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We consider a compound Poisson risk model with dependence and a constant dividend barrier. A dependence structure between
the claim amount and the interclaim time is introduced through a Farlie-Gumbel-Morgenstern copula. An integrodifferential
equation for the Gerber-Shiu discounted penalty function is derived. We also solve the integrodifferential equation and show that
the solution is a linear combination of the Gerber-Shiu function with no barrier and the solution of an associated homogeneous
integrodifferential equation.

1. Introduction

In the classical compound Poisson risk model, the surplus
process has the form

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 −

𝑁(𝑡)

∑

𝑖=1

𝑋
𝑖
, 𝑡 ≥ 0, (1)

where 𝑢 ≥ 0 is the initial surplus, 𝑐 ≥ 0 is the pre-
mium income rate, and {𝑋

𝑖
}
∞

𝑖=1
are i.i.d. random variables

representing the individual claim amounts with probability
density function (p.d.f.) 𝑓

𝑋
, cumulative distribution function

(c.d.f.) 𝐹
𝑋
, and Laplace transform (LT) 𝑓

∗

𝑋
. The counting

process {𝑁(𝑡); 𝑡 ≥ 0} denotes the number of claims up to
time 𝑡 and is defined as 𝑁(𝑡) = max{𝑘 : 𝑊

1
+ 𝑊
2
+

⋅ ⋅ ⋅ + 𝑊
𝑘
≤ 𝑡}, where the interclaim times {𝑊

𝑖
, 𝑖 = 1, 2, . . .}

form a sequence of independent and strictly positive real-
valued random variables (r.v.s.). The r.v. {𝑊

𝑖
, 𝑖 = 1, 2, . . .}

have common density function 𝑓
𝑊
(𝑡) = 𝜆𝑒

−𝜆𝑡
, 𝑡 > 0,

cumulative distribution function 𝐹
𝑊
, and Laplace transform

𝑓
∗

𝑊
. {𝑁(𝑡), 𝑡 ≥ 0} is Poisson process with parameter 𝜆 > 0.
Ruin probability and related problems in the classical risk

model have been studied extensively. Gerber and Shiu [1]
introduced a discounted penalty function with respect to the
time of ruin, the surplus before ruin, and the deficit at ruin.

Many quantities can be analyzed through this function in a
unified manner.

In ruin theory, the classical compoundPoisson riskmodel
is based on the assumption of independence between the
claim amount randomvariable𝑋

𝑖
and the interclaim time𝑊

𝑗
.

However, there exist many real-world situations for which
such an assumption is inappropriate. For instance, in mod-
eling natural catastrophic events, we can expect that, on the
occurrence of a catastrophe, the total claim amount and the
time elapsed since the previous catastrophes are dependent.
See, for example, Boudreault [2] and Nikoloulopoulos and
Karlis [3] for an application of this type of dependence
structure in an earthquake context. And as discussed in
Albrecher and Teugels [4], they allow the interclaim time and
its subsequent claim size to be dependent according to an
arbitrary copula structure, by employing the underlying ran-
domwalk structure of the riskmodel; they derive exponential
estimates for finite- and infinite-time ruin probabilities in the
case of light-tailed claim sizes. In Boudreault et al. [5], a risk
model with time-dependent claim sizes (i.e., the distribution
of the next claim size depends on the last interarrival time)
is analyzed and a defective renewal equation for the Gerber-
Shiu discounted penalty function is derived and solved.
Marceau [6] has considered the discrete-time renewal risk
model with dependence between the claim amount random
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variable and the interclaim time random variable. Recursive
formulas are derived for the probability mass function and
the moments of the total claim amount over a fixed period of
time. Cossette et al. [7] use the Farlie-Gumbel-Morgenstern
(FGM) copula to define the dependence structure between
the claim size and the interclaim time; they derive the
integrodifferential equation and the Laplace transform (LT)
of the Gerber-Shiu discounted penalty function. An explicit
expression for the LT of the discounted value of a gen-
eral function of the deficit at ruin is obtained for claim
amounts having an exponential distribution. Zhang and Yang
[8] construct the bivariate cumulative distribution function
of the claim size and interclaim time by Farlie-Gumbel-
Morgenstern copula in a compound Poisson risk model
perturbed by a Brownian motion. The integrodifferential
equations and the Laplace transforms for the Gerber-Shiu
functions are obtained. They also show that the Gerber-Shiu
functions satisfy some defective renewal equations.

The FGM copula is given by

𝐶
FGM
𝜃

(𝑢
1
, 𝑢
2
) = 𝑢
1
𝑢
2
+ 𝜃 (1 − 𝑢

1
) (1 − 𝑢

2
) ,

0 ≤ 𝑢
1
, 𝑢
2
≤ 1,

(2)

where −1 ≤ 𝜃 ≤ 1. Note that FGM copula allows both
negative and positive dependence, and it also includes the
independence copula (𝜃 = 0).

In this paper, we assume that {(𝑋
𝑖
,𝑊
𝑗
), 𝑖 ∈ 𝑁

+
, 𝑗 ∈

𝑁
+
} form a sequence of i.i.d. random vectors distributed

as the canonical r.v. (𝑋,𝑊). The joint p.d.f. of (𝑋,𝑊) is
denoted by 𝑓

𝑋,𝑊
(𝑥, 𝑡) with 𝑡 ∈ 𝑅

+ and 𝑥 ∈ 𝑅
+. The joint

distribution of (𝑋,𝑊) is defined with a FGM copula; we
consider the same dependence risk model with the presence
of a constant dividend barrier. We recall that the dividend
strategies for insurance riskmodels were first proposed byDe
Finetti [9]. Barrier strategies for the compound Poisson risk
model have been studied in a number of papers and books,
including Landriault [10], Albrecher et al. [11], Yuen et al.
[12], Dickson and Waters [13], Lin et al. [14], and Segerdahl
[15]. Then, various dividend strategies (threshold dividend
strategy, multilayer dividend strategy, etc.) have been studied
for different risk models; see, for example, Lin et al. (2006),
Chi and Lin [16], D. Liu andZ. Liu [17], Bratiichuk [18], Chad-
jiconstantinidis and Papaioannou [19], andWang [20]. As we
know, this is the first time to consider the classic risk model
with dependence structure based on FGM copula and a
constant dividend barrier.

The present paper is organized as follows. In Section 2,
the risk model with dependence in the presence of a constant
dividend barrier is introduced. And we briefly present some
properties of the FGM copula. In Section 3, we derive an
integrodifferential equation for the Gerber-Shiu discounted
penalty function. Finally, in Section 4, we use a renewal
equation to derive an analytical expressions for𝑚

𝑏,𝛿
(𝑢).

2. Dependence Structure and Risk Model

A bivariate copula 𝐶 is a joint distribution function on
[0, 1] × [0, 1] with uniform marginal distributions. Assume a

bivariate random vector (𝑈, 𝑉)with above uniformmarginal,
which has a dependence structure defined by a copula
𝐹
𝑈,𝑉

= 𝐶(𝑢, V) with (𝑢, V) ∈ [0, 1] × [0, 1]. Important
copulas are the independence copula with 𝐶

⊥
(𝑢, V) = 𝑢V

and the comonotonic copula with 𝐶
+
(𝑢, V) = min(𝑢V); the

countermonotonic copula with 𝐶
−
(𝑢, V) = max(𝑢 + V −

1; 0). It is important to mention that all copulas satisfy the
inequalities 𝐶−(𝑢, V) ≤ 𝐶(𝑢, V) ≤ 𝐶

+
(𝑢, V), for (𝑢, V) ∈ [0, 1] ×

[0, 1].
The joint p.d.f. associated to a copula 𝐶 is defined by

𝑐 (𝑢
1
, 𝑢
2
) =

𝜕
2

𝜕𝑢
1
𝜕𝑢
2

𝐶 (𝑢
1
, 𝑢
2
) . (3)

Let the bivariate distribution function 𝐹
𝑋,𝑊

of (𝑋,𝑊)

with marginals 𝐹
𝑋

and 𝐹
𝑊

be defined as 𝐹
𝑋,𝑊

(𝑥, 𝑡) =

𝐶(𝐹
𝑋
(𝑥), 𝐹
𝑊
(𝑡)), for (𝑥, 𝑡) ∈ 𝑅

+
× 𝑅
+. The joint p.d.f. of

(𝑋,𝑊) is given by

𝑓
𝑋,𝑊 (𝑥, 𝑡) = 𝑐 (𝐹

𝑋 (𝑥) , 𝐹𝑊 (𝑡)) 𝑓𝑋 (𝑥) 𝑓𝑊 (𝑡) , (4)

for (𝑥, 𝑡) ∈ 𝑅
+

× 𝑅
+ (for a survey on copulas we refer the

reader to Nelsen [21]).
The FGM copula is given by

𝐶
FGM
𝜃

(𝑢
1
, 𝑢
2
) = 𝑢
1
𝑢
2
+ 𝜃 (1 − 𝑢

1
) (1 − 𝑢

2
) ,

(−1 ≤ 𝜃 ≤ 1) ,

(5)

where 𝐶FGM
0

= 𝐶
⊥. So we have

𝐹
𝑋,𝑊 (𝑥, 𝑡) = 𝐹

𝑋 (𝑥) 𝐹𝑊 (𝑡) + 𝜃𝐹
𝑋 (𝑥) 𝐹𝑊 (𝑡)

× (1 − 𝐹
𝑋 (𝑥)) (1 − 𝐹

𝑊 (𝑡)) ,

(6)

𝑓
𝑋,𝑊 (𝑥, 𝑡) = 𝜆𝑒

−𝜆𝑡
𝑓 (𝑥) + 𝜃 (2𝜆𝑒

−2𝜆𝑡
− 𝜆𝑒
−𝜆𝑡

) ℎ (𝑥) , (7)

where ℎ(𝑥) = (1 − 2𝐹
𝑋
(𝑥))𝑓(𝑥), with Laplace transform (LT)

ℎ
∗

𝑥
.
In the rest of this paper, we assume that {(𝑋

𝑖
,𝑊
𝑖
), 𝑖 ∈

𝑁
+
} form a sequence of i.i.d. random vectors distributed like

(𝑋,𝑊), which have joint c.d.f. and p.d.f. given by (6) and
(7), respectively. In particular, we know from (7) that the
conditional p.d.f. of the claim size is given by

𝑓
𝑋|𝑊=𝑡 (𝑥) = 𝑓 (𝑥) + 𝜃 (2𝜆𝑒

−𝜆𝑡
− 1) ℎ (𝑥) . (8)

Also, we assume that 𝜃 ̸= 0; otherwise our model reduces to
the constant dividend barrier in the classical risk model.

The total claim amount process {𝑆(𝑡), 𝑡 ≥ 0} is defined as
𝑆(𝑡) = ∑

𝑁(𝑡)

𝑖=1
𝑋
𝑖
; let 𝑈

𝑏
(0) = 𝑢 and

𝑑𝑈
𝑏 (𝑡) = 𝑐𝑑𝑡 − 𝑑𝑆 (𝑡) , if 𝑈

𝑏 (𝑡) < 𝑏,

𝑑𝑈
𝑏 (𝑡) = −𝑑𝑆 (𝑡) , if 𝑈

𝑏 (𝑡) = 𝑏

(9)

be the surplus process in the presence of a constant dividend
barrier 𝑏 (0 < 𝑏 < ∞), where 𝑢 ≥ 0 is the initial surplus
level and 𝑐 (𝑐 > 0) is the level premium. In other words, we
assume that the insurer pays the premium rate 𝑐 as a dividend
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whenever the insurer’s surplus remains at the threshold level
𝑏.

Associated with the risk model, we denote the ruin time
by 𝑇, which is the first passage time of𝑈

𝑏
(𝑡) below zero level;

that is,
𝑇 = inf {𝑡 ≥ 0, 𝑈

𝑏 (𝑡) < 0} (10)

with 𝑇 = ∞ if 𝑈
𝑏
(𝑡) ≥ 0, for all 𝑡 ≥ 0. To guarantee that ruin

is not a certain event, we assume that the following net profit
condition holds:

𝐸 [𝑐𝑊
𝑖
− 𝑋
𝑖
] > 0, 𝑖 = 1, 2, . . . . (11)

At the same time, we introduce the Gerber-Shiu function
defined by

𝑚
𝑏,𝛿 (𝑢)

= 𝐸 [𝑒
−𝛿𝑇

𝜔 (𝑈 (𝑇
−
) , |𝑈 (𝑇)|) 𝐼 (𝑇 < ∞) | 𝑈 (0) = 𝑢] ,

(12)

where 𝛿 ≥ 0 is the force of interest, 𝐼(⋅) is the indicator
function, and 𝜔(𝑈(𝑇−), |𝑈(𝑇)|) defined on [0,∞) × (0,∞) is
a nonnegative function of the surplus before ruin 𝑈(𝑇

−
) and

the deficit at ruin |𝑈(𝑇)|.

3. Gerber-Shiu Discounted Penalty Function

Themain purpose of this section is to derive an integrodiffer-
ential equation for the expected discounted penalty function
𝑚
𝑏,𝛿
(𝑢), This equation will be useful to derive an explicit

solution for𝑚
𝑏,𝛿
(𝑢). Throughout this paper, we denote I and

D to be the identity and the differential operators, respec-
tively.

Theorem 1. In the compound Poisson risk model with a
dependence structure based on 𝐹𝐺𝑀 copula defined in (2) and
a constant dividend 𝑏, the expected discounted penalty function
𝑚
𝑏,𝛿
(𝑢) satisfies the following integrodifferential equation:

(
2𝜆 + 𝛿

𝑐
I −D)(

𝜆 + 𝛿

𝑐
I −D)𝑚

𝑏,𝛿 (𝑢)

=
𝜆

𝑐
(
2𝜆 + 𝛿

𝑐
I −D)𝜎

1 (𝑢) +
𝜃𝜆

𝑐
(
𝛿

𝑐
I −D)𝜎

2 (𝑢)

(13)

for 0 ≤ 𝑢 ≤ 𝑏 < ∞ with boundary conditions:

𝑚


𝑏,𝛿
(𝑏) = 0, (14)

𝑚


𝑏,𝛿
(𝑏) = −

𝜆

𝑐
𝜎


1
(𝑏) −

𝜃𝜆

𝑐
𝜎


2
(𝑏) , (15)

where

𝜎
1 (𝑢) = ∫

𝑢

0

𝑚
𝑏,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 + 𝜔

1 (𝑢) , (16)

𝜎
2 (𝑢) = ∫

𝑢

0

𝑚
𝑏,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥 + 𝜔

2 (𝑢) , (17)

𝜔
1 (𝑢) = ∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑓 (𝑥) 𝑑𝑥, (18)

𝜔
2 (𝑢) = ∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) ℎ (𝑥) 𝑑𝑥. (19)

Proof. By conditioning on the time and the amount of the first
claim, we have

𝑚
𝑏,𝛿 (𝑢) = ∫

(𝑏−𝑢)/𝑐

0

∫

𝑢+𝑐𝑡

0

𝑒
−𝛿𝑡

𝑚
𝑏,𝛿 (𝑢+𝑐𝑡 − 𝑥) 𝑓𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

(𝑏−𝑢)/𝑐

0

∫

∞

𝑢+𝑐𝑡

𝑒
−𝛿𝑡

× 𝜔 (𝑢 + 𝑐𝑡, 𝑥 − 𝑢 − 𝑐𝑡)

× 𝑓
𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

∞

(𝑏−𝑢)/𝑐

∫

𝑏

0

𝑒
−𝛿𝑡

𝑚
𝑏,𝛿 (𝑏 − 𝑥) 𝑓𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

∞

(𝑏−𝑢)/𝑐

∫

∞

𝑏

𝑒
−𝛿𝑡

𝜔 (𝑏, 𝑥 − 𝑏) 𝑓𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡.

(20)

Given from (7), (20) becomes

𝑚
𝑏,𝛿 (𝑢) = 𝜆∫

(𝑏−𝑢)/𝑐

0

𝑒
−(𝜆+𝛿)𝑡

𝜎
1 (𝑢 + 𝑐𝑡) 𝑑𝑡

+ 2𝜃𝜆∫

(𝑏−𝑢)/𝑐

0

𝑒
−(2𝜆+𝛿)𝑡

𝜎
2 (𝑢 + 𝑐𝑡) 𝑑𝑡

− 𝜃𝜆 × ∫

(𝑏−𝑢)/𝑐

0

𝑒
−(𝜆+𝛿)𝑡

𝜎
2 (𝑢 + 𝑐𝑡) 𝑑𝑡

+ 𝜆∫

∞

(𝑏−𝑢)/𝑐

𝑒
−(𝜆+𝛿)𝑡

𝜎
1 (𝑏) 𝑑𝑡

+ 2𝜃𝜆∫

∞

(𝑏−𝑢)/𝑐

𝑒
−(2𝜆+𝛿)𝑡

𝜎
2 (𝑏) 𝑑𝑡

− 𝜃𝜆∫

∞

(𝑏−𝑢)/𝑐

𝑒
−(𝜆+𝛿)𝑡

𝜎
2 (𝑏) 𝑑𝑡,

(21)

where the functions 𝜎
1
(𝑢) and 𝜎

2
(𝑢) are given in (16) and (17),

respectively.
Simple modifications of (21) lead to

𝑚
𝑏,𝛿 (𝑢) =

𝜆

𝑐
∫

𝑏

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
1 (𝑡) 𝑑𝑡

+
2𝜃𝜆

𝑐
∫

𝑏

𝑢

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡) 𝑑𝑡

−
𝜃𝜆

𝑐
∫

𝑏

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

× 𝜎
2 (𝑡) 𝑑𝑡

+
𝜆

𝑐
∫

∞

𝑏

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
1 (𝑏) 𝑑𝑡

+
2𝜃𝜆

𝑐
∫

∞

𝑏

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑏) 𝑑𝑡

−
𝜃𝜆

𝑐
∫

∞

𝑏

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑏) 𝑑𝑡.

(22)
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We can rewrite (22) as

𝑚
𝑏,𝛿 (𝑢) =

𝜆

𝑐
∫

∞

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
1 (𝑡 ∧ 𝑏) 𝑑𝑡

+
2𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜃𝜆

𝑐
× ∫

∞

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡,

(23)

where 𝑡 ∧ 𝑏 = min(𝑡, 𝑏).
Now differentiating (23) with respect to 𝑢, routine calcu-

lations lead to

𝑚


𝑏,𝛿
(𝑢) =

𝜆 + 𝛿

𝑐

𝜆

𝑐
∫

∞

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
1 (𝑡 ∧ 𝑏) 𝑑𝑡 −

𝜆

𝑐
𝜎
1 (𝑢)

+
2𝜆 + 𝛿

𝑐

2𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜃𝜆

𝑐
𝜎
2 (𝑢) −

𝜆 + 𝛿

𝑐

𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

× 𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡.

(24)
Substituting (23) into (24), we obtain

𝑚


𝑏,𝛿
(𝑢)

=
𝜆 + 𝛿

𝑐
[𝑚
𝑏,𝛿 (𝑢) −

2𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡

+
𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡]

+
2𝜆 + 𝛿

𝑐

2𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆 + 𝛿

𝑐

𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆

𝑐
𝜎
1 (𝑢) −

𝜃𝜆

𝑐
𝜎
2 (𝑢) .

(25)
That is,
𝑚


𝑏,𝛿
(𝑢)

=
𝜆 + 𝛿

𝑐
𝑚
𝑏,𝛿 (𝑢) +

𝜆

𝑐

2𝜃𝜆

𝑐
∫

∞

𝑢

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆

𝑐
𝜎
1 (𝑢) −

𝜃𝜆

𝑐
𝜎
2 (𝑢) .

(26)
Differentiating (26) with respect to u, we find

𝑚


𝑏,𝛿
(𝑢) =

𝜆 + 𝛿

𝑐
𝑚


𝑏,𝛿
(𝑢) +

𝛿 + 2𝜆

𝑐

𝜆

𝑐

2𝜃𝜆

𝑐

× ∫

∞

𝑢

𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎
2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆

𝑐

2𝜃𝜆

𝑐
𝜎
2 (𝑢) −

𝜆

𝑐
𝜎


1
(𝑢) −

𝜃𝜆

𝑐
𝜎


2
(𝑢)

(27)

which can be reexpressed as

𝑚


𝑏,𝛿
(𝑢)

=
𝜆 + 𝛿

𝑐
𝑚


𝑏,𝛿
(𝑢) +

𝛿 + 2𝜆

𝑐

× [𝑚


𝑏,𝛿
(𝑢) −

𝜆 + 𝛿

𝑐
𝑚
𝑏,𝛿 (𝑢) +

𝜆

𝑐
𝜎
1 (𝑢) +

𝜃𝜆

𝑐
𝜎
2 (𝑢)]

−
𝜆

𝑐

2𝜃𝜆

𝑐
𝜎
2 (𝑢) −

𝜆

𝑐
𝜎


1
(𝑢) −

𝜃𝜆

𝑐
𝜎


2
(𝑢) .

(28)

That is,

𝑚


𝑏,𝛿
(𝑢) =

3𝜆 + 2𝛿

𝑐
𝑚


𝑏,𝛿
(𝑢) −

𝜆 + 𝛿

𝑐

𝛿 + 2𝜆

𝑐
𝑚
𝑏,𝛿 (𝑢)

+
𝜆

𝑐

𝛿 + 2𝜆

𝑐
𝜎
1 (𝑢) −

𝜆

𝑐
𝜎


1
(𝑢) +

𝜃𝜆

𝑐

𝛿

𝑐
𝜎
2 (𝑢)

−
𝜃𝜆

𝑐
𝜎


2
(𝑢) .

(29)

Using the identical and differential operators, we obtain (13).
Regarding the boundary conditions, (14) is derived from

(24) at 𝑢 = 𝑏. While (15) can be proven via (27) at 𝑢 = 𝑏 and
(14).

Note that (13) in itself does not depend on the barrier
level 𝑏, therefore, one concludes that 𝑚

∞,𝛿
(𝑢), the Gerber-

Shiu discounted penalty function in the absence of a barrier,
satisfies the second order nonhomogeneous integrodifferen-
tial equation:

(
2𝜆 + 𝛿

𝑐
I −D)(

𝜆 + 𝛿

𝑐
I −D)𝑚

∞,𝛿 (𝑢)

=
𝜆

𝑐
(
2𝜆 + 𝛿

𝑐
I −D)𝜎

3 (𝑢) +
𝜃𝜆

𝑐
(
𝛿

𝑐
I −D)𝜎

4 (𝑢) ;

(30)

where

𝜎
3 (𝑢) = ∫

𝑢

0

𝑚
∞,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 + 𝜔

1 (𝑢) ,

𝜎
4 (𝑢) = ∫

𝑢

0

𝑚
∞,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥 + 𝜔

2 (𝑢) .

(31)

As shown in Cossette et al. [7], it is a solution to a defective
renewal equation.

4. A Representation of
the Discounted Penalty Function

In the present section, we derive the defective renewal
equation for 𝑚

𝑏,𝛿
(𝑢). For that purpose, we use the Dickson-

Hipp operator 𝑇
𝑠
for an integrable real-valued function 𝑓

(introduced by Dickson and Hipp (2001)) defined by

𝑇
𝑠
𝑓 (𝑥) = ∫

∞

𝑥

𝑒
−𝑠(𝑦−𝑥)

𝑓 (𝑦) 𝑑𝑦, 𝑠 ∈ 𝐶. (32)
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The operator 𝑇
𝑠
is commutative; that is, 𝑇

𝑟
𝑇
𝑠
= 𝑇
𝑠
𝑇
𝑟
; more-

over,

𝑇
𝑠
𝑇
𝑟
𝑓 (𝑥) = 𝑇

𝑟
𝑇
𝑠
𝑓 (𝑥) =

𝑇
𝑠
𝑓 (𝑥) − 𝑇

𝑟
𝑓 (𝑥)

𝑟 − 𝑠
, 𝑠 ̸= 𝑟. (33)

From Theorem 1, one concludes that 𝑚
𝑏,𝛿
(𝑢) satisfies a

nonhomogeneous equation of order 2. From the theory
on differential equations, the solution to the second order
nonhomogeneous equation (13) for 𝑚

𝑏,𝛿
(𝑢) (with boundary

conditions (14) and (15)) can be expressed as a particular
solution 𝑚

∞,𝛿
(𝑢) and a given combination of two linearly

independent solutions to the associated homogeneous inte-
grodifferential equation:

(
2𝜆 + 𝛿

𝑐
I −D)(

𝜆 + 𝛿

𝑐
I −D)𝑦 (𝑢)

=
𝜆

𝑐
(
2𝜆 + 𝛿

𝑐
I −D)∫

𝑢

0

𝑦 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 +
𝜃𝜆

𝑐

× (
𝛿

𝑐
I −D)∫

𝑢

0

𝑦 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥.

(34)

By letting 𝑦
∗
(𝑠) = ∫

∞

0
𝑒
−𝑠𝑥

𝑦(𝑥)𝑑𝑥, let us take Laplace
transform on the both sides of the homogeneous equation
(34). We can obtain

𝑦
∗
(𝑠)

= ((𝑠 −
3𝜆 + 2𝛿

𝑐
)𝑦 (0) + 𝑦


(0))

×((
2𝜆 + 𝛿

𝑐
− 𝑠)(

𝜆 + 𝛿

𝑐
− 𝑠) −

𝜆

𝑐

× [(
2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)] )

−1

.

(35)

From (35), it is clear that the solution to (34) can be written
as a combination of the two linearly independent solutions
{𝑦
1,𝛿
(𝑢), 𝑢 ≥ 0} and {𝑦

2,𝛿
(𝑢), 𝑢 ≥ 0}, where

𝑦
∗

1,𝛿
(𝑠)

= (𝑠 −
3𝜆 + 2𝛿

𝑐
)

×((
2𝜆 + 𝛿

𝑐
− 𝑠)(

𝜆 + 𝛿

𝑐
− 𝑠) −

𝜆

𝑐

× [(
2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)])

−1

,

(36)

with 𝑦
1,𝛿
(0) = 1 and 𝑦

1,𝛿
(0) = 0, and

𝑦
∗

2,𝛿
(𝑠) = 1

× ((
2𝜆 + 𝛿

𝑐
− 𝑠)(

𝜆 + 𝛿

𝑐
− 𝑠) −

𝜆

𝑐

× [(
2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)])

−1

,

(37)

with 𝑦
2,𝛿
(0) = 0 and 𝑦

2,𝛿
(0) = 1.

Theorem 2. For the Gerber-Shiu discounted penalty function
satisfying (13), a closed-form expression for𝑚

𝑏,𝛿
(𝑢) is given by

𝑚
𝑏,𝛿 (𝑢) = 𝑚

∞,𝛿 (𝑢) + 𝜉
1
𝑦
1,𝛿 (𝑢) + 𝜉

2
𝑦
2,𝛿 (𝑢) , 0 ≤ 𝑢 ≤ 𝑏,

(38)

where the constants 𝜉
1
, 𝜉
2
are the solutions to the following

system of linear equations:

𝜉
1
𝑦


1,𝛿
(𝑏) + 𝜉

2
𝑦


2,𝛿
(𝑏) = −𝑚



∞,𝛿
(𝑏) , (39)

𝜉
1
(𝑦


1,𝛿
(𝑏) +

𝜆

𝑐
D∫

𝑢

0

𝑦
1,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥|𝑢=𝑏)

+
𝜃𝜆

𝑐
D∫

𝑢

0

𝑦
1,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥|𝑢=𝑏

+ 𝜉
2
(𝑦


2,𝛿
(𝑏) +

𝜆

𝑐
D∫

𝑢

0

𝑦
2,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥|𝑢=𝑏)

+
𝜃𝜆

𝑐
D∫

𝑢

0

𝑦
2,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥|𝑢=𝑏

= −[𝑚


∞,𝛿
(𝑏) +

𝜆

𝑐
D∫

𝑢

0

𝑚
∞,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥|𝑢=𝑏

+
𝜃𝜆

𝑐
D∫

𝑢

0

𝑚
∞,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥|𝑢=𝑏

+
𝜆

𝑐
𝜔


1
(𝑏) +

𝜃𝜆

𝑐
𝜔


2
(𝑏)] .

(40)

Proof. It is immediate that𝑚
𝑏,𝛿
(𝑢) is of the form

𝑚
𝑏,𝛿 (𝑢) = 𝑚

∞,𝛿 (𝑢) + 𝜉
1
𝑦
1,𝛿 (𝑢) + 𝜉

2
𝑦
2,𝛿 (𝑢) . (41)

Thus, by (14) and (15), differentiating (41) with respect to 𝑢 at
𝑢 = 𝑏, we obtain

𝑚


∞,𝛿
(𝑏) + 𝜉

1
𝑦


1,𝛿
(𝑏) + 𝜉

2
𝑦


2,𝛿
(𝑏) = 0, (42)

𝑚


∞,𝛿
(𝑏) + 𝜉

1
𝑦


1,𝛿
(𝑏) + 𝜉

2
𝑦


2,𝛿
(𝑏) = −

𝜆

𝑐
𝜎


1
(𝑏) −

𝜃𝜆

𝑐
𝜎


2
(𝑏) .

(43)

Equation (42) is equivalent to (39).
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Using the structural form (38) for𝑚
𝑏,𝛿
(𝑢), differentiation

with respect to 𝑢 of (16) and (17) yields

D (𝜎
1 (𝑢)) = 𝜉

1
D∫

𝑢

0

𝑦
1,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥

+ 𝜉
2
D∫

𝑢

0

𝑦
2,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥

+D∫

𝑢

0

𝑚
∞,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 +D𝜔

1 (𝑢) ,

D (𝜎
2 (𝑢)) = 𝜉

1
D∫

𝑢

0

𝑦
1,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥

+ 𝜉
2
D∫

𝑢

0

𝑦
2,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥

+D∫

𝑢

0

𝑚
∞,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥 +D𝜔

2 (𝑢) .

(44)

Substituting (44) into the right-hand side of (43) at 𝑢 = 𝑏

leads to (40).
From Propositions 4.1 and 4.2 of Cossette et al. [7], we

know that the denominator on the right-hand side of (36) and
(37) has only two positive, real, and distinct roots, say, 𝑠

1
and

𝑠
2
.
Using (47) of Cossette et al. [7], (36) and (37) can be

expressed as

𝑦
∗

1,𝛿
(𝑠)

= (((𝑠
1
−
3𝜆 + 2𝛿

𝑐
)

𝑠 − 𝑠
1

𝑠
2
− 𝑠
1

+ (𝑠
2
−
3𝜆 + 2𝛿

𝑐
)

𝑠 − 𝑠
2

𝑠
1
− 𝑠
2

)

×((𝑠 − 𝑠
1
) (𝑠 − 𝑠

2
))
−1
) (1 − 𝑇

𝑠
𝑇
𝑠
2

𝑇
𝑠
1

ℎ
2,𝛿 (0))

−1

,

(45)

𝑦
∗

2,𝛿
(𝑠) =

1/ (𝑠 − 𝑠
1
) (𝑠 − 𝑠

2
)

1 − 𝑇
𝑠
𝑇
𝑠
2

𝑇
𝑠
1

ℎ
2,𝛿 (0)

, (46)

where

ℎ
∗

2,𝛿
(𝑠) =

𝜆

𝑐
[(

2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)] .

(47)

Therefore, the Laplace transform (45) and (46) can now be
used to find an expression for the two linearly independent
solutions {𝑦

1,𝛿
(𝑢), 𝑢 ≥ 0} and {𝑦

2,𝛿
(𝑢), 𝑢 ≥ 0}, respectively.

From Proposition 7.2 of Cossette et al. [7], (45) and (46) lead
to

𝑦
1,𝛿 (𝑢) = 𝑘

𝛿
∫

𝑢

0

𝑦
1,𝛿

(𝑢 − 𝑦) 𝑔
𝛿
(𝑦) 𝑑𝑦+

𝑠
1
− (3𝜆 + 2𝛿) /𝑐

𝑠
2
− 𝑠
1

𝑒
𝑠
2
𝑢

+
𝑠
2
− (3𝜆 + 2𝛿) /𝑐

𝑠
1
− 𝑠
2

𝑒
𝑠
1
𝑢
,

(48)

𝑦
2,𝛿 (𝑢) = 𝑘

𝛿
∫

𝑢

0

𝑦
2,𝛿

(𝑢 − 𝑦) 𝑔
𝛿
(𝑦) 𝑑𝑦 +

𝑒
𝑠
2
𝑢
− 𝑒
𝑠
1
𝑢

𝑠
2
− 𝑠
1

, (49)

where

𝑘
𝛿
=
𝜆

𝑐
[(

𝛿 + 2𝜆

𝑐
− 𝑠
2
)𝑇
0
𝑇
𝑠
2

𝑇
𝑠
1

𝑓 (0) + 𝜃(
𝛿

𝑐
− 𝑠
2
)

×𝑇
0
𝑇
𝑠
2

𝑇
𝑠
1

ℎ (0) + 𝑇
0
𝑇
𝑠
1

𝑓 (0) + 𝜃𝑇
0
𝑇
𝑠
1

ℎ (0) ] ,

𝑔
𝛿
(𝑦) =

𝑇
𝑠
2

𝑇
𝑠
1

ℎ
2,𝛿 (𝑢)

𝑘
𝛿

.

(50)

The defective renewal equations (48) and (49) may be solved
to give an explicit for 𝑦

1,𝛿
(𝑢) and 𝑦

2,𝛿
(𝑢). By a similar way to

the one used in Landriault [10], we choose

𝐿
𝛿 (𝑢) = 1 −

∞

∑

𝑛=1

(1 − 𝑘
𝛿
) (𝑘
𝛿
)
𝑛
𝐺
∗𝑛

𝛿
(𝑦) , (51)

where 𝐺∗𝑛
𝛿
(𝑦) is the survival distribution of the 𝑛-fold con-

volution of the p.d.f. 𝑔
𝛿
(𝑦).

Theorem 3. Let 𝜆
𝑖,𝛿
(𝑢) = 𝑒

𝑠
𝑖
𝑢
− 𝑠
𝑖
∫
𝑢

0
𝑒
𝑠
𝑖
𝑦
𝐿
𝛿
(𝑢 − 𝑦)𝑑𝑦 for

𝑖 = 1, 2. The solutions to (48) and (49) mat be expressed
respectively as follows:

𝑦
1,𝛿 (𝑢) = (𝑠

1
(𝜆
1,𝛿 (𝑢) − 𝐿

𝛿 (𝑢)) − 𝑠
2
(𝜆
2,𝛿 (𝑢) − 𝐿

𝛿 (𝑢))

−
3𝜆 + 2𝛿

𝑐
(𝜆
1,𝛿 (𝑢) − 𝜆

2,𝛿 (𝑢)))

× ((1 − 𝑘
𝛿
) (𝑠
2
− 𝑠
1
))
−1
,

(52)

𝑦
2,𝛿 (𝑢) =

𝜆
1,𝛿 (𝑢) − 𝜆

2,𝛿 (𝑢)

(1 − 𝑘
𝛿
) (𝑠
2
− 𝑠
1
)
. (53)

Proof. Applying Theorem 9.2 of Willmot and Lin [22] to the
defective renewal equation (48) and (49), respectively, we can
obtain (52) and (53) immediately.

All above derivations can derive the closed-form expres-
sion for𝑚

𝑏,𝛿
(𝑢) by (38).
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