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We introduce stochasticity into the SIS model with saturated incidence. The existence and uniqueness of the positive solution are
proved by employing the Lyapunov analysis method. Then, we carry out a detailed analysis on both its almost sure exponential
stability and its pth moment exponential stability, which indicates that the pth moment exponential stability implies the almost
sure exponential stability. Additionally, the results show that the conditions for the disease to become extinct are much weaker than
those in the corresponding deterministic model. The conditions for the persistence in the mean and the existence of a stationary
distribution are also established. Finally, we derive the expressions for the mean and variance of the stationary distribution.
Comparedwith the corresponding deterministicmodel, the threshold value for the disease to die out is affected by the half saturation
constant. That is, increasing the saturation effect can reduce the disease transmission. Computer simulations are presented to
illustrate our theoretical results.

1. Introduction

Epidemiology has been investigated by mathematicians
through establishing mathematical models for a long time;
see, for instance, [1–4]. Mathematical models can help people
to better understand the spread of the disease and thus take
effective measures to reduce its transmission as much as
possible. Particularly, the classical SIS epidemic model [5, 6]
is often used to model the dynamics of the diseases with no
protective immunity such as gonorrhea.

Usually, the incidence function describes the number of
new infections per unit time and it plays a vital role in the
deterministic models. As it is known, in the most existing
literature, the bilinear incidence rate 𝛽𝑆𝐼 is frequently used.
However, this kind of incidence rate has some limitations,
since it does not consider the behavioral change of susceptible
individuals or control measures taken by the government
when the number of infective individuals gets large. For
example, people would wash their hands frequently, wear
masks, and limit their time of going out, and the government
would also take measures such as quarantine and isolation
when the A/H1N1 influenza became serious in 2009 [7].
Therefore, it is more reasonable to adopt saturated incidence

rate 𝛽𝑆𝐼/(1 + ℎ𝐼) [8] in the mathematical models. When
the number of infective individuals gets large, 𝛽𝐼/(1 + ℎ𝐼)
tends to a saturation effect, where 𝛽𝐼 is the infection force
of the disease and 1/(1 + ℎ𝐼) is the inhibition effect from
the behavioral change or controlmeasures. Here, ℎ represents
the half saturation constant [9]. With the saturated incidence
taken into consideration, the classical SIS epidemic model is
transformed into

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝜇𝑁 −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
+ 𝛾𝐼 (𝑡) − 𝜇𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
=
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
− (𝜇 + 𝛾) 𝐼 (𝑡) ,

(1)

where 𝑆(𝑡) and 𝐼(𝑡) are the number of susceptible individuals
and infective individuals at time 𝑡, respectively. The total
population 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) is a constant. Consider the
following parameters: 𝛽 is the transmission rate, 𝜇 is the
birth and death rate, and 𝛾 is the recovery rate. Assume
all these parameters are positive; then, the classical stability
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analysis has shown that the system (1) always has a disease
free equilibrium:

𝐸
0
= (𝑆
0
, 𝐼
0
) = (𝑁, 0) . (2)

The basic reproduction number, 𝑅𝑑
0

= 𝛽𝑁/(𝜇 + 𝛾), is
a threshold value, which determines the extinction and
persistence of the disease. When 𝑅𝑑

0
≤ 1, the disease free

equilibrium 𝐸
0
is globally stable. When 𝑅𝑑

0
> 1, the disease

free equilibrium 𝐸
0
is unstable, and model (1) has a unique

endemic equilibrium:

𝐸∗ = (𝑆∗, 𝐼∗) = (
(1 + ℎ𝑁) (𝜇 + 𝛾)

𝛽 + ℎ (𝜇 + 𝛾)
,
𝛽𝑁 − (𝜇 + 𝛾)

𝛽 + ℎ (𝜇 + 𝛾)
) , (3)

which is globally stable.
Since the noise exists almost everywhere, epidemic mod-

els are inevitably affected by it. Hence, it is more reason-
able to introduce random perturbations into mathematical
models. At the same time, we note that taking the effect of
environment noise on epidemic models into consideration
has been a popular trend in disease spread modeling [10–13].
Gray et al. presented a stochastic SIS epidemic model in [14].
They established conditions for extinction and persistence
of the disease and the existence of a stationary distribution.
Stochastic SIR and SIRSmodels with and without distributed
time delay were investigated in [15, 16], respectively, where
the asymptotic behavior was discussed. In [17], stochastically
perturbed SIR and SEIR epidemic models with saturated
incidence were studied and the results of extinction and
ergodicity were concluded. Ji et al. investigated a stochastic
multigroup SIRmodel with fluctuations around the transmis-
sion coefficient and the death rate of each subpopulation in
[18, 19] separately. Zhao et al. [20] discussed the extinction
and persistence of the stochastic SIS epidemic model with
vaccination. However, among all these researches, there are
few literatures considering the parameter perturbation in SIS
epidemic model with saturated incidence.

Motivated by the above consideration, in this paper, we
introduce random effect into the SIS model (1) by replacing
the transmission rate 𝛽 with 𝛽+𝜎𝑑𝑊(𝑡), where𝑊(𝑡) is stan-
dard Brownian motion and 𝜎 is the intensity of white noise.
The stochastic version corresponding to the deterministic
model (1) can be represented as

𝑑𝑆 (𝑡) = (𝜇𝑁 −
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
+ 𝛾𝐼 (𝑡) − 𝜇𝑆 (𝑡)) 𝑑𝑡

−
𝜎𝑆 (𝑡) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
𝑑𝑊 (𝑡) ,

𝑑𝐼 (𝑡) = (
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
− (𝜇 + 𝛾) 𝐼 (𝑡)) 𝑑𝑡 +

𝜎𝑆 (𝑡) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
𝑑𝑊 (𝑡) .

(4)

Given that 𝑆(𝑡)+𝐼(𝑡) = 𝑁, it is sufficient to study the following
equation:

𝑑𝐼 (𝑡) = (
𝛽 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
− (𝜇 + 𝛾) 𝐼 (𝑡)) 𝑑𝑡

+
𝜎 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡)

1 + ℎ𝐼 (𝑡)
𝑑𝑊 (𝑡) ,

(5)

with initial value 𝐼(0) = 𝐼
0
∈ (0,𝑁). In the following sections,

we will restrict ourselves to (5).
The paper is organized as follows. In Section 2, the

existence of unique positive solution is shown. Both its almost
sure exponential stability and its 𝑝th moment exponential
stability are then investigated in Section 3. The conditions
for persistence in the mean of the disease are established
in Section 4. The existence of a stationary distribution and
the expressions for the mean and variance are presented in
Section 5. In Section 6, we give a brief conclusion. Besides,
the computer simulations which support our results are given
in each section. Finally, we give an appendix containing some
theory used in the previous sections.

2. Existence of Unique Positive Solution

To investigate the dynamical behavior of the epidemicmodel,
we need to show that the model has a unique global solution
and the solution will remain within (0,𝑁) whenever it starts
there. Hence, in this section, employing the Lyapunov analy-
sis method (mentioned in [18, 21]), we establish Theorem 1.

Theorem 1. There is a unique global solution 𝐼(𝑡) ∈ (0,𝑁) of
system (5) on 𝑡 ≥ 0 for any given initial value 𝐼(0) = 𝐼

0
∈

(0,𝑁) with probability 1; namely,

𝑃 {𝐼 (𝑡) ∈ (0,𝑁) , ∀𝑡 ≥ 0} = 1. (6)

Proof. Since the coefficients of (5) are locally Lipschitz
continuous for any given initial value 𝐼(0) = 𝐼

0
∈ (0,𝑁), there

is a unique local solution 𝐼(𝑡) on 𝑡 ∈ [0, 𝜏
𝑒
), where 𝜏

𝑒
is the

explosion time [22]. To show that the solution is global, we
need to show that 𝜏

𝑒
= ∞ a.s. Let𝑚

0
> 0 be sufficiently large

such that 1/𝑚
0
< 𝐼
0
< 𝑁 − 1/𝑚

0
. For each integer 𝑚 ≥ 𝑚

0
,

define the stopping time

𝜏
𝑚
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝐼 (𝑡) ∉ (

1

𝑚
,𝑁 −

1

𝑚
)} , (7)

where throughout this paper we set inf 0 = ∞ (as usual 0
denotes the empty set). Clearly, 𝜏

𝑚
is increasing as𝑚 → ∞.

Set 𝜏
∞

= lim
𝑚→∞

𝜏
𝑚
, whence 𝜏

∞
≤ 𝜏
𝑒
a.s. If we can show

that 𝜏
∞

= ∞ a.s., then 𝜏
𝑒
= ∞ a.s. and 𝐼(𝑡) ∈ (0,𝑁) a.s. for

all 𝑡 ≥ 0. In other words, to complete the proof, all what we
need to show is that 𝜏

∞
= ∞ a.s. If this statement is not true,

then there exists a pair of constants 𝑇 > 0 and 𝜖 ∈ (0, 1) such
that

𝑃 {𝜏
∞
≤ 𝑇} > 𝜖. (8)

Therefore, there is an integer𝑚
1
≥ 𝑚
0
such that

𝑃 {𝜏
𝑚
≤ 𝑇} ≥ 𝜖, ∀𝑚 ≥ 𝑚

1
. (9)
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Define a function 𝑉 : (0,𝑁) → 𝑅
+
by

𝑉 (𝑥) =
1

𝑥
+

1

𝑁 − 𝑥
. (10)

Using the Itô formula, we get

𝑑𝑉 (𝑥) = (−
1

𝑥2
+

1

(𝑁 − 𝑥)2
)𝑑𝑥 + (

1

𝑥3
+

1

(𝑁 − 𝑥)3
) (𝑑𝑥)

2

= 𝐿𝑉 (𝑥) 𝑑𝑡

+ (−
𝜎 (𝑁 − 𝑥)

𝑥 (1 + ℎ𝑥)
+

𝜎𝑥

(𝑁 − 𝑥) (1 + ℎ𝑥)
) 𝑑𝑊 (𝑡) ,

(11)

where 𝐿𝑉 : (0,𝑁) → 𝑅 is defined by

𝐿𝑉 = (−
1

𝑥2
+

1

(𝑁 − 𝑥)2
)(

𝛽 (𝑁 − 𝑥) 𝑥

1 + ℎ𝑥
− (𝜇 + 𝛾) 𝑥)

+ (
1

𝑥3
+

1

(𝑁 − 𝑥)3
)
𝜎2(𝑁 − 𝑥)2𝑥2

(1 + ℎ𝑥)2

= −
𝛽 (𝑁 − 𝑥)

𝑥 (1 + ℎ𝑥)
+
𝜇 + 𝛾

𝑥
+

𝛽𝑥

(𝑁 − 𝑥) (1 + ℎ𝑥)

+
𝜎2(𝑁 − 𝑥)2

𝑥(1 + ℎ𝑥)2
+

𝜎2𝑥2

(𝑁 − 𝑥) (1 + ℎ𝑥)2
−
(𝜇 + 𝛾) 𝑥

(𝑁 − 𝑥)2

≤
𝜇 + 𝛾

𝑥
+

𝛽𝑥

(𝑁 − 𝑥) (1 + ℎ𝑥)
+
𝜎2(𝑁 − 𝑥)2

𝑥(1 + ℎ𝑥)2

+
𝜎2𝑥2

(𝑁 − 𝑥) (1 + ℎ𝑥)2

≤
1

𝑥
(𝜇 + 𝛾 + 𝜎2𝑁2) +

1

𝑁 − 𝑥
(
𝛽

ℎ
+
𝜎2

ℎ2
)

≤ 𝐶𝑉 (𝑥) ,

(12)

where 𝐶 = (𝜇 + 𝛾 + 𝜎2𝑁2) ∨ (𝛽/ℎ + 𝜎2/ℎ2). Therefore,

∫
𝜏
𝑚
∧𝑡

0

𝑑𝑉 (𝐼 (𝑠))

= ∫
𝜏
𝑚
∧𝑡

0

𝐿𝑉 (𝐼 (𝑠)) 𝑑𝑠

+ ∫
𝜏
𝑚
∧𝑡

0

(−
𝜎 (𝑁 − 𝐼 (𝑠))

𝐼 (𝑠) (1 + ℎ𝐼 (𝑠))

+
𝜎𝐼 (𝑠)

(𝑁 − 𝐼 (𝑠)) (1 + ℎ𝐼 (𝑠))
) 𝑑𝑊 (𝑠)

≤ ∫
𝜏
𝑚
∧𝑡

0

𝐶𝑉 (𝐼 (𝑠)) 𝑑𝑠

+ ∫
𝜏
𝑚
∧𝑡

0

(−
𝜎 (𝑁 − 𝐼 (𝑠))

𝐼 (𝑠) (1 + ℎ𝐼 (𝑠))

+
𝜎𝐼 (𝑠)

(𝑁 − 𝐼 (𝑠)) (1 + ℎ𝐼 (𝑠))
) 𝑑𝑊 (𝑠) ,

(13)

which implies that

𝐸𝑉 (𝐼 (𝜏
𝑚
∧ 𝑡)) ≤ 𝑉 (𝐼

0
) + 𝐶𝐸∫

𝜏
𝑚
∧𝑡

0

𝑉 (𝐼 (𝑠)) 𝑑𝑠

≤ 𝑉 (𝐼
0
) + 𝐶∫

𝑡

0

𝐸𝑉 (𝐼 (𝜏
𝑚
∧ 𝑠)) 𝑑𝑠.

(14)

The Gronwall inequality yields that

𝐸𝑉 (𝐼 (𝜏
𝑚
∧ 𝑇)) ≤ 𝑉 (𝐼

0
) 𝑒𝐶𝑇. (15)

Set Ω
𝑚
= {𝜏
𝑚
≤ 𝑇} for all 𝑚 ≥ 𝑚

1
. Then, by (9), 𝑃(Ω

𝑚
) ≥ 𝜖.

For every𝜔 ∈ Ω
𝑚
, 𝐼(𝜏
𝑚
, 𝜔) equals either 1/𝑚 or𝑁−1/𝑚, and

therefore

𝑉 (𝐼 (𝜏
𝑚
, 𝜔)) ≥ 𝑚. (16)

It then follows from (9) and (15) that

𝑉 (𝐼
0
) 𝑒𝐶𝑇 ≥ 𝐸 [1

Ω
𝑚
(𝜔)
𝑉 (𝐼 (𝜏

𝑚
, 𝜔))] ≥ 𝜖𝑚, (17)

where 1
Ω
𝑚
(𝜔)

is the indicator function of Ω
𝑚
. Letting 𝑚 →

∞ leads to the contradiction that

∞ > 𝑉(𝐼
0
) 𝑒𝐶𝑇 = ∞. (18)

So, we must have 𝜏
∞
= ∞ a.s., whence the proof is complete.

3. Extinction

In discussing the extinction of system (5), we focus on the
two kinds of exponential stabilities, almost sure exponential
stability and 𝑝th moment exponential stability.

3.1. Almost Sure Exponential Stability

Theorem 2. Let 𝐼(𝑡) be the solution of system (5) with initial
value 𝐼(0) = 𝐼

0
∈ (0,𝑁). If

(a) 𝑅𝑠
01

:= 𝛽𝑁/(𝜇 + 𝛾) − 𝜎2𝑁2/(2(𝜇 + 𝛾)(1 + ℎ𝑁)2) =

𝑅𝑑
0
− 𝜎2𝑁2/(2(𝜇 + 𝛾)(1 + ℎ𝑁)2) < 1 and 𝜎2 ≤

𝛽(1 + ℎ𝑁)2/𝑁,
(b) 𝜎2 > 𝛽(1 + ℎ𝑁)2/𝑁 ∨ 𝛽2(1 + ℎ𝑁)2/2(𝜇 + 𝛾).

then,

lim sup
𝑡→∞

(log(𝐼(𝑡))/𝑡) ≤ 𝛽𝑁 − 𝜇 − 𝛾 − 𝜎2𝑁2/

2(1 + ℎ𝑁)2 < 0 a.s. if (a) holds;
lim sup

𝑡→∞
(log(𝐼(𝑡))/𝑡) ≤ 𝛽2(1 + ℎ𝑁)2/2𝜎2−𝜇−𝛾 <

0 a.s. if (b) holds;

that is, 𝐼(𝑡) tends to zero exponentially a.s.; namely, the disease
will die out with probability one.

Proof. Applying Itô formula to system (5) leads to

𝑑 log (𝐼 (𝑡)) = 𝐹 (𝐼 (𝑡)) 𝑑𝑡 +
𝜎 (𝑁 − 𝐼 (𝑡))

1 + ℎ𝐼 (𝑡)
𝑑𝑊 (𝑡) , (19)



4 Abstract and Applied Analysis

where 𝐹(𝐼(𝑡)) = 𝛽(𝑁 − 𝐼(𝑡))/(1 + ℎ𝐼(𝑡)) − 𝜇 − 𝛾 − 𝜎2

(𝑁 − 𝐼(𝑡))2/2(1 + ℎ𝐼(𝑡))2. Integrating both sides of (19) from
0 to 𝑡, we have

log (𝐼 (𝑡)) = log (𝐼
0
) + ∫
𝑡

0

𝐹 (𝐼 (𝑠)) 𝑑𝑠 +𝑀 (𝑡) , (20)

where𝑀(𝑡) = ∫
𝑡

0
(𝜎(𝑁 − 𝐼(𝑠))/(1 + ℎ𝐼(𝑠)))𝑑𝑊(𝑠). Obviously,

𝐹 (𝐼 (𝑠)) ≤ 𝛽𝑁 − 𝛽𝐼 (𝑠) − 𝜇 − 𝛾 −
𝜎2(𝑁 − 𝐼 (𝑠))2

2(1 + ℎ𝑁)2
:= 𝐺 (𝐼 (𝑠)) ,

(21)

where 𝐺(𝐼(𝑠)) = 𝛽𝑁 − 𝜇 − 𝛾 − 𝜎2𝑁2/2(1 + ℎ𝑁)2 − (𝛽 −

𝜎2𝑁/(1 + ℎ𝑁)2)𝐼(𝑠)−(𝜎2/2(1 + ℎ𝑁)2)𝐼(𝑠)2, for 𝐼(𝑠) ∈ (0,𝑁).
If condition (a) is satisfied, it then follows from (20) that

log (𝐼 (𝑡)) ≤ log (𝐼
0
)

+ (𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2
) 𝑡 +𝑀(𝑡) .

(22)

This implies that

lim sup
𝑡→∞

log (𝐼 (𝑡))
𝑡

≤ 𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2

+ lim sup
𝑡→∞

𝑀(𝑡)

𝑡
a.s.

(23)

Clearly, 𝑀(𝑡) = ∫
𝑡

0
(𝜎(𝑁 − 𝐼(𝑠))/(1 + ℎ𝐼(𝑠)))𝑑𝑊(𝑠) is a local

martingale and vanishes at 𝑡 = 0. Moreover,

lim sup
𝑡→∞

⟨𝑀,𝑀⟩𝑡
𝑡

≤ 𝜎2𝑁2 < ∞ a.s. (24)

By strong law of large numbers [22], we get

lim
𝑡→∞

𝑀(𝑡)

𝑡
= 0 a.s. (25)

Then,

lim sup
𝑡→∞

log (𝐼 (𝑡))
𝑡

≤ 𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2
< 0 a.s.

(26)

If condition (b) is satisfied, the function 𝐺(𝑥) takes its
maximum value 𝐺(𝑥) at 𝑥 = 𝑁 − 𝛽(1 + ℎ𝑁)2/𝜎2 ∈ (0,𝑁));
that is,𝐺(𝑥) = 𝛽2(1 + ℎ𝑁)2/2𝜎2−(𝜇+𝛾). It then follows from
(20) that

log (𝐼 (𝑡)) ≤ log (𝐼
0
) + (

𝛽2(1 + ℎ𝑁)2

2𝜎2
− (𝜇 + 𝛾)) 𝑡 +𝑀 (𝑡) .

(27)

Then,

lim sup
𝑡→∞

log (𝐼 (𝑡))
𝑡

≤
𝛽2(1 + ℎ𝑁)2

2𝜎2
− 𝜇 − 𝛾 < 0 a.s. (28)

This finishes the proof.

FromTheorem 2, we know that when 𝑅𝑠
01
= 𝑅𝑑
0
− 𝜎2𝑁2/

2(𝜇 + 𝛾)(1 + ℎ𝑁)2 < 1 and the perturbation is small, the
disease will die out a.s., whereas the disease may still persist
for the corresponding deterministic model (1). If the noise
intensity 𝜎2 is larger than 𝛽(1 + ℎ𝑁)2/𝑁∨𝛽2(1 + ℎ𝑁)2/2(𝜇+
𝛾), then the disease will also die out a.s. For ℎ = 0, system (5)
becomes the model discussed in [14] and the conditions for
the disease to become extinct we obtain here are in agreement
with those derived in [14]. If there exists no environment
noise, that is, 𝜎 = 0, then 𝑅𝑠

01
= 𝑅𝑑
0
is the basic reproduction

number of the deterministic model (1). In addition, the
half saturation constant also influences 𝑅𝑠

01
, which shows

that increasing the saturation effect can reduce the value of
𝑅𝑠
01

and thus can reduce the disease spread. The following
simulations indicate these results.

Example 3. We assume that the unit time is one day. The
parameters are given by

𝑁 = 100, 𝛽 = 0.013, 𝜇 = 0.4,

𝛾 = 0.6, ℎ = 0.05, 𝜎 = 0.06.
(29)

Note that

𝑅𝑠
01
=

𝛽𝑁

𝜇 + 𝛾
−

𝜎2𝑁2

2 (𝜇 + 𝛾) (1 + ℎ𝑁)2
= 0.8 < 1,

𝜎2 = 0.0036 ≤
𝛽(1 + ℎ𝑁)2

𝑁
= 0.0047.

(30)

That is, condition (a) is satisfied and the solution 𝐼(𝑡) satisfies

lim sup
𝑡→∞

log (𝐼 (𝑡))
𝑡

≤ 𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2

= −0.2 < 0 a.s.

(31)

Hence, 𝐼(𝑡) tends to zero exponentially a.s.; that is, the disease
will die out a.s.

On the other hand, for the deterministic model (1), the
basic reproduction number is

𝑅𝑑
0
=

𝛽𝑁

𝜇 + 𝛾
= 1.3 > 1. (32)

The solution 𝐼(𝑡) obeys

lim
𝑡→∞

𝐼 (𝑡) =
𝛽𝑁 − (𝜇 + 𝛾)

𝛽 + (𝜇 + 𝛾) ℎ
= 4.7619. (33)

Employing the Euler-Maruyama (EM) method in [23], the
computer simulations are given in Figure 1, which support
our results.

Example 4. We keep the parameters the same as Example 3
but increase 𝜎 to 0.09. Note that
𝜎2 = 0.0081

> max{
𝛽(1 + ℎ𝑁)2

𝑁
= 0.00468,

𝛽2(1 + ℎ𝑁)2

2 (𝜇 + 𝛾)
= 0.00304}

= 0.00468.

(34)
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Figure 1: Computer simulations of 𝐼(𝑡) for model (5) and the deterministic model (1), using the EM method with step size 0.001 and with
initial values (a) 𝐼(0) = 80 and (b) 𝐼(0) = 10.

That is, condition (b) is satisfied and

lim sup
𝑡→∞

log (𝐼 (𝑡))
𝑡

≤
𝛽2(1 + ℎ𝑁)2

2𝜎2
− 𝜇 − 𝛾 = −0.624 < 0 a.s.

(35)

Therefore, 𝐼(𝑡) tends to zero exponentially a.s.; namely, the
disease will die out a.s.The simulations are shown in Figure 2
to support our results completely.

3.2. 𝑝th Moment Exponential Stability. Following (20), we
obtain

𝐼 (𝑡) = 𝐼
0
exp(∫

𝑡

0

𝐹 (𝐼 (𝑠)) 𝑑𝑠 +𝑀 (𝑡)) . (36)

As𝑊(𝑡) ∼ 𝑁(0, 𝑡), then [24]

𝐸𝑒𝑀(𝑡) = 𝐸 exp(∫
𝑡

0

𝜎 (𝑁 − 𝐼 (𝑠))

1 + ℎ𝐼 (𝑠)
𝑑𝑊 (𝑠))

≤ 𝐸𝑒𝜎𝑁𝑊(𝑡) = 𝑒(𝜎
2

𝑁
2

/2)𝑡.

(37)

Using the fact that

𝐹 (𝐼 (𝑠)) ≤ 𝛽𝑁 − 𝜇 − 𝛾, (38)

we find

𝐸𝐼 (𝑡) = 𝐸𝐼
0
exp(∫

𝑡

0

𝐹 (𝐼 (𝑠)) 𝑑𝑠 +𝑀 (𝑡))

≤ 𝐼
0
exp((𝛽𝑁 − 𝜇 − 𝛾 +

𝜎2𝑁2

2
) 𝑡) .

(39)

Since

log (𝐼 (𝑡))𝑝 = 𝑝 log (𝐼 (𝑡))

≤ 𝑝 (log (𝐼
0
) + (𝛽𝑁 − 𝜇 − 𝛾) 𝑡 + 𝜎𝑁𝑊(𝑡)) ,

(40)

then

𝐸(𝐼 (𝑡))
𝑝 ≤ (𝐼

0
)
𝑝
⋅ 𝑒𝑝(𝛽𝑁−𝜇−𝛾)𝑡 ⋅ 𝑒(𝑝

2

𝜎
2

𝑁
2

/2)𝑡

= (𝐼
0
)
𝑝 exp(𝑝(𝛽𝑁 − 𝜇 − 𝛾 +

𝑝𝜎2𝑁2

2
) 𝑡) .

(41)

Theorem 5. Assume that 𝛽𝑁 − 𝜇 − 𝛾 + (𝑝𝜎2𝑁2/2) < 0;
the solution 𝐼(𝑡) with initial value 𝐼(0) = 𝐼

0
∈ (0,𝑁) is 𝑝th

moment exponentially stable.
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Figure 2: Computer simulations of 𝐼(𝑡) for model (5) and the deterministic model (1), using the EM method with step size 0.001 and with
initial values (a) 𝐼(0) = 80 and (b) 𝐼(0) = 10.

Next, we will make a comparison between the almost
sure exponential stability and the 𝑝th moment exponential
stability, since

𝑥(
𝛽 (𝑁 − 𝑥) 𝑥

1 + ℎ𝑥
− (𝜇 + 𝛾) 𝑥) = (

𝛽 (𝑁 − 𝑥)

1 + ℎ𝑥
− (𝜇 + 𝛾)) 𝑥2

≤ (𝛽𝑁 − (𝜇 + 𝛾)) 𝑥2.

(42)

FromTheorem 5, we know that 𝛽𝑁 − (𝜇 + 𝛾) < 0; that is,

𝑥(
𝛽 (𝑁 − 𝑥) 𝑥

1 + ℎ𝑥
− (𝜇 + 𝛾) 𝑥) ≤ (𝛽𝑁 − (𝜇 + 𝛾)) 𝑥2 ≤ 0.

(43)

Moreover,

𝜎2(𝑁 − 𝑥)2𝑥2

(1 + ℎ𝑥)2
≤ 𝜎2(𝑁 − 𝑥)

2𝑥2 ≤ 𝜎2𝑁2𝑥2. (44)

Let 𝐾 = 𝜎2𝑁2 be positive; then

𝑥(
𝛽 (𝑁 − 𝑥) 𝑥

1 + ℎ𝑥
− (𝜇 + 𝛾) 𝑥) ∨

𝜎2(𝑁 − 𝑥)2𝑥2

(1 + ℎ𝑥)2
≤ 𝐾𝑥2. (45)

Therefore, the condition of LemmaA.4 (in the appendix) [22]
is satisfied, which suggests that the 𝑝th moment exponential
stability of system (5) implies the almost sure exponential
stability.

4. Persistence

We will investigate persistence in the mean for system (5)
in this section. The definition of the persistence in the
mean was initially proposed for the deterministic system
[25] and was also used for the stationary stochastic system
with ergodicity [19, 20]. According to the ergodicity for the
stationary process, the time average in the long time limit is
equal to the ensemble expectation over phase space, so we
introduce the notation

⟨𝐼 (𝑡)⟩ =
1

𝑡
∫
𝑡

0

𝐼 (𝑠) 𝑑𝑠. (46)

Definition 6. System (5) is said to be persistent in the mean,
if

lim inf
𝑡→∞

1

𝑡
∫
𝑡

0

𝐼 (𝑠) 𝑑𝑠 > 0 a.s. (47)

Theorem 7. If

𝑅𝑠
02
:=

𝛽𝑁

(𝜇 + 𝛾) (1 + ℎ𝑁)
−

𝜎2𝑁2

2 (𝜇 + 𝛾)
> 1,

𝜎2 <
𝛽(1 + ℎ𝑁)2

𝑁
,

(48)

then, for any initial value 𝐼(0) = 𝐼
0
∈ (0,𝑁), the solution 𝐼(𝑡)

of system (5) has the following property:

𝐼 ≤ lim inf
𝑡→∞

⟨𝐼 (𝑡)⟩ ≤ lim sup
𝑡→∞

⟨𝐼 (𝑡)⟩ ≤ 𝐼 a.s., (49)
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where

𝐼 =
𝛽𝑁 − 𝜇 − 𝛾 − (𝜎2𝑁2/2(1 + ℎ𝑁)2)

𝛽 − (𝜎2𝑁/(1 + ℎ𝑁)2)
,

𝐼 =
𝛽𝑁/ (1 + ℎ𝑁) − 𝜇 − 𝛾 − (𝜎2𝑁2/2)

𝛽/ (1 + ℎ𝑁)
.

(50)

Proof. By (20), we obtain

log (𝐼 (𝑡)) − log (𝐼
0
)

𝑡

≤
1

𝑡
∫
𝑡

0

(𝛽𝑁 − 𝛽𝐼 (𝑠) − 𝜇 − 𝛾 −
𝜎2(𝑁 − 𝐼 (𝑠))2

2(1 + ℎ𝑁)2
)𝑑𝑠

+
𝑀 (𝑡)

𝑡

= 𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2
− 𝛽 ⟨𝐼 (𝑡)⟩

+
𝜎2𝑁

(1 + ℎ𝑁)2
⟨𝐼 (𝑡)⟩ −

𝜎2

2(1 + ℎ𝑁)2
⟨𝐼(𝑡)
2⟩ +

𝑀(𝑡)

𝑡

≤ 𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2
− (𝛽 −

𝜎2𝑁

(1 + ℎ𝑁)2
) ⟨𝐼 (𝑡)⟩

+
𝑀 (𝑡)

𝑡
.

(51)

The inequality can be written as

log (𝐼 (𝑡))
𝑡

≤ 𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2

− (𝛽 −
𝜎2𝑁

(1 + ℎ𝑁)2
) ⟨𝐼 (𝑡)⟩ +

𝑀 (𝑡)

𝑡
+
log (𝐼
0
)

𝑡
.

(52)

Since 𝑅𝑠
01
≥ 𝑅𝑠
02
, if condition (48) is satisfied, then

𝛽𝑁 − 𝜇 − 𝛾 −
𝜎2𝑁2

2(1 + ℎ𝑁)2
> 0, 𝛽 −

𝜎2𝑁

(1 + ℎ𝑁)2
> 0.

(53)

Together with Lemma A.2. in [20], we have

lim
𝑡→∞

sup ⟨𝐼 (𝑡)⟩

≤
𝛽𝑁 − 𝜇 − 𝛾 − (𝜎2𝑁2/2(1 + ℎ𝑁)2)

𝛽 − (𝜎2𝑁/(1 + ℎ𝑁)2)
= 𝐼 a.s.

(54)

On the other hand,

log (𝐼 (𝑡)) − log (𝐼
0
)

𝑡

≥
1

𝑡
∫
𝑡

0

(
𝛽 (𝑁 − 𝐼 (𝑠))

1 + ℎ𝑁
− 𝜇 − 𝛾 −

1

2
𝜎2(𝑁 − 𝐼 (𝑠))

2)𝑑𝑠

+
𝑀 (𝑡)

𝑡

≥
𝛽𝑁

1 + ℎ𝑁
− 𝜇 − 𝛾 −

1

2
𝜎2𝑁2 −

𝛽

1 + ℎ𝑁
⟨𝐼 (𝑡)⟩ +

𝑀 (𝑡)

𝑡
.

(55)

That is,

⟨𝐼 (𝑡)⟩ ≥
1

𝛽/ (1 + ℎ𝑁)
(

𝛽𝑁

1 + ℎ𝑁
− 𝜇 − 𝛾 −

1

2
𝜎2𝑁2

+
𝑀(𝑡)

𝑡
−
log (𝐼 (𝑡)) − log (𝐼

0
)

𝑡
) .

(56)

Since −∞ < log(𝐼(𝑡)) < log(𝑁), then

lim inf
𝑡→∞

⟨𝐼 (𝑡)⟩ ≥
𝛽𝑁/ (1 + ℎ𝑁) − 𝜇 − 𝛾 − (𝜎2𝑁2/2)

𝛽/ (1 + ℎ𝑁)

= 𝐼 ∈ (0,𝑁) a.s.

(57)

Moreover,

𝐼 =
𝛽𝑁 − 𝜇 − 𝛾 − (𝜎2𝑁2/2(1 + ℎ𝑁)2)

𝛽 − (𝜎2𝑁/(1 + ℎ𝑁)2)

≥ 𝐼 =
𝛽𝑁/ (1 + ℎ𝑁) − 𝜇 − 𝛾 − (𝜎2𝑁2/2)

𝛽/ (1 + ℎ𝑁)
.

(58)

Therefore, we complete the proof.

Example 8. The parameters are given by

𝑁 = 100, 𝛽 = 0.2, 𝜇 = 0.4,

𝛾 = 0.6, ℎ = 0.05, 𝜎 = 0.02.
(59)

Note that

𝑅𝑠
02
:=

𝛽𝑁

(𝜇 + 𝛾) (1 + ℎ𝑁)
−

𝜎2𝑁2

2 (𝜇 + 𝛾)
= 1.33 > 1,

𝜎2 = 0.0004 <
𝛽(1 + ℎ𝑁)2

𝑁
= 0.072.

(60)

Then the solution 𝐼(𝑡) of system (5) satisfies

10 ≤ lim inf
𝑡→∞

⟨𝐼 (𝑡)⟩ ≤ lim sup
𝑡→∞

⟨𝐼 (𝑡)⟩ ≤ 95.2938 a.s. (61)
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For the corresponding deterministic model (1),

𝑅𝑑
0
=

𝛽𝑁

(𝜇 + 𝛾)
= 20 > 1,

lim
𝑡→∞

𝐼 (𝑡) =
𝛽𝑁 − (𝜇 + 𝛾)

𝛽 + ℎ (𝜇 + 𝛾)
= 76.

(62)

The simulation results are shown in Figure 3.

5. Stationary Distribution

Applying Lemma A.5 (in the appendix) [26], if we can
show that conditions (B.1) and (B.2) are satisfied, then
system (5) has a stationary distribution. Obviously, the
square of the diffusion coefficient of system (5), that is,
𝜎2(𝑁 − 𝐼)2𝐼2/(1 + ℎ𝐼)2, is bounded away from zero for 𝐼 ∈
(𝑎, 𝑏) ⊂ (0,𝑁)); then, condition (B.1) is satisfied. Next, we
will prove that (B.2) is also valid.

Theorem 9. Assume that 𝑅𝑠
02

:= 𝛽𝑁/((𝜇 + 𝛾)(1 + ℎ𝑁)) −

𝜎2𝑁2/(2(𝜇 + 𝛾)) > 1 and 𝜎2 < (2𝛽/(𝑁2(1 + ℎ𝐼∗)

𝐼∗)) min{(𝐼∗)2, (𝑁 − 𝐼∗)2}; then, there is a unique stationary
distribution of system (5). Here, 𝐼∗ is the unique endemic
equilibrium of system (1); that is, 𝐼∗ = (𝛽𝑁 − (𝜇 + 𝛾))/(𝛽 +
ℎ(𝜇 + 𝛾)). Moreover,

lim
𝑡→∞

1

𝑡
𝐸∫
𝑡

0

𝛽

1 + ℎ𝐼∗
(𝐼 (𝑠) − 𝐼∗)

2
𝑑𝑠 ≤

1

2
𝐼∗𝜎2𝑁2. (63)

Proof. If 𝑅𝑠
02
:= 𝛽𝑁/((𝜇 + 𝛾)(1 + ℎ𝑁)) − 𝜎2𝑁2/2(𝜇 + 𝛾) > 1,

it is clear that 𝑅𝑑
0
= 𝛽𝑁/(𝜇 + 𝛾) > 1; then, model (1) has a

unique endemic equilibrium 𝐼∗; that is,

𝛽 (𝑁 − 𝐼∗)

1 + ℎ𝐼∗
= 𝜇 + 𝛾, 𝐼∗ =

𝛽𝑁 − (𝜇 + 𝛾)

𝛽 + ℎ (𝜇 + 𝛾)
. (64)

Define

𝑉 (𝐼) = 𝐼 − 𝐼∗ − 𝐼∗ log( 𝐼

𝐼∗
) . (65)

Then 𝑉 is positive definite. By Itô formula, we yield

𝑑𝑉 = (1 −
𝐼

𝐼∗
)𝑑𝐼 +

𝐼∗

2𝐼2
(𝑑𝐼)
2

= 𝐿𝑉𝑑𝑡 +
𝜎 (𝑁 − 𝐼) (𝐼 − 𝐼∗)

1 + ℎ𝐼
𝑑𝑊 (𝑡) ,

(66)

where

𝐿𝑉 = (
𝛽 (𝑁 − 𝐼)

1 + ℎ𝐼
− (𝜇 + 𝛾)) (𝐼 − 𝐼∗) +

𝐼∗𝜎2(𝑁 − 𝐼)2

2(1 + ℎ𝐼)2

= (
𝛽 (𝑁 − 𝐼)

1 + ℎ𝐼
−
𝛽 (𝑁 − 𝐼∗)

1 + ℎ𝐼∗
) (𝐼 − 𝐼∗) +

𝐼∗𝜎2(𝑁 − 𝐼)2

2 (1 + ℎ𝐼)2

= −
𝛽 (1 + ℎ𝑁) (𝐼 − 𝐼∗)

2

(1 + ℎ𝐼) (1 + ℎ𝐼∗)
+
𝐼∗𝜎2(𝑁 − 𝐼)2

2(1 + ℎ𝐼)2

≤ −
𝛽

1 + ℎ𝐼∗
(𝐼 − 𝐼∗)

2
+
1

2
𝐼∗𝜎2𝑁2.

(67)

Note that if 𝜎2 < (2𝛽/𝑁2(1 + ℎ𝐼∗)𝐼∗)min{(𝐼∗)2, (𝑁 − 𝐼∗)
2
},

then the neighborhood 𝑈 : −(𝛽/(1 + ℎ𝐼∗))(𝐼 − 𝐼∗)2 +

(1/2)𝐼∗𝜎2𝑁2 = 0 lies entirely in (0,𝑁). Hence, for 𝐼 ∈
(0,𝑁) \ 𝑈, 𝐿𝑉 ≤ −𝑘 (𝑘 is a positive constant), which implies
that condition (B.2) is satisfied; for more details, we refer to
[27]. Therefore, system (5) has a stationary distribution.

Moreover,

0 ≤ 𝐸∫
𝑡

0

𝑑𝑉 (𝐼 (𝑠)) = 𝐸∫
𝑡

0

𝐿𝑉 (𝐼 (𝑠)) 𝑑𝑠

≤ −𝐸∫
𝑡

0

𝛽

1 + ℎ𝐼∗
(𝐼 (𝑠) − 𝐼∗)

2
𝑑𝑠 +

1

2
𝐼∗𝜎2𝑁2𝑡.

(68)

Then

lim
𝑡→∞

1

𝑡
𝐸∫
𝑡

0

𝛽

1 + ℎ𝐼∗
(𝐼 (𝑠) − 𝐼∗)

2
𝑑𝑠 ≤

1

2
𝐼∗𝜎2𝑁2. (69)

Next, we will give the expressions for the mean and
variance of the stationary distribution.

Theorem 10. If 𝑅𝑠
02
:= 𝛽𝑁/((𝜇 + 𝛾)(1 + ℎ𝑁)) − 𝜎2𝑁2/(2(𝜇 +

𝛾)) > 1 and 𝜎2 < (2𝛽/(𝑁2(1+ℎ𝐼∗)𝐼∗))min{(𝐼∗)2, (𝑁−𝐼∗)2}.
Let 𝑚 and V denote the mean and variance of the stationary
distribution of model (5). Then,

𝑚 = (𝛽𝑁 − 𝜇 − 𝛾 −
1

2
𝜎2𝑁2)

× ((𝛽ℎ + (𝜇 + 𝛾) ℎ2 +
1

2
𝜎2)

𝛽𝑁 − 𝜇 − 𝛾

𝛽 + (𝜇 + 𝛾) ℎ

− (𝛽 (ℎ𝑁 − 1) − 2ℎ (𝜇 + 𝛾) + 𝜎2𝑁))

−1

,

V =
𝛽𝑁 − 𝜇 − 𝛾

𝛽 + (𝜇 + 𝛾) ℎ
𝑚 − 𝑚2.

(70)

Proof. Multiply both sides of (5) by 1 + ℎ𝐼(𝑡); that is,

(1 + ℎ𝐼 (𝑡)) 𝑑𝐼 (𝑡)

= (𝛽 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡) (1 + ℎ𝐼 (𝑡))) 𝑑𝑡

+ 𝜎 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡) 𝑑𝑊 (𝑡) .

(71)
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Figure 3: Computer simulations of 𝐼(𝑡) for model (5) (red line) and the deterministic model (1) (blue line), using the EM method with step
size 0.001 and with initial values (a) 𝐼(0) = 80 and (b) 𝐼(0) = 10. 𝐼 = 10 and 𝐼 = 95.2938.

Integrating (71) from 0 to 𝑡 and dividing by 𝑡 on both sides,
then

1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠)) 𝑑𝐼 (𝑠)

=
1

𝑡
∫
𝑡

0

(𝛽 (𝑁 − 𝐼 (𝑠)) 𝐼 (𝑠) − (𝜇 + 𝛾) 𝐼 (𝑠) (1 + ℎ𝐼 (𝑠))) 𝑑𝑠

+
1

𝑡
∫
𝑡

0

𝜎 (𝑁 − 𝐼 (𝑠)) 𝐼 (𝑠) 𝑑𝑊 (𝑠) .

(72)

Since

𝐼 (𝑡) − 𝐼
0

𝑡
≤
1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠)) 𝑑𝐼 (𝑠) ≤ (1 + ℎ𝑁)
𝐼 (𝑡) − 𝐼

0

𝑡
,

(73)

letting 𝑡 → ∞, we have

lim
𝑡→∞

1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠)) 𝑑𝐼 (𝑠) = 0 a.s. (74)

Then, applying the ergodic property of the stationary distri-
bution and strong law of large numbers, we get

(𝛽𝑁 − 𝜇 − 𝛾)𝑚 − (𝛽 + (𝜇 + 𝛾) ℎ) ⟨𝐼(𝑡)
2⟩ = 0. (75)

Here, ⟨𝐼(𝑡)2⟩ denotes the second moment of the stationary
distribution [14].

In a similar way, multiplying both sides of (19) by (1 +

ℎ𝐼(𝑡))2, we obtain that

(1 + ℎ𝐼 (𝑡))
2𝑑 log (𝐼 (𝑡)) = (1 + ℎ𝐼 (𝑡))

2𝐹 (𝐼 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑁 − 𝐼 (𝑡)) (1 + ℎ𝐼 (𝑡)) 𝑑𝑊 (𝑡) .

(76)

Then, integrating (76) from 0 to 𝑡 and dividing by 𝑡 on both
sides,

1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠))
2𝑑 log (𝐼 (𝑠))

=
1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠))
2𝐹 (𝐼 (𝑠)) 𝑑𝑠

+
1

𝑡
∫
𝑡

0

𝜎 (𝑁 − 𝐼 (𝑠)) (1 + ℎ𝐼 (𝑠)) 𝑑𝑊 (𝑠) .

(77)

Since

log 𝐼 (𝑡) − log 𝐼
0

𝑡
≤
1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠))
2𝑑 log (𝐼 (𝑠))

≤ (1 + ℎ𝑁)
2 log 𝐼 (𝑡) − log 𝐼

0

𝑡
,

(78)

then

lim
𝑡→∞

1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠))
2𝑑 log (𝐼 (𝑠)) = 0 a.s. (79)
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Figure 4: Histograms of the solution 𝐼(𝑡) for model (5) for 𝐼(0) = 10 and differing values of 𝜎 = 0.005, 𝜎 = 0.001, and 𝜎 = 0.0005.
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Figure 5: Normal quantile-quantile plots of the solution 𝐼(𝑡) for model (5) for 𝐼(0) = 10 and differing values of 𝜎 = 0.005, 𝜎 = 0.001, and
𝜎 = 0.0005.

Namely,

lim
𝑡→∞

1

𝑡
∫
𝑡

0

(1 + ℎ𝐼 (𝑠))
2𝐹 (𝐼 (𝑠)) 𝑑𝑠

+ lim
𝑡→∞

1

𝑡
∫
𝑡

0

𝜎 (𝑁 − 𝐼 (𝑠)) (1 + ℎ𝐼 (𝑠)) 𝑑𝑊 (𝑠) = 0 a.s.

(80)

Therefore,

𝛽𝑁 − 𝜇 − 𝛾 −
1

2
𝜎2𝑁2 + (𝛽 (ℎ𝑁 − 1) − 2ℎ (𝜇 + 𝛾) + 𝜎2𝑁)𝑚

− (𝛽ℎ + (𝜇 + 𝛾) ℎ2 +
1

2
𝜎2) ⟨𝐼(𝑡)

2⟩ = 0.

(81)

From (75) and (81), we can get

𝑚 = (𝛽𝑁 − 𝜇 − 𝛾 −
1

2
𝜎2𝑁2)

× ((𝛽ℎ + (𝜇 + 𝛾) ℎ2 +
1

2
𝜎2)

𝛽𝑁 − 𝜇 − 𝛾

𝛽 + (𝜇 + 𝛾) ℎ

− (𝛽 (ℎ𝑁 − 1) − 2ℎ (𝜇 + 𝛾) + 𝜎2𝑁))

−1

,

V =
𝛽𝑁 − 𝜇 − 𝛾

𝛽 + (𝜇 + 𝛾) ℎ
𝑚 − 𝑚2.

(82)

Example 11. We keep the parameters the same as Example 8
but reduce 𝜎 to 0.005, 0.001, and 0.0005. Note that 𝑅𝑠

02
is
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Figure 6: Plot the mean𝑚 and variance V against 𝜎. The endemic equilibrium 𝐼∗ of the deterministic model (1) is 76.

3.2083, 3.3283, and 3.3321, respectively, and all of them are
bigger than 1. Furthermore,

𝐼∗ =
𝛽𝑁 − (𝜇 + 𝛾)

𝛽 + ℎ (𝜇 + 𝛾)
= 76,

2𝛽

𝑁2 (1 + ℎ𝐼∗) 𝐼∗
min {(𝐼∗)2, (𝑁 − 𝐼∗)

2
} = 0.000063.

(83)

The values of 𝜎 are satisfied for the conditions ofTheorem 10.
The histograms of 𝐼(𝑡) are shown in Figure 4, respectively,
for different values of 𝜎 = 0.005, 𝜎 = 0.001, and 𝜎 =
0.0005. The simulations were run for 100,000 iterations with
step size 0.001, and the first 90,000 iterations were discarded
to allow 𝐼(𝑡) to reach its recurrent level. The distribution is
slightly negative skewed for𝜎 = 0.005 and positive skewed for
𝜎 = 0.001 and 𝜎 = 0.0005. Additionally, the corresponding
sample skewness coefficients are−0.00067, 0.0016, and 0.0017,
separately. These simulation results illustrate that the distri-
bution of 𝐼(𝑡) has reached the stationary distribution. When
𝜎 = 0.005, from (70), the mean and variance of the stationary
distribution are 75.9710 and 2.2016, respectively, while the
sample mean and variance are 76.3754 and 0.3209. For 𝜎 =
0.001, the mean and variance of the stationary distribution
are 75.9988 and 0.0876, compared to the sample mean and
variance which are 75.9285 and 0.0157, separately. When 𝜎
reduces to 0.0005, the mean and variance of the stationary
distribution are 75.9997 and 0.0219 and the corresponding
sample mean and variance are 76.0248 and 0.0050. As 𝜎
decreases, 𝐼(𝑡) becomes more symmetric about 𝐼∗ = 76 and
the perturbations become much weaker. What is more, the
normal quantile-quantile plots in Figure 5 suggest that these
data are not far from being normally distributed.

From (70), we know that when 𝜎 = 0, the mean value
𝑚 equals the value of the endemic equilibrium 𝐼∗ and the
variance V is zero. Furthermore, if 𝜎 increases, themean value
𝑚 decreases and the variance V increases as shown in Figure 6.
Obviously, the greater the intensity of the noise is, the larger
the variance is, that is, the stronger the fluctuations of the
distribution are. And this is in accordance with the actual
case.

6. Conclusion

In this paper, we established a stochastic SIS epidemic model
with saturated incidence to investigate the effect of environ-
ment noise. After proving the existence and uniqueness of
the positive solution, we considered two kinds of stabilities:
almost sure exponential stability and 𝑝th moment exponen-
tial stability. Our deduction shows that the 𝑝th moment
exponential stability implies the almost sure exponential
stability. As for the extinction of the disease, our results
indicate that when the noise 𝜎2 is larger than 𝛽(1 + ℎ𝑁)2/𝑁∨

𝛽2(1 + ℎ𝑁)2/2(𝜇 + 𝛾), the disease will die out a.s. If the
noise is small, the disease will also die out a.s. when 𝑅𝑠

01
<

1, instead, the disease will be persistent in the mean when
𝑅𝑠
02

> 1. Our investigation shows that the conditions for
the disease to become extinct are much weaker than those
in the corresponding deterministic model; that is, even if the
disease dies out for the stochasticmodel, itmay still persist for
the corresponding deterministicmodel. Additionally, the half
saturation constant influences the threshold value 𝑅𝑠

01
, which

is not obtained in the deterministic model. Increasing the
saturation effect by changing the behavior of the susceptible
individuals and taking effective control measures of the
government can reduce 𝑅𝑠

01
and thus can reduce the spread
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of the disease. Finally, we proved the existence of a stationary
distribution and derived the expressions for the mean and
variance when the noise is small and 𝑅𝑠

02
> 1. Our theoretical

results were further verified by computer simulations.

Appendix

First, we give some theory in stochastic differential equations.
Let (Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃) be a complete probability space
with {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is increas-
ing and right continuous while {F

0
} contains all 𝑃-null sets).

We use 𝑎 ∨ 𝑏 to denote max(𝑎, 𝑏), 𝑎 ∧ 𝑏 to denote min(𝑎, 𝑏),
and a.s. to denote almost surely.

Definition A.1 (see [22]). Consider the 𝑑-dimensional
stochastic differential equation

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , for 𝑡 ≥ 𝑡
0
,

(A.1)

with initial value 𝑥(𝑡
0
) = 𝑥

0
∈ 𝑅𝑑 and 𝐵(𝑡) being the

𝑚-dimensional standard Brownian motion. The solution is
represented as 𝑥(𝑡; 𝑡

0
, 𝑥
0
). Assume that, for any 𝑡 ≥ 𝑡

0
, there

is

𝑓 (0, 𝑡) = 0, 𝑔 (0, 𝑡) = 0. (A.2)

So (A.1) has the solution 𝑥(𝑡) ≡ 0. This solution is called the
trivial solution.

Definition A.2 (see [22]). The trivial solution of (A.1) is said
to be almost surely exponentially stable if

lim sup
𝑡→∞

1

𝑡
log 󵄨󵄨󵄨󵄨𝑥 (𝑡; 𝑡0, 𝑥0)

󵄨󵄨󵄨󵄨 < 0 a.s., (A.3)

for all 𝑥
0
∈ 𝑅𝑑.

Definition A.3 (see [22]). The trivial solution of (A.1) is said
to be 𝑝th moment exponentially stable if there is a pair of
positive constants 𝜆 and 𝐶 such that

𝐸
󵄨󵄨󵄨󵄨𝑥 (𝑡; 𝑡0, 𝑥0)

󵄨󵄨󵄨󵄨
𝑝
≤ 𝐶

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨
𝑝
𝑒−𝜆(𝑡−𝑡0) on 𝑡 ≥ 𝑡

0
, (A.4)

for all 𝑥
0
∈ 𝑅𝑑. When 𝑝 = 2, it is said to be exponentially

stable in mean square.

LemmaA.4 (see [22]). Assume that there is a positive constant
𝐾 such that

𝑥𝑇𝑓 (𝑥, 𝑡) ∨
󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨
2
≤ 𝐾|𝑥|

2 ∀ (𝑥, 𝑡) ∈ 𝑅𝑑 × [𝑡
0
,∞) .

(A.5)

Then, the 𝑝th moment exponential stability of the trivial
solution of (A.1) implies the almost sure exponential stability.

Next, we give some theory about stationary distributions
[26].

Let 𝑋(𝑡) be a homogeneous Markov process in 𝐸
𝑙
(𝐸
𝑙

denotes Euclidean 𝑙-space) described by

𝑑𝑋 (𝑡) = 𝑓 (𝑋) 𝑑𝑡 +
𝑚

∑
𝑠=1

𝑔
𝑠 (𝑋) 𝑑𝐵𝑠 (𝑡) . (A.6)

The diffusion matrix is 𝐴(𝑥) = (𝑎
𝑖𝑗
(𝑥)), 𝑎

𝑖𝑗
(𝑥) = ∑

𝑚

𝑠=1
𝑔𝑖
𝑠
(𝑥)

𝑔𝑗
𝑠
(𝑥).

Assumption B. There exists a bounded domain 𝑈 ⊂ 𝐸
𝑙
with

regular boundary Γ, having the following properties.

(B.1) In the domain𝑈 and some neighborhood thereof, the
smallest eigenvalue of the diffusion matrix 𝐴(𝑥) =
(𝑎
𝑖𝑗
(𝑥)) is bounded away from zero.

(B.2) If 𝑥 ∈ 𝐸
𝑙
\ 𝑈, the mean time 𝜏 at which a path issuing

from 𝑥 reaches the set𝑈 is finite and sup
𝑥∈𝐾

𝐸
𝑥
𝜏 < ∞

for every compact subset 𝐾 ⊂ 𝐸
𝑙
.

Lemma A.5 (see [26]). If (B.1) and (B.2) hold, then the
Markov process 𝑋(𝑡) has a stationary distribution.
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