑇

(𝑦 (𝑡 − 𝜏
1
(𝑡))) Λ

2

× [𝑔 (𝑦 (𝑡 − 𝜏
1
(𝑡))) − 𝑈𝑦 (𝑡 − 𝜏

1
(𝑡))] ≥ 0.

(23)

From (15) to (23), we have that

𝑉̇
𝜎(𝑡
𝑘
)
(𝑡)

≤ 2𝑥
𝑇

(𝑡) 𝑃
1𝜎(𝑡
𝑘
)
[−𝐴
𝜎(𝑡
𝑘
)
𝑥 (𝑡) + 𝐵

𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡)))]

+ 2𝑦
𝑇

(𝑡) 𝑃
2𝜎(𝑡
𝑘
)
[−𝐶
𝜎(𝑡
𝑘
)
𝑦 (𝑡) + 𝐷

𝜎(𝑡
𝑘
)
𝑥 (𝑡 − 𝜏

2
(𝑡))]

+ 𝑥
𝑇

(𝑡) 𝑄
1𝜎(𝑡
𝑘
)
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝑄

1𝜎(𝑡
𝑘
)
𝑥
𝑇

× (𝑡 − 𝜏
2
(𝑡)) (1 − 𝜏

2𝑑
) + 𝑦
𝑇

(𝑡) 𝑄
2𝜎
𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡)𝑀
1𝜎
𝑔 (𝑦 (𝑡)) + 𝑔

𝑇

(𝑦 (𝑡)) 𝑄
3𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡))

− 𝑦
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝑄

2𝜎(𝑡
𝑘
)
𝑦 (𝑡 − 𝜏

1
(𝑡)) (1 − 𝜏

1𝑑
)

− 2𝑦
𝑇

(𝑡 − 𝜏
1
(𝑡))𝑀

1𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡))) (1 − 𝜏

1𝑑
)

− 𝑔
𝑇

(𝑦 (𝑡 − 𝜏
1
(𝑡))) 𝑄

3𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡))) (1 − 𝜏

1𝑑
)

+ 𝜏
2

21
[−𝐴
𝜎(𝑡
𝑘
)
𝑥 (𝑡) + 𝐵

𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡)))]
𝑇

× 𝑅
1𝜎(𝑡
𝑘
)
[−𝐴
𝜎(𝑡
𝑘
)
𝑥 (𝑡) + 𝐵

𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡)))]

+ (𝜏
22
− 𝜏
21
)
2

[−𝐴
𝜎(𝑡
𝑘
)
𝑥(𝑡) + 𝐵

𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡)))]
𝑇

× 𝑅
2𝜎(𝑡
𝑘
)
[−𝐴
𝜎(𝑡
𝑘
)
𝑥 (𝑡) + 𝐵

𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡)))]

+ 𝜏
2

11
[−𝐶
𝜎(𝑡
𝑘
)
𝑦 (𝑡) + 𝐷

𝜎(𝑡
𝑘
)
𝑥 (𝑡 − 𝜏

2
(𝑡))]
𝑇

× 𝑅
3𝜎(𝑡
𝑘
)
[−𝐶
𝜎(𝑡
𝑘
)
𝑦 (𝑡) + 𝐷

𝜎(𝑡
𝑘
)
𝑥 (𝑡 − 𝜏

2
(𝑡))]

+ (𝜏
12
− 𝜏
11
)
2

[−𝐶
𝜎(𝑡
𝑘
)
𝑦 (𝑡) + 𝐷

𝜎(𝑡
𝑘
)
𝑥 (𝑡 − 𝜏

2
(𝑡))]
𝑇

× 𝑅
4𝜎(𝑡
𝑘
)
[−𝐶
𝜎(𝑡
𝑘
)
𝑦 (𝑡) + 𝐷

𝜎(𝑡
𝑘
)
𝑥 (𝑡 − 𝜏

2
(𝑡))]

− [𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏
21
)]
𝑇

𝑅
1𝜎(𝑡
𝑘
)
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏

21
)]

− [𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏
11
)]
𝑇

𝑅
3𝜎(𝑡
𝑘
)
[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏

11
)]

− [𝑥 (𝑡 − 𝜏
2
(𝑡)) − 𝑥 (𝑡 − 𝜏

22
)]
𝑇

× 𝑅
2𝜎(𝑡
𝑘
)
[𝑥 (𝑡 − 𝜏

2
(𝑡)) − 𝑥 (𝑡 − 𝜏

22
)]

− [𝑥 (𝑡 − 𝜏
21
) − 𝑥 (𝑡 − 𝜏

2
(𝑡))]
𝑇

× 𝑅
2𝜎(𝑡
𝑘
)
[𝑥 (𝑡 − 𝜏

21
) − 𝑥 (𝑡 − 𝜏

2
(𝑡))]

− [𝑦 (𝑡 − 𝜏
1
(𝑡)) − 𝑦 (𝑡 − 𝜏

12
)]
𝑇

× 𝑅
4𝜎(𝑡
𝑘
)
[𝑦 (𝑡 − 𝜏

1
(𝑡)) − 𝑦 (𝑡 − 𝜏

12
)]

− [𝑦 (𝑡 − 𝜏
11
) − 𝑦 (𝑡 − 𝜏

1
(𝑡))]
𝑇

× 𝑅
4𝜎(𝑡
𝑘
)
[𝑦 (𝑡 − 𝜏

11
) − 𝑦 (𝑡 − 𝜏

1
(𝑡))]

− 2𝑔
𝑇

(𝑦 (𝑡)) Λ
1
[𝑔 (𝑦 (𝑡)) − 𝑈𝑦 (𝑡)]

− 2𝑔
𝑇

(𝑦 (𝑡 − 𝜏
1
(𝑡)))

× Λ
2
[𝑔 (𝑦 (𝑡 − 𝜏

1
(𝑡))) − 𝑈𝑦 (𝑡 − 𝜏

1
(𝑡))]

≤ 𝜉
𝑇

Ξ𝜉 + 𝛼 (𝑥
𝑇

(𝑡) 𝑃
1𝜎(𝑡
𝑘
)
𝑥 (𝑡) + 𝑦

𝑇

(𝑡) 𝑃
2𝜎(𝑡
𝑘
)
𝑦 (𝑡))

≤ 𝜉
𝑇

Ξ𝜉 + 𝛼𝑉
𝜎(𝑡
𝑘
)
(𝑡) ,

(24)

where

𝜉
𝑇

= [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏
21
) , 𝑥
𝑇

(𝑡 − 𝜏
2
(𝑡)) , 𝑥

𝑇

(𝑡 − 𝜏
22
) ,

𝑦
𝑇

(𝑡) , 𝑦
𝑇

(𝑡 − 𝜏
11
) , 𝑦
𝑇

(𝑡 − 𝜏
1
(𝑡)) , 𝑦

𝑇

(𝑡 − 𝜏
12
)

𝑔
𝑇

(𝑦 (𝑡)) , 𝑔
𝑇

(𝑦 (𝑡 − 𝜏
1
(𝑡)))] .

(25)
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By condition (13), we have

𝑉̇
𝜎(𝑡
𝑘
)
(𝑡) ≤ 𝛼𝑉

𝜎(𝑡
𝑘
)
(𝑡) . (26)

Integrating (26) from 𝑡
𝑘
to 𝑡, we obtain that

𝑉
𝜎(𝑡
𝑘
)
(𝑡) ≤ 𝑒

𝛼(𝑡−𝑡
𝑘
)

𝑉
𝜎(𝑡
𝑘
)
(𝑡
𝑘
) . (27)

Using (12), at switching instant 𝑡
𝑘
, we have

𝑉
𝜎(𝑡
𝑘
)
(𝑡
𝑘
) ≤ 𝜇𝑉

𝜎(𝑡
−

𝑘
)
(𝑡
−

𝑘
) . (28)

Therefore, it follows from (27) and (28) that

𝑉
𝜎(𝑡
𝑘
)
(𝑡) ≤ 𝑒

𝛼(𝑡−𝑡
𝑘
)

𝜇𝑉
𝜎(𝑡
−

𝑘
)
(𝑡
−

𝑘
) . (29)

For any 𝑡 ∈ [0, 𝑇], noting that𝑁
𝜎
(0, 𝑡) ≤ 𝑁

𝜎
(0, 𝑇) ≤ 𝑇/𝜏

𝑎
, we

have

𝑉
𝜎(𝑡)

(𝑡) ≤ 𝑒
𝛼𝑡

𝜇
𝑇/𝜏
𝑎𝑉
𝜎(0)

(0) . (30)

On the other hand, it follows from (15) that

𝑉
𝜎(0)

(0)

≤ max
𝑖∈N

{ [𝜆max (𝑃1𝑖) + 𝜏22𝜆max (𝑄1𝑖)]

× sup
−𝜌≤𝑡≤0

󵄩󵄩󵄩󵄩𝜑 (𝑡)
󵄩󵄩󵄩󵄩
2

+ [𝜆max (𝑃2𝑖) + 𝜏12𝜆max (𝑄2𝑖)

+ 𝜏
12
𝜆max (𝑄3𝑖) 𝜆max (𝑈𝑈)

+ 2𝜏
12
𝜆max (𝑀1𝑖) 𝜆max (𝑈)]

× sup
−𝜌≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡)
󵄩󵄩󵄩󵄩
2

+
1

2
[𝜏
3

21
𝜆max (𝑅1𝑖) + (𝜏22 − 𝜏21)

3

× 𝜆max (𝑅2𝑖)]

× sup
−𝜌≤𝑡≤0

󵄩󵄩󵄩󵄩𝜑̇ (𝑡)
󵄩󵄩󵄩󵄩
2

+
1

2
[𝜏
3

11
𝜆max (𝑅3𝑖) + (𝜏12 − 𝜏11)

3

×𝜆max (𝑅4𝑖)] sup
−𝜌≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓̇ (𝑡)
󵄩󵄩󵄩󵄩
2

}

≤ max
𝑖∈N

{𝜆max (𝑃1𝑖) + 𝜏22𝜆max (𝑄1𝑖) + 𝜆max (𝑃2𝑖)

+ 𝜏
12
𝜆max (𝑄2𝑖) + 𝜏12𝜆max (𝑄3𝑖) 𝜆max (𝑈𝑈)

+ 2𝜏
12
𝜆max (𝑀1𝑖) 𝜆max (𝑈)

+
1

2
[𝜏
3

21
𝜆max (𝑅1𝑖) + (𝜏22 − 𝜏21)

3

𝜆max (𝑅2𝑖)

+𝜏
3

11
𝜆max (𝑅3𝑖) + (𝜏12 − 𝜏11)

3

𝜆max (𝑅4𝑖)] } 𝑐1,

𝑉
𝜎(𝑡)

(𝑡)

≥ min
𝑖∈N

[𝜆min (𝑃1𝑖) ‖𝑥 (𝑡)‖
2

+ 𝜆min (𝑃2𝑖)
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

]

≥ min
𝑖∈N

[min (𝜆min (𝑃1𝑖) , 𝜆min (𝑃2𝑖))]

× (‖𝑥 (𝑡)‖
2

+
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

) .

(31)

From (30) and (31) it is easy to obtain

‖𝑥 (𝑡)‖
2

+
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝑒
𝛼𝑡

𝜇
𝑇/𝜏
𝑎
𝜆
1

𝜆
2

𝑐
1
≤ 𝑒
𝛼𝑇

𝜇
𝑇/𝜏
𝑎
𝜆
1

𝜆
2

𝑐
1
, (32)

where

𝜆
1
= max
𝑖∈N

{𝜆max (𝑃1𝑖) + 𝜏22𝜆max (𝑄1𝑖) + 𝜆max (𝑃2𝑖)

+ 𝜏
12
𝜆max (𝑄2𝑖) + 𝜏12𝜆max (𝑄3𝑖) 𝜆max (𝑈𝑈)

+ 2𝜏
12
𝜆max (𝑀1𝑖) 𝜆max (𝑈)

+
1

2
[𝜏
3

21
𝜆max (𝑅1𝑖) + (𝜏22 − 𝜏21)

3

𝜆max (𝑅2𝑖)

+ 𝜏
3

11
𝜆max (𝑅3𝑖) + (𝜏12 − 𝜏11)

3

𝜆max (𝑅4𝑖) ] } ,

𝜆
2
= min
𝑖∈N

[min (𝜆min (𝑃1𝑖) , 𝜆min (𝑃2𝑖))] .

(33)

By (14) and (32), for any 𝑡 ∈ [0, 𝑇], we obtain that

‖𝑥 (𝑡)‖
2

+
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝑐
2
. (34)

This completes the proof.

Next, we consider the finite-time stability of the
genetic regulatory networks with time-varying delays and
unbounded continuous distributed delays:

𝑥̇ (𝑡) = −𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑔 (𝑦 (𝑡 − 𝜏
1
(𝑡)))

+ 𝑊
𝜎(𝑡)

∫
∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠,

̇𝑦 (𝑡) = −𝐶
𝜎(𝑡)

𝑦 (𝑡) + 𝐷
𝜎(𝑡)

𝑥 (𝑡 − 𝜏
2
(𝑡)) ,

(35)

where 𝜎(𝑡) : [0,∞) → N = {1, . . . , 𝑁} is the switching
signal, thematrix𝑊

𝑖
, 𝑖 ∈ N, is the 𝑖th subsystem distributively
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delayed connection weight matrix of appropriate dimension,
ℎ(⋅) = diag(ℎ

1
(⋅), . . . , ℎ

𝑛
(⋅)) is the delay kernel function, and

all the other signs are defined as (6).

Assumption 9. The delay kernel ℎ
𝑗
’s are some real value

nonnegative continuous functions defined in [0,∞), that
satisfy

∫
∞

0

ℎ
𝑗
(𝑠) 𝑑𝑠 = 1, ∫

∞

0

𝑠ℎ
𝑗
(𝑠) 𝑑𝑠 = 𝑘

𝑖
< ∞,

𝑗 = 1, . . . , 𝑛.

(36)

Theorem 10. For switching system (35)with Assumptions 1–9,
given a scalar 𝛼 > 0, if there exist symmetric positive definite
matrices 𝑃

1𝑖
, 𝑃
2𝑖
, 𝑄
1𝑖
, 𝑅
1𝑖
, 𝑅
2𝑖
, 𝑅
3𝑖
, 𝑅
4𝑖
, the positive definite

diagonal matrix 𝐿
𝑖
= diag(𝑙

1𝑖
, . . . , 𝑙
𝑛𝑖
), for all 𝑖 ∈ N, Λ

𝑚
=

diag(𝜆
𝑚1
, . . . , 𝜆

𝑚𝑛
), 𝑚 = 1, 2, matrices 𝑄

2𝑖
, 𝑄
3𝑖
, 𝑀
1𝑖
, 𝑖 ∈ 𝑁,

and positive scalars 𝜇 ≥ 1 such that the following inequalities

[
𝑄
2𝑖

𝑀
1𝑖

∗ 𝑄
3𝑖

] ≥ 0, 𝑃
𝑘𝑖
≤ 𝜇𝑃
𝑘𝑗
, 𝑘 = 1, 2,

[
𝑄
2𝑖

𝑀
1𝑖

∗ 𝑄
3𝑖

] ≤ 𝜇 [
𝑄
2𝑗

𝑀
1𝑗

∗ 𝑄
3𝑗

] , 𝑅
𝑙𝑖
≤ 𝜇𝑅
𝑙𝑗
,

𝑙 = 1, . . . , 4, ∀𝑖, 𝑗 ∈ N,

(37)

Ξ
1
= Ω
1

+ sym {𝐹
𝑇

1
𝑅
1𝑖
𝐹
2
+ 𝐹
𝑇

1
[𝑃
1𝑖
𝐵
𝑖
− 𝜏
2

21
𝐵
𝑇

𝑖
𝑅
1𝑖
𝐴
𝑖

−(𝜏
22
− 𝜏
21
)
2

𝐵
𝑇

𝑖
𝑅
2𝑖
𝐴
𝑖
]

× 𝐹
10
+ 𝐹
𝑇

2
𝑅
2𝑖
𝐹
3
+ 𝐹
𝑇

3
𝑅
2𝑖
𝐹
4
+ 𝐹
𝑇

3

× [𝑃
2𝑖
𝐷
𝑖
− 𝜏
2

11
𝐷
𝑇

𝑖
𝑅
3𝑖
𝐶
𝑖
− (𝜏
12
− 𝜏
11
)
2

𝐷
𝑇

𝑖
𝑅
4𝑖
𝐶
𝑖
]

× 𝐹
5
+ 𝐹
𝑇

5
𝑅
3𝑖
𝐹
6
+ 𝐹
𝑇

5
(𝑀
1𝑖
+ Λ
1
𝑈)𝐹
9
+ 𝐹
𝑇

6
𝑅
4𝑖
𝐹
7

+𝐹
𝑇

7
𝑅
4𝑖
𝐹
8
+ 𝐹
𝑇

7
[𝑀
1𝑖
(1 − 𝜏

13
) + Λ

2
𝑈]𝐹
10
}

< 0, ∀𝑖 ∈ N,
(38)

hold, and the average dwell time of the switch signal 𝜎(𝑡)
satisfies

𝜏
𝑎
> 𝜏
∗

𝑎
=

𝑇 ln 𝜇
ln 𝑐
2
𝜆
2
− ln 𝑐
1
𝜆
1
− 𝛼𝑇

, (39)

where Ω = diag(−2𝑃
1𝑖
𝐴
𝑖
+ 𝜏2
21
𝐴𝑇
𝑖
𝑅
1𝑖
𝐴
𝑖
+ (𝜏
22
− 𝜏
21
)
2

𝐴𝑇
𝑖
𝑅
2𝑖
𝐴
𝑖
− 𝑅
1𝑖
− 𝛼𝑃
1𝑖
, −𝑅
1𝑖
− 𝑅
2𝑖
,−𝑄
1𝑖
(1 − 𝜏

23
) + 𝜏2

11
𝐷𝑇
𝑖

𝑅
3𝑖
𝐷
𝑖
+ (𝜏
12
− 𝜏
11
)
2

𝐷𝑇
𝑖
𝑅
4𝑖
𝐷
𝑖
−2𝑅
2𝑖
,−𝑅
2𝑖
,−2𝑃
2𝑖
𝐶
𝑖
+𝑄
2𝑖
+𝜏2
11
𝐶𝑇
𝑖

𝑅
3𝑖
𝐶
𝑖
+ (𝜏
12
− 𝜏
11
)
2

𝐶𝑇
𝑖
𝑅
4𝑖
𝐶
𝑖
− 𝑅
3𝑖
− 𝛼𝑃
2𝑖
,−𝑅
3𝑖
− 𝑅
4𝑖
, −𝑄
2𝑖

(1 − 𝜏
13
) − 2𝑅

4𝑖
, −𝑅
4𝑖
, 𝑄
2𝑖
− 2Λ

1
+ 𝐿
𝑖
,−𝑄
3𝑖
(1 − 𝜏

13
) +

𝜏2
21
𝐵𝑇
𝑖
𝑅
1𝑖
𝐵
𝑖
+(𝜏
22
− 𝜏
21
)
2

𝐵𝑇
𝑖
𝑅
2𝑖
𝐵
𝑖
− 2Λ
2
, −𝐿
𝑖
),𝐹
𝑗
= [0
𝑛×(𝑗−1)𝑛

,

𝐼
𝑛×𝑛

, 0
𝑛×(12−𝑗)𝑛

], 𝑗 = 1, . . . , 11, 𝜆󸀠
1
= max

𝑖∈N{𝜆max(𝑃1𝑖) +

𝜏
22
𝜆max(𝑄1𝑖) + 𝜆max(𝑃2𝑖) + 𝜏

12
𝜆max(𝑄2𝑖) +

𝜏
12
𝜆max(𝑄3𝑖) 𝜆max(𝑈𝑈) + 2𝜏

12
𝜆max(𝑀1𝑖)𝜆max(𝑈) + (1/2)

[𝜏
3

21
𝜆max(𝑅1𝑖) + (𝜏

22
− 𝜏
21
)
3

𝜆max(𝑅2𝑖) + 𝜏3
11
𝜆max(𝑅3𝑖) +

(𝜏
12
− 𝜏
11
)
3

𝜆max(𝑅4𝑖)] + 𝜆max(𝑅4𝑖) + 𝐺2∑
𝑛

𝑗=1
𝑙
𝑖𝑗
𝑘
𝑗
}, 𝜆󸀠
2
= 𝜆
2
.

The equilibrium point of (35) is finite time stable with respect
to positive real numbers (𝑐

1
, 𝑐
2
, 𝑇).

Proof. Based on the system (35), we construct the following
Lyapunov-krasovskii functional:

𝑉
𝜎(𝑡)

(𝑡) = 𝑉
1𝜎(𝑡)

(𝑡) + 𝑉
2𝜎(𝑡)

(𝑡) + 𝑉
3𝜎(𝑡)

(𝑡) + 𝑉
4𝜎(𝑡)

(𝑡) , (40)

where𝑉
1𝜎(𝑡)

(𝑡),𝑉
2𝜎(𝑡)

(𝑡),𝑉
3𝜎(𝑡)

(𝑡) are defined as inTheorem 8,

𝑉
4𝜎(𝑡)

(𝑡) =

𝑛

∑
𝑖=1

𝑙
𝑖𝜎(𝑡)

∫
∞

0

ℎ
𝑖
(𝜃) ∫
𝑡

𝑡−𝜃

𝑔
2

𝑖
(𝑦
𝑖
(𝑠)) 𝑑𝑠 𝑑𝜃, (41)

when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

); taking the derivatives of 𝑉
4
along the

trajectory of system (35), we have that

𝑉̇
4𝜎(𝑡
𝑘
)
(𝑡) =

𝑛

∑
𝑖=1

𝑙
𝑖𝜎(𝑡
𝑘
)
𝑔
2

𝑖
(𝑦
𝑖
(𝑡))

−

𝑛

∑
𝑖=1

𝑙
𝑖𝜎(𝑡
𝑘
)
∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
2

𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃,

(42)

By Cauchy’s inequality (∫ 𝑝(𝑠)𝑞(𝑠)𝑑𝑠)
2

≤ (∫ 𝑝2(𝑠)𝑑𝑠)

(∫ 𝑞2(𝑠)𝑑𝑠), we obtain that

𝑛

∑
𝑖=1

𝑙
𝑖𝜎(𝑡
𝑘
)
∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
2

𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃

=

𝑛

∑
𝑖=1

𝑙
𝑖𝜎(𝑡
𝑘
)
∫
∞

0

ℎ
𝑖
(𝜃) 𝑑𝜃

× ∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
2

𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃

≥

𝑛

∑
𝑖=1

𝑙
𝑖𝜎(𝑡
𝑘
)
[∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃]

2

= [∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃]

𝑇

× 𝐿
𝜎(𝑡
𝑘
)
[∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃] .

(43)

Therefore,

𝑉̇
4𝜎(𝑡
𝑘
)
(𝑡) ≤ 𝑔

𝑇

(𝑦 (𝑡)) 𝐿
𝜎(𝑡
𝑘
)
𝑔 (𝑦 (𝑡))

− [∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃]

𝑇

× 𝐿
𝜎(𝑡
𝑘
)
[∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃] .

(44)

Combing (17)–(23) and (40)–(43), we get

𝑉̇
𝜎(𝑡
𝑘
)
(𝑡) ≤ 𝜉

𝑇

1
Ξ
1
𝜉
1
+ 𝛼𝑉
𝜎(𝑡
𝑘
)
(𝑡) , (45)
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where

𝜉
𝑇

1
= [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏
21
) , 𝑥
𝑇

(𝑡 − 𝜏
2
(𝑡)) , 𝑥

𝑇

(𝑡 − 𝜏
22
) ,

𝑦
𝑇

(𝑡) , 𝑦
𝑇

(𝑡 − 𝜏
11
) , 𝑦
𝑇

(𝑡 − 𝜏
1
(𝑡)) , 𝑦

𝑇

(𝑡 − 𝜏
12
) ,

𝑔
𝑇

(𝑦 (𝑡)) , 𝑔
𝑇

(𝑦 (𝑡 − 𝜏
1
(𝑡))) ,

[∫
∞

0

ℎ
𝑖
(𝜃) 𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜃)) 𝑑𝜃]

𝑇

] .

(46)

Similar to the proof of Theorem 8, for any 𝑡 ∈ [0, 𝑇], we have
that

‖𝑥 (𝑡)‖
2

+
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝑒
𝛼𝑇

𝜇
𝑇/𝜏
𝑎

𝜆󸀠
1

𝜆󸀠
2

𝑐
1
, (47)

where

𝜆
󸀠

1
= max
𝑖∈N

{

{

{

𝜆max (𝑃1𝑖) + 𝜏22𝜆max (𝑄1𝑖) + 𝜆max (𝑃2𝑖)

+ 𝜏
12
𝜆max (𝑄2𝑖) + 𝜏12𝜆max (𝑄3𝑖) 𝜆max (𝑈𝑈)

+ 2𝜏
12
𝜆max (𝑀1𝑖) 𝜆max (𝑈)

+
1

2
[𝜏
3

21
𝜆max (𝑅1𝑖) + (𝜏22 − 𝜏21)

3

𝜆max (𝑅2𝑖)

+ 𝜏
3

11
𝜆max (𝑅3𝑖) + (𝜏12 − 𝜏11)

3

𝜆max (𝑅4𝑖)]

+𝜆max (𝑅4𝑖) + 𝐺
2

𝑛

∑
𝑗=1

𝑙
𝑖𝑗
𝑘
𝑗

}

}

}

,

𝜆
󸀠

2
= 𝜆
2
.

(48)

By (39) and (47), we obtain that

‖𝑥 (𝑡)‖
2

+
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝑐
2
. (49)

This completes the proof.

4. Numerical Examples

In this section, we will give two examples to show the
effectiveness of our results. The aim is to examine the finite-
time stability for gene networks under proper conditions by
applyingTheorems 8 and 10.

Example 1. Consider a genetic regulatory network model
reported by Elowitz and Leibler [27], which studied the
dynamics of repressilator which is cyclic negative-feedback
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Figure 1: mRNA concentrations 𝑥(𝑡).
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Figure 2: Protein concentrations 𝑦(𝑡).

loop comprising three repressor genes (𝑖 = 𝑙acl, tetR, and cl)
and their promoters (𝑗 = 𝑐l, lacl, and tetR):

𝑑𝑚
𝑖

𝑑𝑡
= −𝑚
𝑖
+

𝛼

1 + 𝑝𝑛
𝑗

+ 𝛼
0
,

𝑑𝑝
𝑖

𝑑𝑡
= 𝛽 (𝑚

𝑖
− 𝑝
𝑖
) ,

(50)

where 𝑚
𝑖
and 𝑝

𝑖
are the concentrations of two mRNAs and

repressor-protein; 𝛼
0
is the growth rate of protein in a cell in

the presence of saturating amounts of repressor, while 𝛼
0
+ 𝛼

is the growth rate in its abscence; 𝛽 denotes the ratio of
the protein decay rate to mRNA decay rate; and 𝑛 is a Hill
coefficient.

Taking time-varying delays and mode switching into
account, we rewrite the above equation into vector form by
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adjusting some parameters and shifting the equilibriumpoint
to the origin, and then we get the following model:

𝑥̇ (𝑡) = −𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑔 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

̇𝑦 (𝑡) = −𝐶
𝑖
𝑦 (𝑡) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑖 = 1, 2,

(51)

where

𝐴
1
= diag (4, 4, 4) , 𝐶

1
= diag (5, 5, 5) ,

𝐷
1
= diag (2, 1.5, 1) , 𝐴

2
= diag (3, 3, 3) ,

𝐶
2
= diag (4, 4, 4) , 𝐷

2
= diag (1.2, 1.2, 1.2) ,

𝐵
1
= 2 × (

0 0 −1

−1 0 0

0 −1 0

) , 𝐵
2
= 1.5 × (

0 0 −1

−1 0 0

0 −1 0

) .

(52)

The gene regulation function is taken as 𝑔(𝑥) = 𝑥
2/(1 +

𝑥2), 𝑈 = diag (0.65, 0.65, 0.65). The time delays 𝜏
1
(𝑡) and

𝜏
2
(𝑡) are assumed to be:

𝜏
1
(𝑡) = 0.6 + 0.4 sin 𝑡, 𝜏

2
(𝑡) = 0.3 + 0.1 cos 𝑡; (53)

we can get the parameters as following:

𝜏
11
= 0.2, 𝜏

12
= 1, 𝜏

13
= 0.4,

𝜏
21
= 0.4, 𝜏

22
= 0.2, 𝜏

23
= 0.1,

(54)

and let 𝑐
1
= 2, 𝑐

2
= 1.5, 𝑇 = 5, 𝛼 = 0.02, 𝜇 = 1.2. By using

the Matlab LMI toolbox, we can solve the LMIs (12), (13) and
obtain feasible solutions. Equation (13) can be reformulated
in the following in the form of LMI:

Ξ =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑎
𝑖

11
𝑅
1𝑖

0 0 0 0 0 0 0 𝑎𝑖
1,10

∗ −𝑅
1𝑖
− 𝑅
2𝑖

𝑅
2𝑖

0 0 0 0 0 0 0

∗ ∗ 𝑎𝑖
33

𝑅
2𝑖

𝑎𝑖
3,5

0 0 0 0 0

∗ ∗ ∗ −𝑅
2𝑖

0 0 0 0 0 0

∗ ∗ ∗ ∗ 𝑎𝑖
55

𝑅
3𝑖

0 0 𝑀
1𝑖
+ Λ
1
𝑈 0

∗ ∗ ∗ ∗ ∗ −𝑅
3𝑖
− 𝑅
4𝑖

𝑅
4𝑖

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝑎𝑖
77

𝑅
4𝑖

0 𝑎𝑖
7,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
4𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑄
3𝑖
− 2Λ
1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑎𝑖
10,10

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (55)

where 𝑎𝑖
11

= −2𝑃
1𝑖
𝐴
𝑖
+ 𝑄
1𝑖

+ 𝜏2
21
𝐴𝑇
𝑖
𝑅
1𝑖
𝐴
𝑖
+ (𝜏
22

−

𝜏
21
)
2

𝐴𝑇
𝑖
𝑅
2𝑖
𝐴
𝑖
− 𝑅
1𝑖
− 𝛼𝑃
1𝑖
, 𝑎𝑖
1,10

= 𝑃
1𝑖
𝐵
𝑖
− 𝜏2
21
𝐵𝑇
𝑖
𝑅
1𝑖
𝐴
𝑖
−

(𝜏
22
− 𝜏
21
)
2

𝐵𝑇
𝑖
𝑅
2𝑖
𝐴
𝑖
, 𝑎𝑖
33

= −𝑄
1𝑖
(1 − 𝜏

23
) + 𝜏2
11
𝐷𝑇
𝑖
𝑅
3𝑖
𝐷
𝑖
+

(𝜏
12
−𝜏
11
)
2

𝐷𝑇
𝑖
𝑅
4𝑖
𝐷
𝑖
−2𝑅
2𝑖
, 𝑎𝑖
35
= 𝑃
2𝑖
𝐷
𝑖
−𝜏2
11
𝐷𝑇
𝑖
𝑅
3𝑖
𝐶
𝑖
− (𝜏
12
−

𝜏
11
)
2

𝐷𝑇
𝑖
𝑅
4𝑖
𝐶
𝑖
, 𝑎𝑖
55

= −2𝑃
2𝑖
𝐶
𝑖
+ 𝑄
2𝑖
+ 𝜏2
11
𝐶𝑇
𝑖
𝑅
3𝑖
𝐶
𝑖
+ (𝜏
12
−

𝜏
11
)
2

𝐶𝑇
𝑖
𝑅
4𝑖
𝐶
𝑖
− 𝑅
3𝑖
− 𝛼𝑃
2𝑖
, 𝑎𝑖
77
= −𝑄
2𝑖
(1 − 𝜏
13
) − 2𝑅

4𝑖
, 𝑎𝑖
7,10

=

𝑀
1𝑖
(1 − 𝜏

13
) + Λ

2
𝑈, 𝑎𝑖
10,10

= −𝑄
3𝑖
(1 − 𝜏

13
) + 𝜏
2

21
𝐵
𝑇

𝑖
𝑅
1𝑖
𝐵
𝑖
+

(𝜏
22
− 𝜏
21
)
2

𝐵𝑇
𝑖
𝑅
2𝑖
𝐵
𝑖
− 2Λ
2
, 𝑖 = 1, 2.

Due to the space limitation, we only list matrices 𝑃
11
, 𝑃
12
,

𝑄
11
, and 𝑄

12
here:

𝑃
11
= (

3.5732 −0.2655 −0.3039

−0.2655 3.3575 −0.2912

−0.3039 −0.2912 3.1531

) ,

𝑃
12
= (

4.6463 −0.1506 −0.1453

−0.1506 4.7212 −0.1477

−0.1453 −0.1477 4.7809

) ,

𝑄
11
= (

9.1959 −0.3223 −0.2832

−0.3223 7.4980 −0.2791

−0.2832 −0.2791 5.9270

) ,

𝑄
12
= (

10.8205 −0.4573 −0.4597

−0.4573 10.9025 −0.4104

−0.4597 −0.4104 11.0402

) ,

(56)

and 𝜏
𝑎

> 𝜏∗
𝑎

= 0.4003. The initial condition is 𝑥(0) =

(0.2, 0.2, 0.3)
𝑇, 𝑦(0) = (0.3, 0.2, 0.5)

𝑇. The simulation results
of the trajectories are shown in Figures 1 and 2.

Example 2. In this example, we consider the genetic regula-
tory (35) with time-varying delays and unbounded continu-
ous distributed delays, in which the parameters are listed as
follows:

𝐴
1
= diag (2.1, 1.2, 2.5) , 𝐶

1
= diag (4.6, 4, 5.2) ,

𝐷
1
= diag (0.5, 0.4, 0.6) , 𝐴

2
= diag (1.8, 2, 3.1) ,

𝐶
2
= diag (5, 4, 5) , 𝐷

2
= diag (0.3, 0.3, 0.4) ,

𝐵
1
= (

0 1 0

0 0 1

1 0 0

) , 𝐵
2
= (

0 0.7 0

0 0 0.7

0.7 0 0

) ,

(57)
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and 𝑔(𝑥) = 𝑥2/(1 + 𝑥2), 𝑈 = diag (0.65, 0.65, 0.65). The time
delays 𝜏

1
(𝑡) and 𝜏

2
(𝑡) are assumed to be

𝜏
1
(𝑡) = 0.5 + 0.3 sin 𝑡, 𝜏

2
(𝑡) = 0.4 + 0.1 cos 𝑡; (58)

we can get the parameters as following:

𝜏
11
= 0.2, 𝜏

12
= 0.8, 𝜏

13
= 0.3,

𝜏
21
= 0.3, 𝜏

22
= 0.5, 𝜏

23
= 0.1,

(59)

and let 𝑐
1
= 2.5, 𝑐

2
= 2, 𝑇 = 5, 𝛼 = 0.02, 𝜇 = 1.2, ℎ

𝑗
(𝑠) = 𝑒−𝑠,

and𝐺 = 1. By using theMatlab LMI toolbox, we can solve the
LMIs (37) and (38) and obtain feasible solutions. Equation
(38) can be reformulated in the following in the form of
LMI:

Ξ =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑎
𝑖

11
𝑅
1𝑖

0 0 0 0 0 0 0 𝑎𝑖
0

0

∗ −𝑅
1𝑖
− 𝑅
2𝑖

𝑅
2𝑖

0 0 0 0 0 0 0 0

∗ ∗ 𝑎𝑖
33

𝑅
2𝑖

𝑎𝑖
3,5

0 0 0 0 0 0

∗ ∗ ∗ −𝑅
2𝑖

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ 𝑎𝑖
55

𝑅
3𝑖

0 0 𝑀
1𝑖
+ Λ
1
𝑈 0 0

∗ ∗ ∗ ∗ ∗ −𝑅
3𝑖
− 𝑅
4𝑖

𝑅
4𝑖

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝑎𝑖
77

𝑅
4𝑖

0 𝑎𝑖
7,10

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
4𝑖

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑎𝑖
99

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑎
𝑖

10,10
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐿
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (60)

where 𝑎𝑖
11
= −2𝑃

1𝑖
𝐴
𝑖
+ 𝜏2
21
𝐴𝑇
𝑖
𝑅
1𝑖
𝐴
𝑖
+ (𝜏
22
− 𝜏
21
)
2

𝐴𝑇
𝑖
𝑅
2𝑖
𝐴
𝑖
−

𝑅
1𝑖
− 𝛼𝑃
1𝑖
, 𝑎𝑖
1,10

= 𝑃
1𝑖
𝐵
𝑖
− 𝜏2
21
𝐵𝑇
𝑖
𝑅
1𝑖
𝐴
𝑖
− (𝜏
22
− 𝜏
21
)
2

𝐵𝑇
𝑖
𝑅
2𝑖
𝐴
𝑖
,

𝑎𝑖
33

= −𝑄
1𝑖
(1 − 𝜏

23
) + 𝜏2
11
𝐷𝑇
𝑖
𝑅
3𝑖
𝐷
𝑖
+ (𝜏
12
− 𝜏
11
)
2

𝐷𝑇
𝑖
𝑅
4𝑖
𝐷
𝑖
−

2𝑅
2𝑖
, 𝑎𝑖
35
= 𝑃
2𝑖
𝐷
𝑖
− 𝜏2
11
𝐷𝑇
𝑖
𝑅
3𝑖
𝐶
𝑖
− (𝜏
12
− 𝜏
11
)
2

𝐷𝑇
𝑖
𝑅
4𝑖
𝐶
𝑖
, 𝑎𝑖
55
=

−2𝑃
2𝑖
𝐶
𝑖
+𝑄
2𝑖
+𝜏2
11
𝐶𝑇
𝑖
𝑅
3𝑖
𝐶
𝑖
+ (𝜏
12
−𝜏
11
)
2

𝐶𝑇
𝑖
𝑅
4𝑖
𝐶
𝑖
− 𝑅
3𝑖
−𝛼𝑃
2𝑖
,

𝑎𝑖
77
= −𝑄
2𝑖
(1 − 𝜏

13
) − 2𝑅

4𝑖
, 𝑎𝑖
7,10

= 𝑀
1𝑖
(1 − 𝜏

13
) + Λ
2
𝑈, 𝑎𝑖
99
=

𝑄
2𝑖
− 2Λ
1
+ 𝐿
𝑖
, 𝑎𝑖
10,10

= −𝑄
3𝑖
(1 − 𝜏

13
) + 𝜏2
21
𝐵𝑇
𝑖
𝑅
1𝑖
𝐵
𝑖
+ (𝜏
22
−

𝜏
21
)
2

𝐵𝑇
𝑖
𝑅
2𝑖
𝐵
𝑖
− 2Λ
2
, 𝑖 = 1, 2.

Due to the space limitation, we only list matrices 𝑃
11
, 𝑃
12
,

𝑄
11
, and 𝑄

12
here:

𝑃
11
= (

1.3745 −0.0657 −0.0145

−0.0657 1.3683 −0.0471

−0.0145 −0.0471 1.2893

) ,

𝑃
12
= (

1.6025 −0.0233 −0.0056

−0.0233 1.5143 −0.0073

−0.0056 −0.0073 1.2907

) ,

𝑄
11
= (

2.5617 −0.0905 −0.0313

−0.0905 2.0794 −0.0718

−0.0313 −0.0718 2.4995

) ,

𝑄
12
= (

2.1367 −0.0751 −0.0258

−0.0751 2.1184 −0.0434

−0.0258 −0.0434 2.2000

) ,

(61)

and 𝜏
𝑎
> 𝜏∗
𝑎
= 0.5012.

5. Concluding Remarks

This paper has investigated the finite-time stability for
switching genetic regulatory networks with interval time-
varying delays andunbounded continuous distributed delays.
By structuring appropriate Lyapunov-Krasovskii functionals
method, several sufficient conditions of switching genetic
networks were obtained, which guarantee that the system is
finite-time stable. Finally, two numerical examples illustrated
our results’ validity.
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