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Nonuniform exponential dichotomy has been investigated extensively. The essential condition of these previous results is based
on the assumption that the nonlinear term satisfies |𝑓(𝑡, 𝑥)| ≤ 𝜇𝑒

−𝜀|𝑡|. However, this condition is very restricted. There are few
functions satisfying |𝑓(𝑡, 𝑥)| ≤ 𝜇𝑒

−𝜀|𝑡|. In some sense, this assumption is not reasonable enough. More suitable assumption should
be |𝑓(𝑡, 𝑥)| ≤ 𝜇. To the best of the authors’ knowledge, there is no paper considering the existence and uniqueness of solution to
the perturbed nonautonomous system with a relatively conservative assumption |𝑓(𝑡, 𝑥)| ≤ 𝜇. In this paper, we prove that if the
nonlinear term is bounded, the perturbed nonautonomous system with nonuniform exponential dichotomy has a unique solution.
The technique employed to proveTheorem 4 is the highlight of this paper.

1. Introduction

The notion of exponential dichotomy, introduced by Perron
in [1], plays an important role in the theory of differential
equations and dynamical systems (also see [2–5]). It is well
known that if linear system 𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) admits an
(uniform) exponential dichotomy, the nonlinear term 𝑓(𝑡, 𝑥)

is bounded and has a small Lipschitz constant, then the
nonlinear system 𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝑓(𝑡, 𝑥) has a unique
bounded solution (see [6]). However, many scholars argued
that (uniform) exponential dichotomy restricted the behavior
of dynamical systems. For this reason, we need a more
general concept of hyperbolicity. Recently, Barreira and Valls
[7, 8] have introduced the notion of nonuniform exponential
dichotomy. General nonuniform exponential dichotomy has
also been proposed (see [9–11]). Many properties of nonuni-
form exponential dichotomy have been extensively studied.
For example, the topological conjugacies between linear

and nonlinear perturbations were explored and some new
Grobman-Hartman type theorems for nonuniform expo-
nential dichotomy were established ([12, 13]). However, the
essential condition of these results is based on the assumption
that the nonlinear term satisfies |𝑓(𝑡, 𝑥)| ≤ 𝜇𝑒

−𝜀|𝑡|. Under the
same condition, Zhang et al. studied nonlinear perturbations
of nonuniform exponential dichotomy on measure chains
([14]).

However, the condition |𝑓(𝑡, 𝑥)| ≤ 𝜇𝑒
−𝜀|𝑡| is very

restricted. There are few functions satisfying |𝑓(𝑡, 𝑥)| ≤

𝜇𝑒
−𝜀|𝑡|. Thus, it is necessary to find a more conservative

condition for the nonlinear term 𝑓(𝑡, 𝑥). In this paper, our
main objective is to explore the existence and uniqueness
of solution to the perturbed nonautonomous system with a
relatively conservative assumption |𝑓(𝑡, 𝑥)| ≤ 𝜇. Finally, we
prove that if |𝑓(𝑡, 𝑥)| ≤ 𝜇, the perturbed nonautonomous
systemwith nonuniform exponential dichotomyhas a unique
solution 𝑥(𝑡) satisfying |𝑥(𝑡)| = 𝑂(𝑒

𝜀|𝑡|

).
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The outline of this paper is arranged as follows. Next
section is to state our main results. In Section 3, we prove the
main results.

2. Main Results

In this section, we will state our main theorems. First,
we introduce the definition of nonuniform exponential
dichotomy.

Consider systems

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , (1)

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥) , (2)

where 𝑡 ∈ R, 𝑥 ∈ R𝑛, 𝐴(𝑡) is a continuous matrix function,
and 𝑓 : R ×R𝑛 → R𝑛 is a continuous function.

Let 𝑇
𝐴

(𝑡, 𝑠) be the evolution operator satisfying 𝑥(𝑡) =

𝑇
𝐴

(𝑡, 𝑠)𝑥(𝑠), 𝑡, 𝑠 ∈ R, where 𝑥(𝑡) is a solution of (1).

Definition 1. Linear system (1) is said to admit a nonuniform
exponential dichotomy if there exists a projection 𝑃(𝑡) (𝑃2 =
𝑃) and constants 𝛼 > 0,𝐾 > 0, 𝜀 ≥ 0, such that

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 𝑠) 𝑃 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒

−𝛼(𝑡−𝑠)

⋅ 𝑒
𝜀|𝑠|

, 𝑡 ≥ 𝑠,

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 𝑠) 𝑄 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒

𝛼(𝑡−𝑠)

⋅ 𝑒
𝜀|𝑠|

, 𝑡 ≤ 𝑠,

(3)

where 𝑃(𝑡) + 𝑄(𝑡) = Id (identity), 𝑇
𝐴

(𝑡, 𝑠)𝑃(𝑠) =

𝑃(𝑡)𝑇
𝐴

(𝑡, 𝑠), 𝑡, 𝑠 ∈ R.

Remark 2. When 𝜀 ≡ 0, system (1) is said to have an
exponential dichotomy; and when 𝜀 ≡ 0, 𝛼 ≡ 0, system (1)
is said to have a uniform dichotomy.

To present our main results, we give a theorem under the
trivial condition |𝑓(𝑡, 𝑥)| ≤ 𝜇𝑒

−𝜀|𝑡|.

Theorem 3. Suppose that linear system (1) admits a nonuni-
form exponential dichotomy. For 𝑡 ∈ R, 𝑥, 𝑥

1

, 𝑥
2

∈ R𝑛, if the
nonlinear term 𝑓(𝑡, 𝑥) satisfies

(H̃
1

) |𝑓(𝑡, 𝑥)| ≤ 𝜇𝑒
−𝜀|𝑡|,

(H̃
2

) |𝑓(𝑡, 𝑥
1

) − 𝑓(𝑡, 𝑥
2

)| ≤ 𝑟𝑒
−𝜀|𝑡|

|𝑥
1

− 𝑥
2

|,
(H̃
3

) 4𝐾𝑟 < 𝛼,

where 𝜇, 𝑟, 𝜀, 𝛼 are all positive constants, then nonlinear system
(2) has a unique bounded solution 𝑥(𝑡) satisfying

𝑥 (𝑡) = ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(4)

Discussion. One of the essential conditions of Theorem 3 is
(H̃
1

). However, this condition is very restricted.There are few
functions satisfying |𝑓(𝑡, 𝑥)| ≤ 𝜇𝑒

−𝜀|𝑡|. Thus, it is necessary
to find a more conservative condition for the nonlinear term

𝑓(𝑡, 𝑥). The main objective of this paper is to prove that the
perturbed system has a unique solution under |𝑓(𝑡, 𝑥)| ≤ 𝜇.
But Theorem 3 cannot be valid yet. For this case, we have the
following.

Theorem 4. Suppose that linear system (1) admits a nonuni-
form exponential dichotomy with the estimates (3). For 𝑡 ∈

R, 𝑥, 𝑥
1

, 𝑥
2

∈ R𝑛, if 𝑓(𝑡, 𝑥) satisfies

(H
1

) |𝑓(𝑡, 𝑥)| ≤ 𝜇,

(H
2

) |𝑓(𝑡, 𝑥
1

) − 𝑓(𝑡, 𝑥
2

)| ≤ 𝑟𝑒
−𝜀|𝑡|

|𝑥
1

− 𝑥
2

|,

(H
3

) 4𝐾𝑟 < 𝛼 − 𝜀,

where 𝛼− 𝜀 is a positive constant, then system (2) has a unique
solution 𝑥(𝑡) satisfying

|𝑥 (𝑡)| = 𝑂 (𝑒
𝜀|𝑡|

) . (5)

Remark 5. The method used to prove Theorem 3 cannot be
applied to this case. To see how to overcome the difficulty,
one can refer to the main proof of Theorem 4. The technique
employed to proveTheorem 4 is very skillful and interesting,
which is the highlight of this paper.

3. Proofs of Main Results

In what follows, to prove Theorem 3, a preliminary lemma is
needed.

Lemma 6 (see [15], Lemma 4). If system (1) admits a nonuni-
form exponential dichotomy, then system (1) has no nontrivial
bounded solutions; that is, 𝑥(𝑡) = 0 is the unique bounded
solution of (1).

3.1. Proof of Theorem 3. Let B = {𝜑(𝑡) | 𝜑(𝑡) be continuous
and |𝜑(𝑡)| ≤ 2𝐾𝜇𝛼

−1

}, for ∀𝜑 ∈ B, define a mappingT
1

:

T
1

𝜑 (𝑡) = ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑 (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑 (𝑠)) 𝑑𝑠.

(6)

From (3) and (H̃
1

) and (H̃
2

), we have

󵄨󵄨󵄨󵄨T1𝜑 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫
𝑡

−∞

𝐾𝑒
−𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅ 𝜇𝑒
−𝜀|𝑠|

𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅ 𝜇𝑒
−𝜀|𝑠|

𝑑𝑠

= 𝐾𝜇𝛼
−1

+ 𝐾𝜇𝛼
−1

= 2𝐾𝜇𝛼
−1

.

(7)
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Therefore,T
1

𝜑(𝑡) ∈ B, which impliesT
1

maps B onto itself.
On the other hand,

󵄨󵄨󵄨󵄨T1𝜑1 (𝑡) −T
1

𝜑
2

(𝑡)
󵄨󵄨󵄨󵄨

≤ ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝜑1 (𝑠) − 𝜑2 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝜑1 (𝑠) − 𝜑2 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫
𝑡

−∞

𝐾𝑟𝑒
−𝛼(𝑡−𝑠)

󵄨󵄨󵄨󵄨𝜑1 (𝑠) − 𝜑2 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑟𝑒
𝛼(𝑡−𝑠)

󵄨󵄨󵄨󵄨𝜑1 (𝑠) − 𝜑2 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 2𝐾𝑟𝛼
−1sup
𝑠≥0

󵄨󵄨󵄨󵄨𝜑1 (𝑠) − 𝜑2 (𝑠)
󵄨󵄨󵄨󵄨

≤
1

2
sup
𝑠≥0

󵄨󵄨󵄨󵄨𝜑1 (𝑠) − 𝜑2 (𝑠)
󵄨󵄨󵄨󵄨 .

(8)

Then T
1

is a contraction mapping. Therefore, in B, there
exists a unique fixed point 𝜑

0

(𝑡), such that

𝜑
0

(𝑡) = T
1

𝜑
0

(𝑡) = ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
0

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
0

(𝑠)) 𝑑𝑠.

(9)

Differentiating the above equality, we see that 𝜑
0

(𝑡) satisfies
(2). Now we are going to show that the solution of system
(2) satisfying (H̃

1

), (H̃
2

), and (H̃
3

) is unique. Assume that
system (2) has another bounded solution 𝜑

∗

(𝑡) satisfying
(H̃
1

), (H̃
2

), and (H̃
3

); we have

𝜑
∗

(𝑡) = 𝑇
𝐴

(𝑡, 0) 𝜑
∗

(0)

+ ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑇
−1

(𝑠, 𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

= 𝑇
𝐴

(𝑡, 0) 𝜑
∗

(0) + ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

= 𝑇
𝐴

(𝑡, 0) 𝜑
∗

(0) + ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

− ∫
0

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

+ ∫
+∞

0

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

= 𝑇
𝐴

(𝑡, 0) [𝜑
∗

(0)

− (∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

−∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠)]

+ (∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

−∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠) .

(10)

By calculating, we get

∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠 ≤ 2𝐾𝜇𝛼
−1

.

(11)

As 𝜑∗(𝑡) is bounded, we obtain

𝑇
𝐴

(𝑡, 0) [𝜑
∗

(0) − (∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

−∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠)] ,

(12)

is bounded. In addition, the formula above is the solution of
system (1), so it is a bounded solution. From Lemma 6, we
have

𝑇
𝐴

(𝑡, 0) [𝜑
∗

(0)

− (∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

−∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠)] = 0.

(13)

Therefore,

𝜑
∗

(𝑡) = ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜑
∗

(𝑠)) 𝑑𝑠.

(14)
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From (3), (H̃
2

), and (H̃
3

), we have
󵄨󵄨󵄨󵄨𝜑0 (𝑡) − 𝜑

∗

(𝑡)
󵄨󵄨󵄨󵄨

≤ ∫
𝑡

−∞

𝐾𝑒
−𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅ 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝜑0 (𝑠) − 𝜑
∗

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅ 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝜑0 (𝑠) − 𝜑
∗

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

= 2𝐾𝑟𝛼
−1
󵄨󵄨󵄨󵄨𝜑0 (𝑠) − 𝜑

∗

(𝑠)
󵄨󵄨󵄨󵄨

=
1

2
sup
𝑡∈R

󵄨󵄨󵄨󵄨𝜑0 (𝑡) − 𝜑
∗

(𝑡)
󵄨󵄨󵄨󵄨 .

(15)

That is, sup
𝑡∈R|𝜑0(𝑡) − 𝜑

∗

(𝑡)| ≤ (1/2)sup
𝑡∈R|𝜑0(𝑡) − 𝜑

∗

(𝑡)|,
which implies 𝜑

0

(𝑡) = 𝜑
∗

(𝑡). Then the uniqueness is proved.
The proof of Theorem 3 is complete.

3.2. Proof of Theorem 4. To prove Theorem 4, a standard
method is to employ a linear transformation 𝑥 = 𝑒

𝜀|𝑡|

𝑦.
However, 𝑥 = 𝑒

𝜀|𝑡|

𝑦 is not differentiable at 𝑡 = 0. Thus, we
cannot use such transformation directly. We have to discuss
by dividing into two pieces 𝑡 ≥ 0 and 𝑡 ≤ 0.

Consider system

𝑥̇ (𝑡) = 𝐵 (𝑡) V (𝑡) + 𝐹 (𝑡, V) , (16)

where 𝑢 ∈ R𝑛, 𝐵(𝑡) is a continuous matrix function, and 𝐹 :

R ×R𝑛 → R𝑛 is a continuous function.

Lemma 7. Suppose that system V̇(𝑡) = 𝐵(𝑡)V(𝑡) admits
a nonuniform exponential dichotomy; that is, its evolution
operator 𝑇

𝐵

(𝑡, 𝑠) satisfies
󵄨󵄨󵄨󵄨𝑇𝐵 (𝑡, 𝑠) 𝑃 (𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒
−𝜆(𝑡−𝑠)

⋅ 𝑒
𝜀|𝑠|

, 𝑡 ≥ 𝑠,

󵄨󵄨󵄨󵄨𝑇𝐵 (𝑡, 𝑠) 𝑄 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒

𝜆(𝑡−𝑠)

⋅ 𝑒
𝜀|𝑠|

, 𝑡 ≤ 𝑠,

(17)

where 𝜆 is a positive constant. In addition,
󵄨󵄨󵄨󵄨𝐹 (𝑡, V1) − 𝐹 (𝑡, V2)

󵄨󵄨󵄨󵄨 ≤ 𝑟𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨V1 − V
2

󵄨󵄨󵄨󵄨 ,

4𝐾𝑟 < 𝜆.
(18)

If |𝐹(𝑡, V)| ≤ 𝜇𝑒
−𝜀|𝑡| for 𝑡 ≥ 0, then for any 𝑎 ∈ R𝑛, system (16)

has a unique solution V+(𝑡) satisfying the following:

(i) |V+(𝑡)| < +∞, for 𝑡 ≥ 0;
(ii) 𝑃(0)V+(0) = 𝑃(0)𝑎;
(iii) in R+, V+(𝑡) satisfies integral equation

V+ (𝑡) = 𝑇
𝐵

(𝑡, 0) 𝑃 (0) 𝑎 + ∫
𝑡

0

𝑇
𝐵

(𝑡, 𝑠) 𝑃 (𝑠) 𝐹 (𝑠, V+ (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐵

(𝑡, 𝑠) 𝑄 (𝑠) 𝐹 (𝑠, V+ (𝑠)) 𝑑𝑠.

(19)

If |𝐹(𝑡, V)| ≤ 𝜇𝑒
−𝜀|𝑡| for 𝑡 ≤ 0, then for any 𝑎 ∈ R𝑛, system

(16) has a unique solution V−(𝑡) satisfying the following:

(i) |V−(𝑡)| < +∞, for 𝑡 ≤ 0;
(ii) 𝑄(0)V−(0) = 𝑄(0)𝑎;
(iii) in R−, V−(𝑡) satisfies integral equation

V− (𝑡) = 𝑇
𝐵

(𝑡, 0) 𝑄 (0) 𝑎 + ∫
𝑡

−∞

𝑇
𝐵

(𝑡, 𝑠) 𝑃 (𝑠) 𝐹 (𝑠, V− (𝑠)) 𝑑𝑠

− ∫
0

𝑡

𝑇
𝐵

(𝑡, 𝑠) 𝑄 (𝑠) 𝐹 (𝑠, V− (𝑠)) 𝑑𝑠.

(20)

Proof. We prove the existence of V+(𝑡) by successive approx-
imation method. For any 𝑎 ∈ R𝑛, let V+

0

(𝑡) = 𝑇
𝐵

(𝑡, 0)𝑃(0)𝑎.
We define V+

𝑚

(𝑡), V+
𝑚+1

(𝑡) recursively as follows:

V+
𝑚+1

(𝑡) = 𝑇
𝐵

(𝑡, 0) 𝑃 (0) 𝑎 + ∫
𝑡

0

𝑇
𝐵

(𝑡, 𝑠) 𝑃 (𝑠) 𝐹 (𝑠, V+
𝑚

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐵

(𝑡, 𝑠) 𝑄 (𝑠) 𝐹 (𝑠, V+
𝑚

(𝑠)) 𝑑𝑠.

(21)

From (17) and |𝐹(𝑡, V)| ≤ 𝜇𝑒
−𝜀|𝑡|, for 𝑡 ≥ 0, we have

󵄨󵄨󵄨󵄨V
+

𝑚+1

(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒

−𝜆𝑡

|𝑎| + ∫
𝑡

0

𝐾𝑒
−𝜆(𝑡−𝑠)

𝑒
𝜀𝑠

⋅ 𝜇𝑒
−𝜀𝑠

𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
𝜆(𝑡−𝑠)

𝑒
𝜀𝑠

⋅ 𝜇𝑒
−𝜀𝑠

𝑑𝑠

= 𝐾𝑒
−𝜆𝑡

|𝑎| + 𝐾𝜇𝜆
−1

(1 − 𝑒
−𝜆𝑡

) + 𝐾𝜇𝜆
−1

≤ 𝐾 |𝑎| + 2𝐾𝜇𝜆
−1

.

(22)

For any bounded function V(𝑡) defined on R+, denote ‖V‖ =
sup
𝑡∈R|V(𝑡)|; then it follows from (18) and (21) that
󵄨󵄨󵄨󵄨V
+

𝑚+1

(𝑡) − V+
𝑚

(𝑡)
󵄨󵄨󵄨󵄨

≤ ∫
𝑡

0

𝐾𝑒
−𝜆(𝑡−𝑠)

𝑒
𝜀𝑠

⋅ 𝑟𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨V
+

𝑚

(𝑠) − V+
𝑚−1

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
𝜆(𝑡−𝑠)

𝑒
𝜀𝑠

⋅ 𝑟𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨V
+

𝑚

(𝑠) − V+
𝑚−1

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 2𝐾𝑟𝜆
−1
󵄨󵄨󵄨󵄨V
+

𝑚

(𝑠) − V+
𝑚−1

(𝑠)
󵄨󵄨󵄨󵄨

≤ 2𝐾𝑟𝜆
−1
󵄩󵄩󵄩󵄩V
+

𝑚

− V+
𝑚−1

󵄩󵄩󵄩󵄩

≤
1

2

󵄩󵄩󵄩󵄩V
+

𝑚

− V+
𝑚−1

󵄩󵄩󵄩󵄩 ,

(23)

which implies that ‖V+
𝑚+1

− V+
𝑚

‖ ≤ (1/2)‖V+
𝑚

− V+
𝑚−1

‖. Hence,
the series∑∞

𝑚=0

(V+
𝑚+1

(𝑡) − V+
𝑚

(𝑡)) converges uniformly onR+.
It means that the series {V+

𝑚

(𝑡)} converges uniformly to a limit
V+(𝑡) on R+.

From (21), for any fixed 𝑡, let𝑚 → ∞, we have

V+ (𝑡) = 𝑇
𝐵

(𝑡, 0) 𝑃 (0) 𝑎 + ∫
𝑡

0

𝑇
𝐵

(𝑡, 𝑠) 𝑃 (𝑠) 𝐹 (𝑠, V+ (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐵

(𝑡, 𝑠) 𝑄 (𝑠) 𝐹 (𝑠, V+ (𝑠)) 𝑑𝑠.

(24)
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Differentiating the above equality, we see that V+(𝑡) satisfies
the system (16).

From (22) and (24), we know that |V+(𝑡)| < ∞ for 𝑡 ≥ 0,
and it is easy to demonstrate that 𝑃(0)V+(0) = 𝑃(0)𝑎. Now we
are going to show the uniqueness of V+(𝑡). If there is another
bounded function Ṽ+(𝑡) satisfying (i), (ii), and (iii) on R+, in
view of (iii) and (18) we have

󵄨󵄨󵄨󵄨Ṽ
+

(𝑡) − V+ (𝑡)󵄨󵄨󵄨󵄨

≤ ∫
𝑡

0

𝐾𝑒
−𝜆(𝑡−𝑠)

𝑒
𝜀𝑠

⋅ 𝑟𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨Ṽ
+

(𝑠) − V+ (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
𝜆(𝑡−𝑠)

𝑒
𝜀𝑠

⋅ 𝑟𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨Ṽ
+

(𝑠) − V+ (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 2𝐾𝑟𝜆
−1
󵄩󵄩󵄩󵄩Ṽ
+

− V+󵄩󵄩󵄩󵄩

≤
1

2

󵄩󵄩󵄩󵄩Ṽ
+

− V+󵄩󵄩󵄩󵄩 ,

(25)

which implies ‖Ṽ+−V+‖ ≤ (1/2)‖Ṽ+−V+‖. Hence, Ṽ+(𝑡) ≡ V+(𝑡).
The proof of the existence and uniqueness of V−(𝑡) is sim-

ilar to that of V+(𝑡). The proof of Lemma 7 is complete.

Lemma 8. Suppose that 𝛼 > 0, 𝛿 > 0, 𝐶, 𝐿, and 𝑀

are nonnegative constants and that V(𝑡) is a nonnegative
bounded continuous function which satisfies two of the follow-
ing inequalities:

V (𝑡) ≤ 𝐶𝑒
−𝛼𝑡

+ 𝐿∫
𝑡

0

𝑒
−𝛼(𝑡−𝑠)V (𝑠) 𝑑𝑠

+𝑀∫
+∞

𝑡

𝑒
𝛿(𝑡−𝑠)V (𝑠) 𝑑𝑠, (𝑡 ≥ 0) ,

V (𝑡) ≤ 𝐶𝑒
𝛼𝑡

+ 𝐿∫
0

𝑡

𝑒
𝛼(𝑡−𝑠)V (𝑠) 𝑑𝑠

+𝑀∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)V (𝑠) 𝑑𝑠, (𝑡 ≤ 0) .

(26)

In addition, if 𝛾 = 𝐿/𝛼 +𝑀/𝛿 < 1, then for 𝑡 ≥ 0 or 𝑡 ≤ 0, one
has

V (𝑡) ≤ (1 − 𝛾)
−1

𝐶𝑒
−[𝛼−(1−𝛾)

−1

𝐿]|𝑡|

. (27)

Proof. The proof is straightforward by Lemma 6.2 of Chapter
3 in [6].

Lemma 9. For any 𝑎 ∈ R𝑛, system (2) has a unique solution
𝑥
+

(𝑡) with the following properties:

(i) |𝑥+(𝑡)𝑒−𝜀𝑡| < +∞, for 𝑡 ≥ 0;
(ii) 𝑃(0)𝑥+(0) = 𝑃(0)𝑎;
(iii) 𝑥+(𝑡) on R+ satisfies integral equation

𝑥
+

(𝑡) = 𝑇
𝐴

(𝑡, 0) 𝑃 (0) 𝑎 + ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
+

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
+

(𝑠)) 𝑑𝑠.

(28)

Similarly, for any 𝑎 ∈ R𝑛, system (2) also has a unique solution
𝑥
−

(𝑡) with the following properties:

(i) |𝑥−(𝑡)𝑒𝜀𝑡| < +∞, for 𝑡 ≤ 0;
(ii) 𝑄(0)𝑥−(0) = 𝑄(0)𝑎;
(iii) 𝑥−(𝑡) on R− satisfies integral equation

𝑥
−

(𝑡) = 𝑇
𝐴

(𝑡, 0) 𝑄 (0) 𝑎 + ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
−

(𝑠)) 𝑑𝑠

− ∫
0

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
−

(𝑠)) 𝑑𝑠.

(29)

Proof. We firstly prove the existence and uniqueness of 𝑥+(𝑡).
Let V = 𝑥𝑒

−𝜀𝑡, then system (2) becomes

V̇ (𝑡) = (𝐴 (𝑡) − 𝜀𝐼) V (𝑡) + 𝑒−𝜀𝑡𝑓 (𝑡, V𝑒𝜀𝑡) . (30)

Let 𝐹(𝑡, V) = 𝑒
−𝜀𝑡

𝑓(𝑡, V𝑒𝜀𝑡). From (H
1

) and (H
2

), we have

|𝐹 (𝑡, V)| ≤ 𝑒
−𝜀𝑡

𝜇 = 𝜇𝑒
−𝜀|𝑡|

, for 𝑡 ≥ 0;

󵄨󵄨󵄨󵄨𝐹 (𝑡, V1) − 𝐹 (𝑡, V2)
󵄨󵄨󵄨󵄨 = 𝑒
−𝜀𝑡

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, V

1

𝑒
𝜀𝑡

) − 𝑓 (𝑡, V
2

𝑒
𝜀𝑡

)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑒
−𝜀𝑡

𝑟𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨󵄨
V
1

𝑒
𝜀𝑡

− V
2

𝑒
𝜀𝑡

󵄨󵄨󵄨󵄨󵄨

≤ 𝑟𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨V1 − V
2

󵄨󵄨󵄨󵄨 .

(31)

Let 𝑇
𝐶

(𝑡, 𝑠) be the evolution operator of the linear system
V̇(𝑡) = (𝐴(𝑡) − 𝜀𝑡)V(𝑡). Since 𝑥(𝑡) = 𝑇

𝐴

(𝑡, 𝑠)𝑥(𝑠), V = 𝑒
−𝜀𝑡

𝑥, we
have 𝑇

𝐶

(𝑡, 𝑠) = 𝑒
−𝜀(𝑡−𝑠)

𝑇
𝐴

(𝑡, 𝑠). Hence, from (3), we obtain
󵄨󵄨󵄨󵄨𝑇𝐶 (𝑡, 𝑠) 𝑃 (𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒
−(𝛼−𝜀)(𝑡−𝑠)

⋅ 𝑒
𝜀|𝑠|

, for 𝑡 ≥ 𝑠,

󵄨󵄨󵄨󵄨𝑇𝐶 (𝑡, 𝑠) 𝑄 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒

(𝛼−𝜀)(𝑡−𝑠)

⋅ 𝑒
𝜀|𝑠|

, for 𝑡 ≤ 𝑠.

(32)

Since 4𝐾𝑟 < 𝛼 − 𝜀, system (30) satisfies all conditions of
Lemma 7.Therefore, for any 𝑎 ∈ R𝑛, system (30) has a unique
solution V+(𝑡) with the following properties:

(i) |V+(𝑡)| < +∞, for 𝑡 ≥ 0;
(ii) 𝑃(0)V+(0) = 𝑃(0)𝑎;
(iii) V+(𝑡) on R+ satisfies integral equation

V+ (𝑡) = 𝑇
𝐶

(𝑡, 0) 𝑃 (0) 𝑎 + ∫
𝑡

0

𝑇
𝐶

(𝑡, 𝑠) 𝑃 (𝑠) 𝐹 (𝑠, V+ (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐶

(𝑡, 𝑠) 𝑄 (𝑠) 𝐹 (𝑠, V+ (𝑠)) 𝑑𝑠

= 𝑒
−𝜀𝑡

𝑇
𝐴

(𝑡, 0) 𝑃 (0) 𝑎

+ ∫
𝑡

0

𝑒
−𝜀(𝑡−𝑠)

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) ⋅ 𝑒
−𝜀𝑠

𝑓 (𝑠, V+ (𝑠) 𝑒𝜀𝑠) 𝑑𝑠

− ∫
+∞

𝑡

𝑒
−𝜀(𝑡−𝑠)

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠)

⋅ 𝑒
−𝜀𝑠

𝑓 (𝑠, V+ (𝑠) 𝑒𝜀𝑠) 𝑑𝑠.
(33)
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Hence,

V+ (𝑡) 𝑒𝜀𝑡 = 𝑇
𝐴

(𝑡, 0) 𝑃 (0) 𝑎

+ ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, V+ (𝑠) 𝑒𝜀𝑠) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, V+ (𝑠) 𝑒𝜀𝑠) 𝑑𝑠.

(34)

Let 𝑥+(𝑡) = V+(𝑡)𝑒𝜀𝑡, we have

𝑥
+

(𝑡) = 𝑇
𝐴

(𝑡, 0) 𝑃 (0) 𝑎 + ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
+

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
+

(𝑠)) 𝑑𝑠.

(35)

Then 𝑥
+

(𝑡) is the solution of system (2) and it satisfies all
conditions of Lemma 9.

The proof for the existence and uniqueness of 𝑥−(𝑡) is
similar to that of 𝑥+(𝑡), so we omit it.This completes the proof
of Lemma 9.

Lemma 10. If |𝑇
𝐴

(𝑡, 0)𝑃(0)𝑎| ≤ 𝑀𝑒
𝜀|𝑡|, then 𝑎 = 0.

Proof. If 𝑎 ̸= 0, then 𝑃(0)𝑎 ̸= 0 or 𝑄(0)𝑎 ̸= 0. Without loss of
generality, we assume 𝑃(0)𝑎 ̸= 0, then we have
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 0) 𝑃 (0) 𝑎

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨
𝑇
𝐴

(𝑡, 0) 𝑃 (0) 𝑇
−1

𝐴

(𝑠, 0) 𝑇
𝐴

(𝑠, 0) 𝑃 (0) 𝑎
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 0) 𝑇𝐴 (0, 𝑠) 𝑃 (𝑠) 𝑇𝐴 (𝑠, 0) 𝑃 (0) 𝑎

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 𝑠) 𝑃 (𝑠) 𝑇𝐴 (𝑠, 0) 𝑃 (0) 𝑎

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 𝑠) 𝑃 (𝑠)

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑃 (0) 𝑎

󵄨󵄨󵄨󵄨 .

(36)

Since |𝑇
𝐴

(𝑡, 𝑠)𝑃(𝑠)| ≤ 𝐾𝑒
−𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠| for 𝑡 ≥ 𝑠,

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 0) 𝑃 (0) 𝑎
󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒

−𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑃 (0) 𝑎

󵄨󵄨󵄨󵄨 , (37)

which implies

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑃 (0) 𝑎
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑡, 0) 𝑃 (0) 𝑎
󵄨󵄨󵄨󵄨

𝐾𝑒−𝛼(𝑡−𝑠)𝑒𝜀|𝑠|
. (38)

Taking 𝑡 = 0, we obtain

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑃 (0) 𝑎
󵄨󵄨󵄨󵄨 ≥

|𝑃 (0) 𝑎|

𝐾𝑒𝛼𝑠𝑒−𝜀𝑠

= 𝐾
−1

𝑒
−(𝛼−𝜀)𝑠

|𝑃 (0) 𝑎| (𝑠 ≤ 0) .

(39)

Therefore, when 𝑠 ≤ 0,
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑃 (0) 𝑎

󵄨󵄨󵄨󵄨

𝑒𝜀|𝑠|
≥ 𝐾
−1

𝑒
−𝛼𝑠

|𝑃 (0) 𝑎| 󳨀→ +∞ as 𝑠 󳨀→ −∞.

(40)

On the other hand, when 𝑠 ≤ 0, from (3), we have
󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑄 (0) 𝑎

󵄨󵄨󵄨󵄨 ≤ 𝐾𝑒
𝛼𝑠

𝑒
𝜀|0|

= 𝐾𝑒
𝛼𝑠

, (41)

hence,

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑄 (0) 𝑎
󵄨󵄨󵄨󵄨

𝑒𝜀|𝑠|
≤ 𝐾𝑒
(𝛼+𝜀)𝑠

. (42)

It follows from (40) and (42) that

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑎
󵄨󵄨󵄨󵄨

𝑒𝜀|𝑠|
=

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) (𝑃 (𝑠) + 𝑄 (𝑠)) 𝑎
󵄨󵄨󵄨󵄨

𝑒𝜀|𝑠|

≥

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑃 (𝑠) 𝑎
󵄨󵄨󵄨󵄨

𝑒𝜀|𝑠|
−

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑄 (𝑠) 𝑎
󵄨󵄨󵄨󵄨

𝑒𝜀|𝑠|

≥

󵄨󵄨󵄨󵄨𝑇𝐴 (𝑠, 0) 𝑃 (𝑠) 𝑎
󵄨󵄨󵄨󵄨

𝑒𝜀|𝑠|
− 𝐾𝑒
(𝛼+𝜀)𝑠

.

(43)

From the above inequality, we know that |𝑇
𝐴

(𝑠, 0)𝑎|/𝑒
𝜀|𝑠|

→

+∞ as 𝑠 → −∞, which contradicts the original condition
|𝑇
𝐴

(𝑠, 0)𝑎|/𝑒
𝜀|𝑠|

≤ 𝑀 and it implies 𝑎 = 0. This ends the proof
of Lemma 10.

Proof of Theorem 4. For any solution 𝑥(𝑡) of system (2), it can
be written as follows:

𝑥 (𝑡) = 𝑇
𝐴

(𝑡, 0) 𝑥 (0) + ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑇
−1

𝐴

(𝑠, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

= 𝑇
𝐴

(𝑡, 0) 𝑥 (0) + ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

= 𝑇
𝐴

(𝑡, 0) 𝑥 (0) + ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫
0

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
+∞

0

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

= 𝑇
𝐴

(𝑡, 0) [𝑥 (0)

− (∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)]

+ (∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) .

(44)
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Let 𝜉(𝑡) be any n-variable continuous function defined onR.
From (3) and (H

1

), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜉 (𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑡

−∞

𝐾𝑒
−𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

𝜇 𝑑𝑠

= 𝐾𝜇𝑒
−𝛼𝑡

∫
𝑡

−∞

𝑒
𝛼𝑠

𝑒
𝜀|𝑠|

𝑑𝑠.

(45)

For 𝑡 ≥ 0,

𝑒
−𝛼𝑡

∫
𝑡

−∞

𝑒
𝛼𝑠

𝑒
𝜀|𝑠|

𝑑𝑠 = 𝑒
−𝛼𝑡

(∫
0

−∞

𝑒
𝛼𝑠

𝑒
−𝜀𝑠

𝑑𝑠 + ∫
𝑡

0

𝑒
𝛼𝑠

𝑒
𝜀𝑠

𝑑𝑠)

= 𝑒
−𝛼𝑡

(
1

𝛼 − 𝜀
+

1

𝛼 + 𝜀
(𝑒
(𝛼+𝜀)𝑡

− 1))

≤
1

𝛼 + 𝜀
𝑒
𝜀𝑡

+
1

𝛼 − 𝜀

≤
1

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
1

𝛼 − 𝜀
;

(46)

for 𝑡 ≤ 0,

𝑒
−𝛼𝑡

∫
𝑡

−∞

𝑒
𝛼𝑠

𝑒
𝜀|𝑠|

𝑑𝑠 = 𝑒
−𝛼𝑡

∫
𝑡

−∞

𝑒
𝛼𝑠

𝑒
−𝜀𝑠

𝑑𝑠

=
1

𝛼 − 𝜀
𝑒
−𝜀𝑡

≤
1

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
1

𝛼 − 𝜀
.

(47)

Hence, for any 𝑡 ∈ R, we have

𝑒
−𝛼𝑡

∫
𝑡

−∞

𝑒
𝛼𝑠

𝑒
𝜀|𝑠|

𝑑𝑠 ≤
1

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
1

𝛼 − 𝜀
. (48)

Therefore, for any 𝑡 ∈ R, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝜉 (𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝐾𝜇

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
𝐾𝜇

𝛼 − 𝜀
. (49)

By the same calculation, for any 𝑡 ∈ R, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝜉 (𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝐾𝜇

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
𝐾𝜇

𝛼 − 𝜀
. (50)

In Lemma 9, 𝑥+(𝑡) and 𝑥−(𝑡) are uniquely determined by
𝑎; we denote them by 𝑥+(𝑡, 𝑎) and 𝑥−(𝑡, 𝑎), respectively. Let
𝜌 = (2𝐾𝜇)/(𝛼−𝜀), denote by𝐺 the closed sphere onR𝑛 whose
center is at the origin of the coordinate system and whose
radius is𝜌. For any 𝑎 ∈ 𝐺, we define amappingT

2

: 𝐺 → R𝑛

as follows:

T
2

𝑎 = ∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
−

(𝑠, 𝑎)) 𝑑𝑠

− ∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
+

(𝑠, 𝑎)) 𝑑𝑠.

(51)

It follows from (3) and (H
1

) that

󵄨󵄨󵄨󵄨T2𝑎
󵄨󵄨󵄨󵄨 ≤ ∫
0

−∞

𝐾𝑒
𝛼𝑠

𝑒
𝜀|𝑠|

𝜇 𝑑𝑠 + ∫
+∞

0

𝐾𝑒
−𝛼𝑠

𝑒
𝜀|𝑠|

𝜇 𝑑𝑠

=
𝐾𝜇

𝛼 − 𝜀
+

𝐾𝜇

𝛼 − 𝜀

=
2𝐾𝜇

𝛼 − 𝜀
= 𝜌,

(52)

which implies thatT
2

maps 𝐺 onto itself. Now we are going
to show that T

2

is continuous. For any 𝑎
1

, 𝑎
2

∈ 𝐺, from (3)
and (H

2

), we have
󵄨󵄨󵄨󵄨T2𝑎1 −T

2

𝑎
2

󵄨󵄨󵄨󵄨

≤ ∫
0

−∞

𝐾𝑒
𝛼𝑠

𝑒
𝜀|𝑠|

⋅ 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝑥
−

(𝑠, 𝑎
1

) − 𝑥
−

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

0

𝐾𝑒
−𝛼𝑠

𝑒
𝜀|𝑠|

⋅ 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫
0

−∞

𝐾𝑟𝑒
𝛼𝑠
󵄨󵄨󵄨󵄨𝑥
−

(𝑠, 𝑎
1

) − 𝑥
−

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

0

𝐾𝑟𝑒
−𝛼𝑠

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠.

(53)

From (3) and the condition (iii) of Lemma 9, for 𝑡 ≥ 0, we
have
󵄨󵄨󵄨󵄨𝑥
+

(𝑡, 𝑎
1

) − 𝑥
+

(𝑡, 𝑎
2

)
󵄨󵄨󵄨󵄨

≤ 𝑇
𝐴

(𝑡, 0) 𝑃 (0)
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨

+ ∫
𝑡

0

𝐾𝑒
−𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅ 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅ 𝑟𝑒
−𝜀|𝑠|

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐾𝑒
−𝛼𝑡

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨

+ ∫
𝑡

0

𝐾𝑟𝑒
−𝛼(𝑡−𝑠)

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑟𝑒
𝛼(𝑡−𝑠)

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨 𝑑𝑠.

(54)

Multiplying by 𝑒−𝜀𝑡 on both sides of the above inequality, for
𝑡 ≥ 0, we get

𝑒
−𝜀𝑡

󵄨󵄨󵄨󵄨𝑥
+

(𝑡, 𝑎
1

) − 𝑥
+

(𝑡, 𝑎
2

)
󵄨󵄨󵄨󵄨

≤ 𝐾𝑒
−(𝛼+𝜀)𝑡

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨

+ ∫
𝑡

0

𝐾𝑟𝑒
−(𝛼+𝜀)(𝑡−𝑠)

(𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨) 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑟𝑒
(𝛼−𝜀)(𝑡−𝑠)

(𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨𝑥
+

(𝑠, 𝑎
1

) − 𝑥
+

(𝑠, 𝑎
2

)
󵄨󵄨󵄨󵄨) 𝑑𝑠.

(55)
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By Lemma 9, for 𝑡 ≥ 0, 𝑒−𝜀𝑡|𝑥+(𝑡, 𝑎
1

) − 𝑥
+

(𝑡, 𝑎
2

)| is a bounded
function. And it follows from Lemma 8 that

𝑒
−𝜀𝑡

󵄨󵄨󵄨󵄨𝑥
+

(𝑡, 𝑎
1

) − 𝑥
+

(𝑡, 𝑎
2

)
󵄨󵄨󵄨󵄨

≤ 𝐾
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 (1 − 𝛾)
−1

𝑒
−[(𝛼+𝜀)−(1−𝛾)

−1

𝐾𝑟]𝑡

,

(56)

where 𝛾 = 𝐾𝑟/(𝛼+𝜀)+𝐾𝑟/(𝛼−𝜀). From (H
3

) and (𝛼+𝜀)−1 <
(𝛼 − 𝜀)

−1, we get

𝛾 ≤ 2𝐾𝑟(𝛼 − 𝜀)
−1

<
1

2
. (57)

Therefore, for 𝛼 − 2𝐾𝑟 > 0, we have

𝑒
−𝜀𝑡

󵄨󵄨󵄨󵄨𝑥
+

(𝑡, 𝑎
1

) − 𝑥
+

(𝑡, 𝑎
2

)
󵄨󵄨󵄨󵄨

≤ 2𝐾
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑒
−[(𝛼+𝜀)−2𝐾𝑟]𝑡

(𝑡 ≥ 0) .

(58)

Hence,
󵄨󵄨󵄨󵄨𝑥
+

(𝑡, 𝑎
1

) − 𝑥
+

(𝑡, 𝑎
2

)
󵄨󵄨󵄨󵄨

≤ 2𝐾
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑒
−(𝛼−2𝐾𝑟)𝑡

(𝑡 ≥ 0) .

(59)

Similarly,
󵄨󵄨󵄨󵄨𝑥
−

(𝑡, 𝑎
1

) − 𝑥
−

(𝑡, 𝑎
2

)
󵄨󵄨󵄨󵄨

≤ 2𝐾
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑒
(𝛼−2𝐾𝑟)𝑡

(𝑡 ≤ 0) .

(60)

So from (53), it follows that

󵄨󵄨󵄨󵄨T2𝑎1 −T
2

𝑎
2

󵄨󵄨󵄨󵄨 ≤ ∫
0

−∞

𝐾𝑟𝑒
𝛼𝑠

⋅ 2𝐾
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑒
(𝛼−2𝐾𝑟)𝑠

𝑑𝑠

+ ∫
+∞

0

𝐾𝑟𝑒
−𝛼𝑠

⋅ 2𝐾
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑒
−(𝛼−2𝐾𝑟)𝑠

𝑑𝑠

≤ ∫
0

−∞

2𝐾
2

𝑟
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑒
2(𝛼−𝐾𝑟)𝑠

𝑑𝑠

+ ∫
+∞

0

2𝐾
2

𝑟
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑒
−2(𝛼−𝐾𝑟)𝑠

𝑑𝑠

=
2𝐾
2

𝑟

𝛼 − 𝐾𝑟

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨 ,

(61)

which show thatT
2

is a continuous mapping. By fixed point
theorem,T

2

has at least one fixed point on𝐺. We denote this
fixed point by 𝑎

0

, then

𝑎
0

= T
2

𝑎
0

= ∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
−

(𝑠, 𝑎
0

)) 𝑑𝑠

− ∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
+

(𝑠, 𝑎
0

)) 𝑑𝑠.

(62)

As 𝑃2(𝑠) = 𝑃(𝑠), 𝑃(𝑡)𝑇
𝐴

(𝑡, 𝑠) = 𝑇
𝐴

(𝑡, 𝑠)𝑃(𝑠), 𝑃(𝑠) + 𝑄(𝑠) = Id,
we obtain

𝑃 (0) 𝑎
0

= ∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
−

(𝑠, 𝑎
0

)) 𝑑𝑠,

𝑄 (0) 𝑎
0

= − ∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
−

(𝑠, 𝑎
0

)) 𝑑𝑠.

(63)

From Lemma 9, we have

𝑥
+

(0, 𝑎
0

) = 𝑃 (0) 𝑎
0

− ∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
+

(𝑠, 𝑎
0

)) 𝑑𝑠,

𝑥
−

(0, 𝑎
0

) = 𝑄 (0) 𝑎
0

+ ∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
−

(𝑠, 𝑎
0

)) 𝑑𝑠.

(64)

Hence,

𝑥
+

(0, 𝑎
0

) = 𝑥
−

(0, 𝑎
0

) = 𝑎
0

. (65)

By the existence and uniqueness of the initial value problem,
we conclude that 𝑥+(𝑡, 𝑎

0

) = 𝑥
−

(𝑡, 𝑎
0

). We can denote it by
𝑥
0

(𝑡). Hence,

𝑥
0

(0) = 𝑎
0

= ∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠, 𝑎
0

)) 𝑑𝑠

− ∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠, 𝑎
0

)) 𝑑𝑠.

(66)

From the above equation, it follows from (44) that

𝑥
0

(𝑡) = ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(67)

From (49) and (50), we have

󵄨󵄨󵄨󵄨𝑥0 (𝑡)
󵄨󵄨󵄨󵄨 ≤

2𝐾𝜇

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
2𝐾𝜇

𝛼 − 𝜀
, (−∞ < 𝑡 < +∞) , (68)

which implies that 𝑥
0

(𝑡) satisfies (5); that is, 𝑥
0

(𝑡) = 𝑂(𝑒
𝜀|𝑡|

).
Now we are going to prove that the solution of (2) which

satisfies (5) is unique. We assume that system (2) has another
solution 𝑥∗

0

(𝑡) satisfying (5). From (44), 𝑥∗
0

(𝑡) can be written
as

𝑥
∗

0

(𝑡) = 𝑇
𝐴

(𝑡, 0) [𝑥
∗

0

(0)

− (∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠

−∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠)]

+ (∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠) .

(69)
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From (49) and (50), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝐾𝜇

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
𝐾𝜇

𝛼 − 𝜀
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝐾𝜇

𝛼 − 𝜀
𝑒
𝜀|𝑡|

+
𝐾𝜇

𝛼 − 𝜀
.

(70)

It follows from |𝑥
∗

0

(𝑡)| = 𝑂(𝑒
𝜀|𝑡|

) and Lemma 10 that

𝑥
∗

0

− (∫
0

−∞

𝑇
𝐴

(0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠

−∫
+∞

0

𝑇
𝐴

(0, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠) = 0.

(71)

Therefore,

𝑥
∗

0

(𝑡) = ∫
𝑡

−∞

𝑇
𝐴

(𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑇
𝐴

(𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑥
∗

0

(𝑠)) 𝑑𝑠.

(72)

From (67), (72), and (H
2

), we have

󵄨󵄨󵄨󵄨𝑥0 (𝑡) − 𝑥
∗

0

(𝑡)
󵄨󵄨󵄨󵄨

≤ ∫
𝑡

−∞

𝐾𝑒
−𝛼(𝑡−𝑠)

𝑒
𝜀|𝑠|

⋅ 𝑟𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
𝛼(𝑡−𝑠)

𝑒
𝜀|𝑡|

⋅ 𝑟𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

= ∫
𝑡

−∞

𝐾𝑟𝑒
−𝛼(𝑡−𝑠)

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑟𝑒
𝛼(𝑡−𝑠)

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠.

(73)

Let 𝐿 = sup
𝑡∈R𝑒
−𝜀|𝑡|

|𝑥
0

(𝑡) − 𝑥
∗

0

(𝑡. Since 𝑥
0

(𝑡) and 𝑥∗
0

(𝑡) satisfy
(5), 𝑒−𝜀|𝑠||𝑥

0

(𝑠) − 𝑥
∗

0

(𝑠)| is bounded. Thus, for 𝑡 ≥ 0, we have

𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨𝑥0 (𝑡) − 𝑥
∗

0

(𝑡)
󵄨󵄨󵄨󵄨

= 𝑒
−𝜀𝑡

󵄨󵄨󵄨󵄨𝑥0 (𝑡) − 𝑥
∗

0

(𝑡)
󵄨󵄨󵄨󵄨

≤ ∫
𝑡

−∞

𝐾𝑒
−(𝛼+𝜀)(𝑡−𝑠)

𝑟 [𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨] 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
(𝛼−𝜀)(𝑡−𝑠)

𝑟 [𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨] 𝑑𝑠

= ∫
0

−∞

𝐾𝑒
−(𝛼+𝜀)(𝑡−𝑠)

𝑟 [𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨] 𝑑𝑠

+ ∫
𝑡

0

𝐾𝑒
−(𝛼+𝜀)(𝑡−𝑠)

𝑟 [𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨] 𝑑𝑠

+ ∫
+∞

𝑡

𝐾𝑒
(𝛼−𝜀)(𝑡−𝑠)

𝑟 [𝑒
−𝜀𝑠

󵄨󵄨󵄨󵄨𝑥0 (𝑠) − 𝑥
∗

0

(𝑠)
󵄨󵄨󵄨󵄨] 𝑑𝑠

≤ 𝐿 (
𝐾𝑟

𝛼 + 𝜀
𝑒
−(𝛼−𝜀)𝑡

+
𝐾𝑟

𝛼 + 𝜀
(1 − 𝑒

−(𝛼+𝜀)𝑡

) +
𝐾𝑟

𝛼 − 𝜀
)

≤ 𝐿(
𝐾𝑟

𝛼 + 𝜀
+

𝐾𝑟

𝛼 + 𝜀
+

𝐾𝑟

𝛼 − 𝜀
)

≤ 𝐿(
3𝐾𝑟

𝛼 − 𝜀
)

≤
3

4
𝐿 (by (H

3

)) .

(74)

Similarly, we can prove that

𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨𝑥0 (𝑡) − 𝑥
∗

0

(𝑡)
󵄨󵄨󵄨󵄨 ≤

3

4
𝐿, when 𝑡 ≤ 0. (75)

Therefore,

𝐿 = sup
𝑡∈R

𝑒
−𝜀|𝑡|

󵄨󵄨󵄨󵄨𝑥0 (𝑡) − 𝑥
∗

0

(𝑡)
󵄨󵄨󵄨󵄨 ≤

3

4
𝐿, (−∞ < 𝑡 +∞) . (76)

That is, 𝐿 ≤ (3/4)𝐿, which implies 𝐿 = 0. Consequently,
𝑥
0

(𝑡) = 𝑥
∗

0

(𝑡). This completes the proof of Theorem 4.
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