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We study the bifurcations and sliding mode control of chaotic vibrations in an autonomous system. More precisely, a Hopf
bifurcation controller is designed so as to control the unstable subcritical Hopf bifurcation to the stable supercritical Hopf
bifurcation. Research result shows that the control method can work very well in Hopf bifurcation control. Besides, we controlled
the system to any fixed point and any periodic orbit to eliminate the chaotic vibration by means of sliding mode method. And the
numerical simulations were presented to confirm the effectiveness of the controller.

1. Introduction

In 1963, Lorenz discovered chaos in a simple system of
three autonomous ordinary differential equations in order to
describe the simplified Rayleigh-Benard problem [1]. From
then on, some other chaotic systems were established, such
as Chen system [2], Lü system [3], and Chu system [4].
Despite the simplicity of three-dimensional autonomous
systems, these systems have a rich dynamical behavior,
ranging from stable equilibrium points to periodic and even
chaotic oscillations, depending on the parameter values.
Moreover, bifurcation analysis and numerical simulation for
these systems have been done by many researchers, such
as [5–14]. In 2008, a new three-dimensional Lorenz-like
chaotic system is reported; nonlinear characteristic and basic
dynamic properties of the three-dimensional autonomous
system are studied by means of nonlinear dynamics theory,
including the stability and the conditions for generatingHopf
bifurcation of the equilibria [15]. Sotomayor et al. [16] use
the projection method described in [17] for the calculation
of the first and second Lyapunov coefficients associated with
Hopf bifurcations of the Watt governor system, and it was
extended to the calculation of the third and fourth Lyapunov
coefficients. Dias et al. [18] studied the existence of singularly
degenerate heteroclinic cycles for a suitable choice of the
parameters in a Lorenz-like system. Zhang et al. [19] reported

the finding of a new simple three-dimensional quadratic
chaotic system with three quadratic nonlinearities obtained
by adding a cross-product nonlinear term to the second
equation of the Rucklidge system.

In recent years, the research of robust control system
made great progress not only in theory but also in practical
application. As a representative of the nonlinear robust
control theory, variable structure control theory has been
widely researched throughout the world and also had an
increasing number of industrial applications.Wang et al. [20]
present two methods to design a single-input/single-output
integral variable structure system. Lee et al. [21] present
a sliding mode controller with integral compensation for
a magnetic suspension balance beam system. The control
scheme comprises an integral controller which is designed for
achieving zero steady-state error under step disturbances and
a sliding mode controller which is designed for enhancing
robustness under plant uncertainties. Di-Yi et al. [22] pro-
posed a no-chattering slidingmode control strategy for a class
of fractional-order chaotic systems. The designed control
scheme guarantees the asymptotical stability of an uncertain
fractional-order chaotic system. To ensure the robustness of
the system control, Chen et al. [23] stabilized the chaotic
orbits to arbitrary chosen fixed points and periodic orbits by
means of sliding mode method, and MATLAB simulations
were presented to confirm the validity of the controller.
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Chen et al. [24] studied the nonlinear dynamics behavior
of hydroturbine governing system. In order to eliminate the
chaotic vibration, the author used sliding mode method and
MATLAB simulations and controlled the system to any fixed
point and any periodic orbit. The results show that using
sliding mode method can make the system track target orbit
strictly and smoothly with short transition time. In this
paper, we mainly consider a new chaotic system proposed by
Gao [25]. Gao constructed a three-dimensional continuous
autonomous chaotic system, which is different from classic
Lorenz system, Chen system, and Lü system. Some basic
dynamical properties of the new system are analyzed by
means of theoretical analysis and nonlinear techniques,
such as phase diagram, time response diagram, Lyapunov
exponent spectrum, and bifurcation diagram. However, the
relationship between the Hopf bifurcation and the system
parameters has not been clarified yet. And there is not any
analysis of chaos control.

The main purpose of this paper is to investigate the
bifurcations and slidingmode control of chaotic vibrations in
an autonomous system (1). The rest of this paper is organized
as follows. In Section 2, we present the linear analysis of
equilibrium of system (1). A brief review of the method used
to study codimensions one and two Hopf bifurcations is
presented in Section 3.The direction of Hopf bifurcation and
the stability of bifurcating periodic solutions are analyzed
in detail in Section 4. In Section 5, we designed a controller
such that the equilibrium 𝐸

+
undergoes a controllable Hopf

bifurcation. In Section 6, nonlinear dynamic properties of
this chaotic system are studied by means of bifurcation
diagrams. We controlled the system to any fixed point and
any periodic orbit to eliminate the chaotic vibration bymeans
of sliding mode method in Section 7. Section 8 concludes the
paper.

2. Linear Analysis of System (1)
In this paper, we investigateHopf bifurcation of a new chaotic
of the form [25]

�̇� = 𝑦𝑧 + 𝑎 (𝑥 − 𝑦) ,

̇𝑦 = 𝑥 − 𝑦,

�̇� = 𝑏 − 𝑥𝑦,

(1)

where (𝑥, 𝑦, 𝑧) ∈ R3 are the state variables and (𝑎, 𝑏) ∈ R2
are real parameters. In this section, we study some of the
generalities and linear stability of system (1). In a vectorial
notation which will be useful in the calculations, system (1)
can be written as 𝑥 = 𝑓(𝑥, 𝜁), where

𝑓 (𝑥, 𝜁) = (𝑦𝑧 + 𝑎 (𝑥 − 𝑦) , 𝑥 − 𝑦, 𝑏 − 𝑥𝑦) , (2)

𝑥 = (𝑥, 𝑦, 𝑧) ∈ R3 and 𝜁 = (𝑎, 𝑏) ∈ R2.
The equilibria of system (1) can be found by solving the

following equations simultaneously:

𝑦𝑧 + 𝑎 (𝑥 − 𝑦) = 0, 𝑥 − 𝑦 = 0, 𝑏 − 𝑥𝑦 = 0. (3)

From (3), the system (1) has two equilibria 𝐸
±
= (±√𝑏, ±√𝑏,

0) if 𝑏 > 0.
Because the system is invariant under the transformation

𝑆 : (𝑥, 𝑦, 𝑧) → (−𝑥, −𝑦, 𝑧), stability of 𝐸
+
and 𝐸

−
can be

calculated similarly, so, one only needs to consider the stabil-
ity of any one of them.The stability of the system at the fixed
point 𝐸

+
is analyzed.

Proposition 1. If 𝑎 > 𝑎
0
, the equilibrium 𝐸

+
is always un-

stable. If 𝑏(1 − 𝑎) > 2𝑏 and
𝑎 < 𝑎
0
= −1 (4)

then the equilibrium 𝐸
+
is asymptotically stable.

Proof. At the fixed point 𝐸
+
= (√𝑏,√𝑏, 0), the Jacobian ma-

trix is defined as

A
+
= (

𝑎 𝑧 − 𝑎 𝑦

1 −1 0

−𝑦 −𝑥 0

)

(√𝑏,√𝑏,0)

= (

𝑎 −𝑎 √𝑏

1 −1 0

−√𝑏 −√𝑏 0

) .

(5)
The characteristic polynomial of the Jacobian matrix of
system (1) at 𝐸

+
has the form

𝑝 (𝜆) = 𝜆
3

+ (1 − 𝑎) 𝜆
2

+ 𝑏𝜆 + 2𝑏. (6)
If 𝑎 > 𝑎

0
, according to Routh-Hurwitz criterion, the equilib-

rium 𝐸
+
is unstable. According to Routh-Hurwitz criterion,

the real parts of all the roots 𝜆 of (6) are negative if and only if
1 − 𝑎 > 0, 𝑏 (1 − 𝑎) > 2𝑏, (7)

so the proposition follows.

The equation 𝑎 = 𝑎
0
in (4) gives the equation of the Hopf

curvein the parameter plane (𝑎, 𝑏).This equation will be used
in Section 4 in the study of Hopf bifurcations which occur at
the equilibria 𝐸

+
of system (1).

3. Outline of the Hopf Bifurcation Methods

This section is a review of the projection method described
in [15–18] for the calculation of the first Lyapunov coefficients
and second Lyapunov coefficients associatedwithHopf bifur-
cation, denoted by 𝑙

1
and 𝑙
2
, respectively.

Consider the differential equation
𝑥


= 𝑓 (𝑥, 𝜁) , (8)

where 𝑥 ∈ R3, 𝜁 ∈ R2 are, respectively, vectors representing
phase variables and control parameters. Assume that 𝑓 is of
class𝐶∞ inR3×R2. Suppose that (8) has an equilibriumpoint
𝑥 = 𝑥

0
at 𝜁 = 𝜁

0
and, denoting the variable 𝑥 − 𝑥

0
also by 𝑥,

write
𝐹 (𝑥) = 𝑓 (𝑥, 𝜁

0
) (9)

as

𝐹 (𝑥) = 𝐴𝑥 +
1

2
𝐵 (𝑥, 𝑥) +

1

6
𝐶 (𝑥, 𝑥, 𝑥) +

1

24
𝐷 (𝑥, 𝑥, 𝑥, 𝑥)

+
1

120
𝐸 (𝑥, 𝑥, 𝑥, 𝑥, 𝑥) + 𝑂 (‖𝑥‖

6

) ,

(10)
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where 𝐴 = 𝑓
𝑥
(0, 𝜁
0
), and, for 𝑖 = 1, 2, 3,

𝐵
𝑖
(𝑥, 𝑦) =

3

∑

𝑗,𝑘=1

𝜕
2
𝐹
𝑖
(𝜉)

𝜕𝜉
𝑗
𝜕𝜉
𝑘

𝜉=0

𝑥
𝑗
𝑦
𝑘
,

𝐶
𝑖
(𝑥, 𝑦, 𝑧) =

3

∑

𝑗,𝑘,𝑙=1

𝜕
3
𝐹
𝑖
(𝜉)

𝜕𝜉
𝑗
𝜕𝜉
𝑘
𝜕𝜉
𝑙

𝜉=0

𝑥
𝑗
𝑦
𝑘
𝑧
𝑙
.

(11)

Suppose that (𝑥
0
, 𝜁
0
) is an equilibrium point of (8), where

the Jacobian matrix A has a pair of purely imaginary eigen-
values 𝜆

2,3
= ±𝑖𝜔

0
, (𝜔
0
> 0) and admits no other eigenvalue

with zero real part. Let T𝑐 be the generalized eigenspace of A
corresponding to 𝜆

2,3
. By this it means the largest subspace

invariant by A on which the eigenvalues are 𝜆
2,3
.

Let 𝑝, 𝑞 ∈ C3 be vectors such that

A𝑞 = 𝑖𝜔
0
𝑞, AT

𝑝 = −𝑖𝜔
0
𝑝, ⟨𝑝, 𝑞⟩ =

3

∑

𝑖=1

𝑝
𝑖
𝑞
𝑖
= 1,

(12)

whereAT is the transpose of the matrixA. Any vector 𝑦 ∈ T𝑐
can be represented as 𝑦 = 𝜔𝑞 + 𝜔 𝑞, where 𝜔 = ⟨𝑝, 𝑦⟩ ∈ C.
The two-dimensional center manifold associated with the
eigenvalues 𝜆

2,3
= ±𝑖𝜔

0
can be parameterized by the variables

𝜔 and 𝜔 by means of an immersion of the form 𝑥 = 𝐻(𝜔, 𝜔),
where𝐻 : C2 → R3 has a Taylor expansion of the form

𝐻(𝜔, 𝜔) = 𝜔𝑞 + 𝜔 𝑞 + ∑

2≤𝑗+𝑘≤5

1

𝑗!𝑘!
ℎ
𝑗𝑘
𝜔
𝑗

𝜔
𝑘

+ 𝑂 (|𝜔|
6

) ,

(13)

with ℎ
𝑗𝑘

∈ C3 and ℎ
𝑗𝑘

= ℎ
𝑘𝑗
. Substituting this expression into

(8) we obtain the following differential equation:

𝐻
𝜔
𝜔


+ 𝐻
𝜔
𝜔


= 𝐹 (𝐻 (𝜔, 𝜔)) , (14)

where 𝐹 is given by (9).The complex vectors ℎ
𝑗𝑘
are obtained

solving the system of linear equations defined by the
coefficients of (14), taking into account the coefficients of
𝐹, so that system (14), on the chart 𝜔 for a central manifold,
writes as follows:

𝜔


= 𝑖𝜔
0
𝜔 +

1

2
𝐺
21
𝜔|𝜔|
2

+
1

12
𝐺
32
𝜔|𝜔|
4

+ 𝑂 (|𝜔|
6

) , (15)

with 𝐺
𝑗𝑘

∈ C.
The first Lyapunov coefficient 𝑙

1
is defined by

𝑙
1
=

1

2
Re𝐺
21
, (16)

where𝐺
21

= ⟨𝑝,𝐻
21
⟩,𝐻
21

= 𝐶(𝑞, 𝑞, 𝑞)+𝐵(𝑞, ℎ
20
)+2𝐵(𝑞, ℎ

11
),

ℎ
20

= (2𝑖𝜔
0
I
3
− A)
−1

𝐵(𝑞, 𝑞), ℎ
11

= −A−1𝐵(𝑞, 𝑞), and I
3
is the

unit 3 × 3 matrix.
The second Lyapunov coefficient is defined by

𝑙
2
=

1

12
Re𝐺
32
, (17)

where 𝐺
32

= ⟨𝑝,𝐻
32
⟩, 𝐻
32

= 6𝐵(ℎ
11
, ℎ
21
) + 𝐵(ℎ

20
, ℎ
30
) +

3𝐵(ℎ
21
, ℎ
20
) + 3𝐵(𝑞, ℎ

22
) + 2𝐵(𝑞, ℎ

31
) + 6𝐶(𝑞, ℎ

11
, ℎ
11
) +

3𝐶(𝑞, ℎ
20
, ℎ
20
)+3𝐶(𝑞, 𝑞, ℎ

21
)+6𝐶(𝑞, 𝑞, ℎ

21
)+6𝐶(𝑞, ℎ

20
, ℎ
11
)+

𝐶(𝑞, 𝑞, ℎ
30
)+𝐷(𝑞, 𝑞, 𝑞, ℎ

20
)+6𝐷(𝑞, 𝑞, 𝑞, ℎ

11
)+3𝐷(𝑞, 𝑞, 𝑞, ℎ

20
) +

𝐸(𝑞, 𝑞, 𝑞, 𝑞, 𝑞) − 6𝐺
21
ℎ
21

− 3𝐺
21
ℎ
21
.

The complex vector ℎ
21

can be found by solving the
nonsingular 𝑛 + 1-dimensional system

(
𝑖𝜔
0
I
3
− A 𝑞

𝑝 0
)(

ℎ
21

𝑠
) = (

𝐻
21

− 𝐺
21
𝑞

0
) , (18)

with the condition ⟨𝑝, ℎ
21
⟩ = 0. Consider the following:

ℎ
30

= (3𝑖𝜔
0
I
3
− A)
−1

[3𝐵 (𝑞, ℎ
20
) + 𝐶 (𝑞, 𝑞, 𝑞)] ,

ℎ
31

= (2𝑖𝜔
0
I
3
− A)
−1

× [3𝐵 (𝑞, ℎ
21
) + 𝐵 (𝑞, ℎ

30
) + 3𝐵 (ℎ

20
, ℎ
11
)

+ 3𝐶 (𝑞, 𝑞, ℎ
11
) + 3𝐶 (𝑞, 𝑞, ℎ

20
)

+𝐷 (𝑞, 𝑞, 𝑞, 𝑞) − 3𝐺
21
ℎ
20
] ,

ℎ
22

= −A−1 [𝐷 (𝑞, 𝑞, 𝑞, 𝑞) + 4𝐶 (𝑞, 𝑞, ℎ
11
)

+ 𝐶 (𝑞, 𝑞, ℎ
20
) + 𝐶 (𝑞, 𝑞, ℎ

20
)

+ 2𝐵 (ℎ
11
, ℎ
11
) + 2𝐵 (𝑞, ℎ

21
)

+ 2𝐵 (𝑞, ℎ
21
) + 𝐵 (ℎ

20
, ℎ
20
)] .

(19)

AHopf point (𝑥
0
, 𝜁
0
) of system (8) is an equilibriumpoint

where the Jacobian matrix A has a pair of purely imaginary
eigenvalues 𝜆

2,3
= ±𝑖𝜔

0
, (𝜔
0
> 0), and the other eigenvalue

𝜆
1

̸= 0. From the Center Manifold Theorem, at a Hopf
point, a two-dimensional center manifold is well defined;
it is invariant under the flow generated by (8) and can be
continued with arbitrary high class of differentiability to
nearby parameter values.

A Hopf point is called transversal if the parameter-
dependent complex eigenvalues cross the imaginary axis with
nonzero derivative. In a neighborhood of a transversal Hopf
point with 𝑙

1
̸= 0 the dynamic behavior of the system (8),

reduced to the family of parameter-dependent continuations
of the center manifold, is orbitally topologically equivalent to
the following complex normal form: 𝜔 = (𝜂+ 𝑖𝜔)𝜔+ 𝑙

1
𝜔|𝜔|
2,

where 𝜔 ∈ C. 𝜂, 𝜔 and 𝑙
1
are real functions having derivatives

of arbitrary higher order, which are continuations of 0, 𝜔
0
,

and the first Lyapunov coefficient at the Hopf point. When
𝑙
1
< 0 (𝑙

1
> 0) one family of stable (unstable) periodic orbits

can be found on this family of manifolds, shrinking to an
equilibrium point at the Hopf point.

A Hopf point of codimension 2 is a Hopf point, where
𝑙
1
vanishes. It is called transversal if 𝑙

1
= 0 and 𝜂 = 0 have

transversal intersections, where 𝜂 = 𝜂(𝜇) is the real part of the
critical eigenvalues. In a neighborhood of a transversal Hopf
point of codimension 2 with 𝑙

2
̸= 0 the dynamic behavior of

the system (8), reduced to the family of parameter-dependent
continuations of the centermanifold, is orbitally topologically
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equivalent to 𝜔

= (𝜂 + 𝑖𝜔

0
)𝜔 + 𝜏𝜔|𝜔|

2

+ 𝑙
1
𝜔|𝜔|
4, where 𝜂 and

𝜏 are unfolding parameters.

4. Hopf Bifurcations at 𝐸
+

In this section we will study the stability of 𝐸
+
under the

conditions 𝑎 = 𝑎
0
and 𝑏 > 0. Then, using the notion

of the previous section the multilinear symmetric functions
corresponding to 𝑓 can be written as

𝐵 (𝑥, 𝑦) = (𝑥
2
𝑦
3
+ 𝑥
3
𝑦
2
, 0, −𝑥

1
𝑦
2
− 𝑥
2
𝑦
1
) ,

𝐶 (𝑥, 𝑦, 𝑧) = (0, 0, 0) .

(20)

The eigenvalues of A are

𝜆
1
= 𝑎 − 1, 𝜆

2,3
= ±𝑖𝜔

0
= ±𝑖√𝑏. (21)

And from (12) one has

𝑞 = (
3√𝑏 + (𝑏 − 2) 𝑖

𝑏 + 4
,
√𝑏 − 2𝑖

𝑏 + 4
, 1) ,

𝑝 = (
√𝑏 − 2𝑖

3 − 𝑎
,
−𝑎√𝑏 + 2𝑎𝑖

3 − 𝑎
,
2 + √𝑏𝑖

3 − 𝑎
) ,

𝐵 (𝑞, 𝑞) = (
2√𝑏 − 4𝑖

𝑏 + 4
, 0,

4 (1 − 2𝑏) − 2√𝑏 (𝑏 − 8) 𝑖

(𝑏 + 4)
2

) ,

𝐵 (𝑞, 𝑞) = (
2√𝑏

𝑏 + 4
, 0, −

1

𝑏 + 4
) ,

ℎ
11

= −𝐴
−1

𝐵 (𝑞, 𝑞) = (
−1

2√𝑏 (𝑏 + 4)

,
−1

2√𝑏 (𝑏 + 4)

,
−2

𝑏 + 4
) ,

ℎ
20

= (2𝑖𝜔
0
𝐼
3
− 𝐴)
−1

𝐵 (𝑞, 𝑞) = (𝑘
1
+ 𝑘
2
𝑖, 𝑘
3
+ 𝑘
4
𝑖, 𝑘
5
+ 𝑘
6
𝑖) ,

(22)

where

𝑘
1
=

2 (1 − 2𝑎) (𝑏
2
+ 16𝑏 − 9) − 3𝑏 (𝑏 + 52)

√𝑏(𝑏 + 4)
2

(4𝑎2 − 4𝑎 + 9𝑏 + 1)

,

𝑘
2
=

− (1 − 2𝑎) (𝑏 + 52) − 6 (𝑏
2
+ 16𝑏 − 9)

(𝑏 + 4)
2

(4𝑎2 − 4𝑎 + 9𝑏 + 1)

,

𝑘
3
=

3𝑏 (𝑏 − 8) − 6√𝑏 (𝑏 + 4) − 8 (1 − 2𝑎)

√𝑏(𝑏 + 4)
2

(4𝑎2 − 4𝑎 + 9𝑏 + 1)

,

𝑘
4
=

24√𝑏 + √𝑏 (1 − 2𝑎) (𝑏 − 8) − 2 (𝑏 + 4) (1 − 2𝑎)

(𝑏 + 4)
2

(4𝑎2 − 4𝑎 + 9𝑏 + 1)

,

𝑘
5
=

4 (4𝑎
2
𝑏 + 𝑎𝑏

2
− 15𝑎𝑏 − 2𝑎

2
+ 18𝑎 + 6𝑏 − 24)

(𝑏 + 4)
2

(4𝑎2 − 4𝑎 + 9𝑏 + 1)

,

𝑘
6
=

2 (8𝑎
2
𝑏 − 𝑎𝑏

2
− 8𝑎𝑏 − 4𝑎

2
+ 22𝑎 + 18𝑏 − 58𝑏 − 10)

(𝑏 + 4)
2

(4𝑎2 − 4𝑎 + 9𝑏 + 1)

,

𝐵 (𝑞, ℎ
11
) = (𝑚

1
+ 𝑚
2
𝑖, 0, 𝑚

3
+ 𝑚
4
𝑖) ,

𝐵 (𝑞, ℎ
20
) = (𝑚

5
+ 𝑚
6
𝑖, 0, 𝑚

7
+ 𝑚
8
𝑖) ,

(23)
where

𝑚
1
=

−5𝑏 − 4

2√𝑏(𝑏 + 4)
2
, 𝑚

2
=

4

(𝑏 + 4)
2
,

𝑚
3
=

2

(𝑏 + 4)
2
, 𝑚

4
=

𝑏 − 4

(𝑏 + 4)
2
,

𝑚
5
=

(𝑏 + 4) 𝑘
3
+ √𝑏𝑘

5
+ 2𝑘
6

𝑏 + 4
,

𝑚
6
=

(𝑏 + 4) 𝑘
4
− 2𝑘
5
+ √𝑏𝑘

6

𝑏 + 4
,

𝑚
7
=

2𝑘
2
− √𝑏𝑘

1
− 3√𝑏𝑘

3
+ (𝑏 − 2) 𝑘

4

𝑏 + 4
,

𝑚
8
=

2𝑘
1
+ √𝑏𝑘

2
+ 3√𝑏𝑘

4
+ (𝑏 − 2) 𝑘

3

𝑏 + 4
.

(24)
We can get

𝐻
21

= 𝐶 (𝑞, 𝑞, 𝑞) + 𝐵 (𝑞, ℎ
20
) + 2𝐵 (𝑞, ℎ

11
)

= (𝑛
1
+ 𝑛
2
𝑖, 0, 𝑛
3
+ 𝑛
4
𝑖) ,

𝐺
21

= ⟨𝑝,𝐻
21
⟩ =

√𝑏𝑛
1
+ 2𝑛
2
+ 2𝑛
3
+ √𝑏𝑛

4

3 − 𝑎

−
2𝑛
1
− √𝑏𝑛

2
− √𝑏𝑛

3
− 2𝑛
4

3 − 𝑎
𝑖,

(25)

where
𝑛
1
= 2𝑚
1
+ 𝑚
5
, 𝑛

2
= 2𝑚
2
+ 𝑚
6
,

𝑛
3
= 2𝑚
3
+ 𝑚
7
, 𝑛

4
= 2𝑚
4
+ 𝑚
8
.

(26)

Now it remains only to verify the transversality condition
of the Hopf bifurcation. In order to do so, consider the
family of differential equation (1) regarded as dependent on
the parameter 𝑎. The real part 𝜉, of the pair of complex
eigenvalues at the critical parameter 𝑎 = 𝑎

0
, verifies

𝜉


(𝑎
0
) = Re⟨𝑝,

𝑑A
𝑑𝑎

𝑎=𝑎0

𝑞⟩ =
𝑏

𝑏 + 4
> 0. (27)

Since 𝜉

(𝑎
0
) ̸= 0, the transversality condition at the Hopf

point holds.
Using these calculations we prove the next theorem.

Theorem 2. Consider the three-parameter family of differen-
tial equations (1).The first Lyapunov coefficient associated with
the equilibrium 𝐸

+
is given by

𝑙
1
(𝑎
0
, 𝑏) =

𝑁
1

72√𝑏 (𝑏 + 1) (𝑏 + 4)
4
, (28)
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Figure 1: Time history and phase diagram of system (1) with 𝑎 = −1.4, 𝑏 = 25.
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Figure 2: Time history and phase diagram of system (1) with 𝑎 = −1, 𝑏 = 25.

where

𝑁
1
= 3 (√𝑏 + 2) 𝑏

4

+ (47√𝑏 + 72) 𝑏
3

+ 2 (193√𝑏 + 122) 𝑏
2

+ (61 − 155√𝑏) 𝑏 − 38√𝑏 + 368.

(29)

As 𝑏 > 0 then 𝑙
1
(𝑎
0
, 𝑏) > 0, so the system (1) has a transversal

Hopf point at 𝐸
+
when 𝑎 = 𝑎

0
and 𝑏 > 0. More precisely, Hopf

point at𝐸
+
is unstable and for each 𝑎 > 𝑎

0
, but close to 𝑎

0
, there

exists an unstable periodic orbit near the asymptotically stable
equilibrium point 𝐸

+
.

Next, we will give a numerical example of system (1). Let
𝑏 = 25; we can calculate the Hopf bifurcation value 𝑎

0
= −1.

The equilibrium is stable when 𝑎 = −1.4 < 𝑎
0
and unstable

when 𝑎 = −0.8 > 𝑎
0
, as shown in Figures 1 and 3, respectively.

From the formulas in previous section, we have 𝜉

(𝑎
0
) > 0,

𝑙
1

> 0. Thus, the periodic solutions bifurcating from the
equilibrium point 𝐸

+
are subcritical and unstable (Figure 2).

When the parameter 𝑏 = 25 is fixed while parameter 𝑎 is
varied in the interval [−1.5, −0.7], some different dynamical

behaviors of system (1) are obtained.The bifurcation diagram
and the Lyapunov exponent spectrum of system (1) in terms
of the parameter 𝑎 are depicted in Figure 4. With the analysis
performed here one can find the Hopf bifurcation at the
equilibrium 𝐸

+
does occur when 𝑎 = −1.

5. Hopf Bifurcation Control

In this section, we will design control laws such that our
feedback system undergoes a supercritical and stable Hopf
bifurcation. To accomplish the control of Hopf bifurcation
in the system (1), we design the controller which has the
following structure:

𝑢 = 𝑘(𝑥 − 𝑦)
3

, (30)

where 𝑘 is the control gain. In the following, we will study the
stability of 𝐸

+
in the controlled system:

�̇� = 𝑦𝑧 + 𝑎 (𝑥 − 𝑦) ,

̇𝑦 = 𝑥 − 𝑦,

�̇� = 𝑏 − 𝑥𝑦 + 𝑢.

(31)
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Figure 3: Time history and phase diagram of system (1) with 𝑎 = −0.8, 𝑏 = 25.
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Figure 4: Nonlinear dynamics of system (1) for specific values 𝑏 = 25 versus the control parameter 𝑎. (a) Bifurcation diagram of 𝑦; (b)
Lyapunov exponent spectrum.

Then, using the notion of the previous section the multi-
linear symmetric functions corresponding to𝑓 can bewritten
as

𝐵 (𝑥, 𝑦) = (𝑥
2
𝑦
3
+ 𝑥
3
𝑦
2
, 0, −𝑥

1
𝑦
2
− 𝑥
2
𝑦
1
) ,

𝐶 (𝑥, 𝑦, 𝑧) = (0, 0, 3𝑘 (2𝑥
1
𝑦
1
𝑧
1
− 2𝑥
2
𝑦
2
𝑧
2
− 𝑥
1
𝑦
1
𝑧
2

− 𝑥
1
𝑦
2
𝑧
1
− 𝑥
2
𝑦
1
𝑧
1
+ 𝑥
1
𝑦
2
𝑧
2

+ 𝑥
2
𝑦
1
𝑧
2
+ 𝑥
2
𝑦
2
𝑧
1
)) .

(32)

By direct calculation, we can get

𝐶 (𝑞, 𝑞, 𝑞) = (0, 0,

3𝑘𝑏 [3√𝑏 + (𝑏 − 2) 𝑖]

(𝑏 + 4)
2

) . (33)

Thefirst Lyapunov coefficient associatedwith the equilibrium
𝐸
+
is given by

𝑙
1
(𝑎
0
, 𝑏, 𝑘) =

𝑁
2
(𝑏 + 1)

72(𝑏 + 4)
4
, (34)

where

𝑁
2
= 27𝑘𝑏

11/2

+ 1620𝑘𝑏
7/2

+ 2382𝑏 − 45𝑏
4

+ 1728𝑘𝑏
3/2

+ 3024𝑘𝑏
5/2

− 1644𝑏
3/2

− 199𝑏
5/2

+ 431𝑏
2

− 229𝑏
3

+ 90𝑏
7/2

+ 18𝑏
9/2

+ 351𝑘𝑏
9/2

− 1344𝑏
1/2

+ 3176.

(35)

Obviously, the value of 𝑙
1
(𝑎
0
, 𝑏, 𝑘) is associated with 𝑏,

𝑘. We can adjust the positive and negative of the 𝑙
1
(𝑎
0
, 𝑏, 𝑘)

through the change of the value of 𝑘. According to the last
section, we know that the Hopf bifurcation at the equilibrium
point 𝐸

+
is subcritical and unstable. Let 𝑏 = 25 and obtain
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Figure 5: Time history and phase diagram of system (31) with 𝑎 = −1.5, 𝑏 = 25, 𝑘 = −0.1.
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Figure 6: Time history and phase diagram of system (31) with 𝑎 = −0.5, 𝑏 = 25, 𝑘 = −0.1.

𝑙
1
(𝑎
0
, 𝑏, 𝑘) = 1.61637931𝑘 + 0.01550513. If 𝑘 < −0.0096,

then 𝑙
1
(𝑎
0
, 𝑏, 𝑘) < 0. That is to say, if we get the value 𝑘 less

than −0.0096, we can control the unstable subcritical Hopf
bifurcation to the stable supercritical Hopf bifurcation.

Next, we will give a numerical example of system (31).
Let 𝑏 = 25, 𝑘 = −0.1; we can calculate the first Lyapunov
coefficient 𝑙

1
(𝑎
0
, 𝑏, 𝑘) = −0.1461 < 0. Thus, the periodic

solutions bifurcating from the equilibrium point 𝐸
+

are
supercritical and stable. The time history and phase diagram
are shown in Figures 5 and 6, respectively.

Observe that the first Lyapunov coefficient vanishes if and
only if 𝑎 = −1, 𝑏 = 25, 𝑘 = −0.0096. In the following theorem
we study the sign of the second Lyapunov coefficient where
the first coefficient vanishes.

Theorem 3. Consider the differential equations (31). The
second Lyapunov coefficient associated with the equilibrium𝐸

+

is given by

𝑙
2
= −0.018869167. (36)

As 𝑙
2

< 0 and the transversality condition at the Hopf point
holds then system (31) has a transversal Hopf point of codimen-
sion 2 at 𝐸

+
. More specifically, the Hopf point at 𝐸

+
is stable.

Proof. Following the notation introduced in Section 3 and by
direct calculations one has

𝐶 (𝑞, 𝑞, 𝑞) = (0, 0, −0.0128 − 0.0197𝑖) ,

𝐻
21

= (0, −1.2009 − 3.3663𝑖, −1.259 + 2.7𝑖) ,

𝐺
21

= 0.0321𝑖,

ℎ
30

= (0.0006 + 0.0003𝑖, 0, −0.0009 + 0.0014𝑖) ,

ℎ
21

= (−0.3686 − 1.3069𝑖, 0, 1.2862 − 0.6341𝑖) ,

ℎ
31

= (−0.2626 − 0.5323𝑖, 0.0448 − 0.1325𝑖,

0.2198 + 0.2225𝑖) ,
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Figure 7: Nonlinear dynamics of system (1) for specific values 𝑎 = 0.1 versus the control parameter 𝑏. (a) Bifurcation diagram of 𝑥; (b)
Lyapunov exponent spectrum.

ℎ
22

= (−0.0004 − 0.0885𝑖, 0.0444 + 0.044𝑖,

0.0436 − 0.133𝑖) ,

𝐺
32

= −0.2264 + 0.3751𝑖,

𝑙
2
=

1

12
Re𝐺
32

= −0.018869167.

(37)

6. The Global Bifurcation Analysis

For this system, bifurcation can easily be detected by exam-
ining graphs of 𝑥 versus each of the control parameters 𝑎 and
𝑏, respectively, if we fix the other one.

When the parameters 𝑎 = 0.1 are fixed, 𝑏 varies on the
closed interval [0, 6]. Figures 7(a)-7(b) show the bifurcation
diagrams of the state 𝑥 and the corresponding Lyapunov
exponent spectrum versus increasing 𝑏, respectively. While
𝑏 increases the system is undergoing some representative
dynamical routes, such as period-doubling bifurcations,
chaos, stable fixed points, and stable periodic loops.

As 𝑏 increases, system (1) is undergoing the flowing
dynamical routes:

(1) if 0 < 𝑏 ≤ 0.2, 𝜆
1
< 0, 𝜆

2
< 0, 𝜆

3
< 0, the system is

stable;

(2) if 0.2 ≤ 𝑏 < 1.7, 𝜆
1
> 0, 𝜆

2
= 0, 𝜆

3
< 0, the system is

chaotic. But there are several periodic windows in the
chaotic band;

(3) if 1.7 ≤ 𝑏 < 1.9, 𝜆
1
= 0, 𝜆

2
≤ 0, 𝜆

3
< 0, there is a

reverse period-doubling bifurcation route with a flip
bifurcation;

(4) if 1.9 ≤ 𝑏 < 4.2, 𝜆
1
> 0, 𝜆

2
= 0, 𝜆

3
< 0, the system is

chaotic. But there are several periodic windows in the
chaotic band;

(5) if 4.2 ≤ 𝑏 ≤ 6, 𝜆
1
= 0, 𝜆

2
≤ 0, 𝜆

3
< 0, there is a very

long reverse period-doubling bifurcation window.

When the parameters 𝑏 = 2 are fixed, 𝑎 varies on the
closed interval [0, 0.6]. Figures 8(a)-8(b) show the bifurcation
diagrams of the state 𝑥 and the corresponding Lyapunov
exponent spectrum versus increasing 𝑎, respectively. While
𝑎 increases the system is undergoing some representative
dynamical routes, such as period-doubling bifurcations,
chaos, and stable periodic loops.

As 𝑎 increases, system (1) is undergoing the flowing
dynamical routes:

(1) if 0 < 𝑎 ≤ 0.06, 𝜆
1
> 0, 𝜆

2
= 0, 𝜆

3
< 0, the system is

chaotic;

(2) if 0.06 ≤ 𝑎 < 0.08, 𝜆
1
= 0, 𝜆

2
≤ 0, 𝜆

3
< 0, there is a

reverse period-doubling bifurcation route with a flip
bifurcation;

(3) if 0.08 ≤ 𝑎 < 0.38, 𝜆
1
> 0, 𝜆

2
= 0, 𝜆

3
< 0, the system

is chaotic. But there are several periodic windows in
the chaotic band;

(4) if 0.38 ≤ 𝑏 < 0.6,𝜆
1
= 0,𝜆

2
≤ 0,𝜆

3
< 0, there is a very

long reverse period-doubling bifurcation window.

Let Δ
1
= 0, Δ

2
= 0, Δ

3
= 0; we use MATLAB to draw

the stability region on the parameter plane 𝑎 − 𝑏, as shown
in Figure 9. In the figure, the symbol 𝐿

𝑖
, 𝑖 = 1, 2, 3 represents

Δ
𝑖
= 0, 𝑖 = 1, 2, 3. If Δ

1
> 0, Δ

2
> 0 and Δ

3
> 0, then the

equilibrium 𝐸
+
is asymptotically stable. If Δ

1
> 0, Δ

3
> 0

and Δ
2
= 0, then system (1) has a transversal Hopf point at

𝐸
+
. And in regions (I) and (IV): Δ

1
> 0, Δ

2
< 0, Δ

3
< 0, in

regions (II) and (III): Δ
1
> 0, Δ

2
> 0, Δ

3
> 0, in region (V):

Δ
1
< 0, Δ

2
> 0, Δ

3
> 0, and in region (VI): Δ

1
< 0, Δ

2
< 0,

Δ
3
< 0. All of the points are stable in regions (II) and (III)

and in the other regions are unstable (Figure 10).

7. Sliding Mode Control of Chaotic Vibrations

7.1.TheDesign of theController. Wedesigned a sliding surface
with good nature and made the system possess the desired
properties when it limitations on the sliding surface. Then to
facilitate control, make the system reach the sliding surface
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Figure 8:Nonlinear dynamics of system (1) for specific values 𝑎 = 2 versus the control parameter 𝑎. (a) Bifurcation diagramof𝑥; (b) Lyapunov
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and keep sliding. After joining the controller, the system (1)
has the following form:

�̇� = 𝑦𝑧 + 0.1 (𝑥 − 𝑦) + 𝑑
1
+ 𝑢
1
,

̇𝑦 = 𝑥 − 𝑦 + 𝑑
2
+ 𝑢
2
,

�̇� = 2 − 𝑥𝑦 + 𝑑
3
+ 𝑢
3
,

(38)

where 𝑢
1
, 𝑢
2
, and 𝑢

3
are control inputs. If we join the

reasonable controller, we can control the chaos system to the
required range or the fixed point.

Define the following matrix:

A = (

0.1 −0.1 0

1 −1 0

0 0 0

) , B = (

1 0 0

0 1 0

0 0 1

) ,

d = (

𝑑
1

𝑑
2

𝑑
3

) , g = (

𝑦𝑧

0

−𝑥𝑦

) ,

(39)

where A is the linear matrix of the system, B is the control
matrix, d is the bounded perturbation matrix, and g is the
nonlinear matrix of the system. The purpose of control is to

let the system state x = [𝑥
1
, 𝑥
2
, 𝑥
3
]
T to track a time-varying

state x
𝑑
= [𝑥
𝑑1
, 𝑥
𝑑2
, 𝑥
𝑑3
]
T. So, we can define the tracking error

e = x − x
𝑑
. (40)

The error dynamic system can be written as

ė = ẋ − ẋ
𝑑
= Ax + Bg + Bu + d − ẋ

𝑑
. (41)

Define the time-varying proportional integral sliding
mode surface

S = Ke − ∫

𝑡

0

K (A − BL) e (𝜏) 𝑑𝜏, (42)

where K ∈ R3×3, det(KB) ̸= 0. For the convenience of
calculation, we get K = diag(1, 1, 1). The additional matrix
L ∈ R3×3, andA−BL is negative definitematrix.The equation
S = Ṡ = 0must be satisfied under the sliding mode, where

Ṡ = KBg + KBLe + KBu + Kd + KAx
𝑑
− Kẋ
𝑑
. (43)

In order to satisfy the sliding conditions, the following
controller is designed:

u = − [g + Le] − (KB)−1 [KAx
𝑑
− Kẋ
𝑑
]

− (KB)−1 [𝜀 + KBg
] sign(S) ,

(44)

where sign(S) is symbolic function.

Proposition 4. The controller (44) can make the system (38)
reach the sliding mode S = 0 in a limited time if the constant
𝜀 satisfied the inequality 𝜀 > 𝛿

1
+ 𝛿
2
+ 1, where 𝛿

1
, 𝛿
2
are

arbitrary small positive numbers. The state variables and the
selected reference state x

𝑑
are identical.
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Figure 10: Phase diagram of system (1).

Proof. Construct the Lyapunov function 𝑉 = STS = ∑
3

𝑖=1
S2
𝑖
;

according to (42), (43), and (44) one has

STṠ = ST (KBg + KBLe + KBu + Kd + KAx
𝑑
− Kẋ
𝑑
)

= ST [Kd − (𝜀 +
KBg

) sign (S)] ≤ ST [d − 𝜀 sign (S)]

≤

3

∑

𝑖=1

S𝑖
 𝛿1 +

3

∑

𝑖=1

S𝑖
 𝛿2 −

3

∑

𝑖=1

S𝑖
 𝜀 =

𝛿1 + 𝛿
2
− 𝜀



3

∑

𝑖=1

S𝑖


< −

3

∑

𝑖=1

S𝑖
 .

(45)

By the same token, we get

ṠTS < −

3

∑

𝑖=1

S𝑖
 , �̇� = ṠTS + STṠ < −2

3

∑

𝑖=1

S𝑖
 . (46)

So the proposition follows.

7.2. The Numerical Simulation. In the case of 𝑢
1
= 𝑢
2
= 𝑢
3
=

0, the time domain charts of the state variables of system (38)
are shown in Figure 11. Figure 11 illustrates that the system
(38) has aperiodic motion state before control.

In order to control the system (38) to the target state, we
select the eigenvalues of A − BL which are P = [−5, −5, −5].

The pole-placement method is adopted to get the following
matrix:

L = (

5.1 −0.1 0

1 4 0

0 0 5

) . (47)

Select proportional integral sliding mode surface as fol-
lows:

𝑆
1
= 𝑒
1
+ ∫

𝑡

0

5𝑒
1
(𝜏) 𝑑𝜏,

𝑆
2
= 𝑒
2
+ ∫

𝑡

0

5𝑒
2
(𝜏) 𝑑𝜏,

𝑆
3
= 𝑒
3
+ ∫

𝑡

0

5𝑒
3
(𝜏) 𝑑𝜏.

(48)

Set the initial value [𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)] = [0.1, 0.1, 0.1]

and the reference state 𝑥
𝑑1

= 𝑥
𝑑2

= 𝑥
𝑑3

= 𝑥
𝑑
. The control

signal is as follows:

𝑢
1
= − 𝑦𝑧 − 5.1𝑒

1
+ 0.1𝑒

2
+ �̇�
𝑑
− (𝜀 +

𝑦𝑧
) sign (𝑆

1
) ,

𝑢
2
= − 𝑒

1
− 4𝑒
2
+ �̇�
𝑑
− 𝜀 sign (𝑆

2
) ,

𝑢
3
= 𝑥𝑦 − 5𝑒

3
+ �̇�
𝑑
− (𝜀 +

𝑥𝑦
) sign (𝑆

3
) .

(49)

7.3. Control to the Fixed Point. We can stabilize the system
(38) to any point by this method. In this paper, we select
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Figure 11: Time domain charts of state variables before control.

the fixed point [0, 0, 0], reference state x
𝑑

= 0, small
parameter 𝜀 = 2, and the initial value of the sliding mode
surface [𝑆

1
(0), 𝑆
2
(0), 𝑆
3
(0)] = [0.1, 0.1, 0.1]. The controller

u(𝑡) is activated at 𝑡 = 1 s, the time domain charts of state
variables and sliding surfaces as shown in Figures 12 and 13,
respectively.

Figures 12 and 13 show that after joining the controller,
the system (38) tracks reference state [0, 0, 0] ultimately, and
the sliding mode surface S becomes 0. It is proved that the
system (38) reached the sliding mode. The output curve of
the controller will swing between upper and lower bounds in
a certain base value; this suggests that the system error has
reached zero. The reason of the fluctuations in the output of
the controller is only that the small changes of S have caused
the jump of the sign(S).

7.4. Control to the Periodic Orbit. We can stabilize the system
(38) to the periodic orbit. In this paper, we select the reference

state x
𝑑
= sin(𝑡). The controller u(𝑡) is activated at 𝑡 = 2 s, the

time domain charts of state variables as shown in Figure 14.
Obviously, the system (38) tracks reference state x

𝑑
=

sin(𝑡) to the periodic orbit ultimately.

8. Concluding Remarks

In this paper, a new autonomous system is studied in
detail. Dynamical behaviors of the new system are analyzed,
both theoretically and numerically, including some basic
dynamical properties. By choosing an appropriate bifur-
cation parameter, we prove that Hopf bifurcation occurs
when the bifurcation parameter passes through the critical
value. The direction of the Hopf bifurcation and stability
of the bifurcating periodic solutions are analyzed in detail.
Besides, we designed a Hopf bifurcation controller so as
to control the unstable subcritical Hopf bifurcation to the
stable supercritical Hopf bifurcation. The stable region and
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Figure 12: Time domain charts of state variables after control.

theHopf bifurcation boundaries are analyzedwith the change
of two parameters. At last, we designed a sliding surface
with good nature and made the system possess the desired
properties when it limitations on the sliding surface. And
we eliminated the chaotic vibration by means of sliding
mode method. Compared with other control methods, the
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Figure 13: Time domain charts of sliding surfaces after control.

sliding mode method can overcome the uncertainty of the
system, has very strong robustness for the interference and
unmodeled dynamics, and especially for nonlinear system
control has better control effect. And the numerical simu-
lations were presented to confirm the effectiveness of the
controller. Apparently there are more interesting problems
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Figure 14: Time domain charts of state variables after control.

about this chaotic system in terms of complexity, control, and
synchronization, which deserve further investigation.
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