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We show that Schröder’s processes of the first kind and of the second kind to obtain a simple root of a nonlinear equation are related
by polynomial and rational approximations.

1. Introduction

In [1, 2], Schröder proposed two fixed point processes to find
a simple root 𝛼 of a nonlinear equation 𝑓(𝑥) = 0. These two
processes have been reconsidered in Kalantari et al. [3] and
Kalantari [4] fromamodern point of view. Iteration functions
(IF) of arbitrary order𝑝 ≥ 2 associatedwith the two processes
will be noted𝐸𝑝(𝑥) for Schröder’s process of the first kind and
𝑆𝑝(𝑥) for Schröder’s process of the second kind.

Order 2 processes are

𝐸2 (𝑥) = 𝑆2 (𝑥) = 𝑁𝑓 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

, (1)

where 𝑁𝑓(𝑥) is the Newton’s IF, and order 𝑝 > 2 processes
can be expressed as

𝐸𝑝 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

Λ 𝑝−2 (𝜉)




𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

,

𝑆𝑝 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

[

Γ𝑝−3 (𝜉)

Γ𝑝−2 (𝜉)

]









𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

,

(2)

where Λ 𝑞(𝜉) and Γ𝑞(𝜉) are polynomials of degree 𝑞 ≥ 0, such
that Λ 𝑞(0) = 1 = Γ𝑞(0).

A question raised and discussed in [3–6] is to find and
explain a possible link between the two processes. The main
result of this paper is to show that 𝐸𝑝(𝑥) is a polynomial

approximation of 𝑆𝑝(𝑥), and 𝑆𝑝(𝑥) is a rational approximation
of 𝐸𝑝(𝑥). More precisely, we explain the relation between the
polynomials Λ 𝑝−2(𝜉), Γ𝑝−3(𝜉), and Γ𝑝−2(𝜉) in (2). This paper
completes the work done previously in [3–6].

Other links or comparisons could be established between
these two families, for example, between their basins of
attraction, their asymptotic constants, and their complexities.
First results in these directions appeared in [7, 8], for example,
but are not the object of the present paper.

In the next section we present notations and definitions
used in this paper. Sections 3 and 4 present the two processes
of Schröder and their corresponding polynomials Λ 𝑞(𝜉) and
Γ𝑞(𝜉). We prove the main result in the last section.

2. Preliminaries

Througout the paper we consider real valued functions which
are regular enough to be differentiated sufficiently many
times. The 𝑙th derivative will be noted 𝑓(𝑙)(𝑥) for 𝑙 = 1, 2, . . ..
We will use the notation 𝑔(𝑥) = 𝑂(𝑓(𝑥)) (and 𝑔(𝑥) =
𝑜(𝑓(𝑥))) for two functions 𝑓(𝑥) and 𝑔(𝑥) defined around
𝑥 = 𝛼, when the following limit exists (and is finite):

lim
𝑥→𝛼

𝑔 (𝑥)

𝑓 (𝑥)

= 𝑐 (3)

for 𝑐 ̸= 0 (for 𝑐 = 0, resp.).
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Let 𝛼 be a fixed point of an IF Φ(𝑥), and let the sequence
{𝑥𝑘+1 = Φ(𝑥𝑘)}

+∞

𝑘=0
converge to 𝛼. Let 𝑝 be a positive integer

such that the following limit exists (and is finite):

𝑥𝑘+1 − 𝛼

(𝑥𝑘 − 𝛼)
𝑝
→

𝑘→+∞
𝐾𝑝 (𝛼; Φ) . (4)

We say that the convergence of the sequence to 𝛼 is of
(integer) order 𝑝 if and only if 𝐾𝑝(𝛼; Φ) ̸= 0. We also say that
Φ(𝑥) is of order 𝑝.

Let 𝛼 be a simple root of 𝑓(𝑥), which means that 𝑓(𝛼) =
0 and 𝑓(1)(𝛼) ̸= 0; then 𝑔(𝑥) = 𝑂((𝑥 − 𝛼)𝑝) is equivalent to
𝑔(𝑥) = 𝑂(𝑓

𝑝
(𝑥)) or 𝑔(𝑥) = 𝑂((𝑓/𝑓(1))𝑝(𝑥)). Moreover if 𝛼 is

a fixed point of an IFΦ𝑝(𝑥) of order 𝑝, then we can write [9]

Φ𝑝 (𝑥) = 𝛼 + 𝑂 ((𝑥 − 𝛼)
𝑝
) = 𝛼 + 𝑂 (𝑓

𝑝
(𝑥))

= 𝛼 + 𝑂((

𝑓

𝑓
(1)
)

𝑝

(𝑥)) .

(5)

3. Schröder’s Process of the First Kind

3.1.The Process. Schröder’s process of the first kind, proposed
to increase the order of convergence of a fixed-point method
[1–3, 9, 10], can be obtained by considering Taylor’s expansion
of the inverse 𝑔(𝑦) of 𝑓(𝑥) around 𝑦 = 0 [9]. It is also
associated with Chebyshev and Euler [11–13]. The IF 𝐸𝑝(𝑥)
of order 𝑝 is defined by the series

𝐸𝑝 (𝑥) = 𝑥 +

𝑝−1

∑

𝑙=1

𝑐𝑙 (𝑥) 𝑓
𝑙
(𝑥) =

𝑝−1

∑

𝑙=0

𝑐𝑙 (𝑥) 𝑓
𝑙
(𝑥) , (6)

where 𝑐0(𝑥) = 𝑥 and

𝑐𝑙 (𝑥) = −
1

𝑙

(

1

𝑓
(1)
(𝑥)

𝑑

𝑑𝑥

) 𝑐𝑙−1 (𝑥)

=

(−1)
𝑙

𝑙!

(

1

𝑓
(1)
(𝑥)

𝑑

𝑑𝑥

)

𝑙

𝑐0 (𝑥)

(7)

for 𝑙 = 1, 2, . . ..
Relation (7) implies that 𝑐𝑙(𝑥) is a rational function of the

form

𝑐𝑙 (𝑥) = (polynomial of degree 𝑙 − 1 w.r.t.

𝑓
(1)
(𝑥) , 𝑓

(2)
(𝑥) , . . . , 𝑓

(𝑙)
(𝑥))

× ([𝑓
(1)
(𝑥)]

2𝑙−1

)

−1

.

(8)

Then we can write

𝐸𝑝 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

Λ 𝑝−2 (𝜉)




𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

, (9)

where

Λ 𝑝−2 (𝜉) =

𝑝−2

∑

𝑙=0

𝜆𝑙 (𝑥) 𝜉
𝑙
, (10)

𝜆𝑙 (𝑥) =

{
{
{

{
{
{

{

1 for 𝑙 = 0,

−

[𝑓
(1)
(𝑥)]

𝑙

𝑙 + 1

𝑑

𝑑𝑥

(

𝜆𝑙−1 (𝑥)

[𝑓
(1)
(𝑥)]
𝑙
) for 𝑙 ≥ 1.

(11)

Consequently

𝜆𝑙 (𝑥) = ( {polynomial of degree 𝑙 w.r.t.

𝑓
(1)
(𝑥) , 𝑓

(2)
(𝑥) , . . . , 𝑓

(𝑙+1)
(𝑥)}

× ([𝑓
(1)
(𝑥)]

𝑙

)

−1

) .

(12)

3.2. Examples. The first 4 IFs are given here. For

(a) 𝑝 = 2:

𝐸2 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

, (13)

which corresponds to Newton’s IF of order 2;

(b) 𝑝 = 3:

𝐸3 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

−

1

2!

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

[

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

2

, (14)

which corresponds to Chebyshev’s IF order 3 [11];

(c) 𝑝 = 4:

𝐸4 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

−

1

2!

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

[

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

2

−

1

3!

[

[

3[𝑓
(2)
(𝑥)]

2

− 𝑓
(1)
(𝑥) 𝑓
(3)
(𝑥)

[𝑓
(1)
(𝑥)]
2

]

]

× [

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

3

;

(15)
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(d) 𝑝 = 5:

𝐸5 (𝑥) = 𝑥 −
1

𝑓
(1)
(𝑥)

𝑓 (𝑥) −

1

2!

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

[

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

2

−

1

3!

[

[

3[𝑓
(2)
(𝑥)]

2

− 𝑓
(1)
(𝑥) 𝑓
(3)
(𝑥)

[𝑓
(1)
(𝑥)]
2

]

]

× [

𝑓(𝑥)

𝑓
(1)
(𝑥)

]

3

−

1

4!

[

[

[𝑓
(1)
(𝑥)]

2

𝑓
(4)
(𝑥)

[𝑓
(1)
(𝑥)]
3

+

15[𝑓
(2)
(𝑥)]

3

[𝑓
(1)
(𝑥)]
3

−

10𝑓
(1)
(𝑥) 𝑓
(2)
(𝑥) 𝑓
(3)
(𝑥)

[𝑓
(1)
(𝑥)]
3

]

× [

𝑓(𝑥)

𝑓
(1)
(𝑥)

]

4

.

(16)

4. Schröder’s Process of the Second Kind

4.1. The Process. Different equivalent formulations exist for
Schröder’s process of the second kind [4, 6, 13, 14]. One such
form is based on a determinental identity. Let Δ 0(𝑥) = 1 and
for 𝑝 ≥ 1

Δ𝑝 (𝑥) =






































𝑓
(1)
(𝑥)
𝑓
(2)
(𝑥)

2!
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓
(𝑝)
(𝑥)

𝑝!

𝑓 (𝑥) 𝑓
(1)
(𝑥)
𝑓
(2)
(𝑥)

2!
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓
(𝑝−1)
(𝑥)

(𝑝 − 1)!

0 𝑓 (𝑥) 𝑓
(1)
(𝑥)
𝑓
(2)
(𝑥)

2!
⋅ ⋅ ⋅
𝑓
(𝑝−2)
(𝑥)

(𝑝 − 2)!

... d d d d
...

0 ⋅ ⋅ ⋅ 0 𝑓 (𝑥) 𝑓
(1)
(𝑥)
𝑓
(2)
(𝑥)

2!
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑓 (𝑥) 𝑓

(1)
(𝑥)






































.

(17)

Expanding this determinant along the first line, we obtain

Δ𝑝 (𝑥) =

𝑝

∑

𝑗=1

(−1)
𝑗+1𝑓
(𝑗)
(𝑥)

𝑗!

𝑓
𝑗−1
(𝑥) Δ𝑝−𝑗 (𝑥) (18)

for 𝑝 ≥ 1. Using 𝑅𝑝(𝑥) = Δ𝑝(𝑥)/𝑓
𝑝+1
(𝑥), Schröder’s process

of the second kind [1, 2] of order 𝑝 is defined by

𝑆𝑝 (𝑥) = 𝑥 −

𝑅𝑝−2 (𝑥)

𝑅𝑝−1 (𝑥)

= 𝑥 − 𝑓 (𝑥)

Δ𝑝−2 (𝑥)

Δ𝑝−1 (𝑥)

. (19)

We prove by mathematical induction that

Δ𝑝 (𝑥) =
(−1)
𝑝
𝑓
𝑝+1
(𝑥)

𝑝!

(

1

𝑓 (𝑥)

)

(𝑝)

,

𝑓 (𝑥) Δ
(1)

𝑝−1
(𝑥) = 𝑝𝑓

(1)
(𝑥) Δ𝑝−1 (𝑥) − 𝑝Δ𝑝 (𝑥) .

(20)

Using

(

1

𝑓 (𝑥)

)

(𝑝)

=

𝑝+1

∑

𝑙=2

𝑑𝑝,𝑙 (𝑥) (
1

𝑓 (𝑥)

)

𝑙

, (21)

then we have 𝑑1,2(𝑥) = −𝑓
(1)
(𝑥), and we can obtain

recursively 𝑑𝑝,𝑙(𝑥) for 𝑝 ≥ 2 by the formulae

𝑑𝑝,𝑙 (𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑑
(1)

𝑝−1,𝑙
(𝑥) for 𝑙 = 2,

𝑑
(1)

𝑝−1,𝑙
(𝑥)

− (𝑙 − 1) 𝑑𝑝−1,𝑙−1 (𝑥) 𝑓
(1)
(𝑥) for 𝑙 = 3, . . . , 𝑝,

−𝑝𝑑𝑝−1,𝑝 (𝑥) 𝑓
(1)
(𝑥) for 𝑙 = 𝑝 + 1.

(22)

Consequently

𝑑𝑝,𝑙 (𝑥) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

−𝑓
(𝑝)
(𝑥) , for 𝑙 = 2,

{polynomial of degree
𝑙 − 1 w.r.t. 𝑓(1) (𝑥) ,
𝑓
(2)
(𝑥) , . . . , 𝑓

(𝑝+2−𝑙)
(𝑥)} for 𝑙 = 3, . . . , 𝑝,

(−1)
𝑝
𝑝![𝑓
(1)
(𝑥)]

𝑝

for 𝑙 = 𝑝 + 1.
(23)

It follows that Δ𝑝(𝑥) is a polynomial of degree 𝑝 − 1 with
respect to 𝑓(𝑥) and the term not depending on 𝑓(𝑥) is
[𝑓
(1)
(𝑥)]

𝑝

. Hence

Δ𝑝 (𝑥) = [𝑓
(1)
(𝑥)]

𝑝

Γ𝑝−1 (𝜉)




𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

, (24)

where Γ𝑝−1(𝜉) is a polynomial of degree 𝑝 − 1 such that
Γ𝑝−1(0) = 1. Let us set

Γ𝑝−1 (𝜉) =

𝑝−1

∑

𝑙=0

𝛾𝑝−1,𝑙 (𝑥) 𝜉
𝑙
, (25)

where the coefficients 𝛾𝑝−1,𝑙(𝑥) are rational functions of the
form

𝛾𝑝−1,𝑙 (𝑥) = (−1)
𝑝
𝑑𝑝,𝑝+1−𝑙 (𝑥)

𝑝![𝑓
(1)
(𝑥)]
𝑝−𝑙

(26)

= ( {polynomial of degree 𝑝 − 𝑙 w.r.t.

𝑓
(1)
(𝑥) , 𝑓

(2)
(𝑥) , . . . , 𝑓

(𝑙+1)
(𝑥)}

× ([𝑓
(1)
(𝑥)]

𝑝−𝑙

)

−1

) .

(27)

Then we obtain

𝑆𝑝 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

[

Γ𝑝−3 (𝜉)

Γ𝑝−2 (𝜉)

]









𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

. (28)
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4.2. Examples. The first 4 IFs are presented here. For

(a) 𝑝 = 2:

𝑆2 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

, (29)

which corresponds to Newton’s IF of order 2;
(b) 𝑝 = 3:

𝑆3 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

× [

1

1 − (1/2) (𝑓
(2)
(𝑥) /𝑓

(1)
(𝑥)) (𝑓 (𝑥) /𝑓

(1)
(𝑥))

] ,

(30)

which is Halley’s IF of order 3 [15];
(c) 𝑝 = 4:

𝑆4 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

× [(1 −

1

2

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

𝑓 (𝑥)

𝑓
(1)
(𝑥)

)

× (1 −

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

𝑓 (𝑥)

𝑓
(1)
(𝑥)

+

1

3!

𝑓
(3)
(𝑥)

𝑓
(1)
(𝑥)

[

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

2

)

−1

] ;

(31)

(d) 𝑝 = 5:

𝑆5 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

× [(1 −

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

𝑓 (𝑥)

𝑓
(1)
(𝑥)

+

1

3!

𝑓
(3)
(𝑥)

𝑓
(1)
(𝑥)

[

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

2

)

× (1 −

3

2

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

𝑓 (𝑥)

𝑓
(1)
(𝑥)

+ [

1

3

𝑓
(3)
(𝑥)

𝑓
(1)
(𝑥)

+

1

4

[

𝑓
(2)
(𝑥)

𝑓
(1)
(𝑥)

]

2

][

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

2

−

1

4!

𝑓
(4)
(𝑥)

𝑓
(1)
(𝑥)

[

𝑓 (𝑥)

𝑓
(1)
(𝑥)

]

3

)

−1

] .

(32)

5. Proof of the Main Result

Since both processes𝐸𝑝(𝑥) and 𝑆𝑝(𝑥) are of order𝑝, following
[9], the next result holds.

Lemma 1. Let 𝛼 be a simple root of 𝑓(𝑥); then

𝐸𝑝 (𝑥) − 𝑆𝑝 (𝑥) = 𝑂 (𝑓
𝑝
(𝑥)) = 𝑂((

𝑓 (𝑥)

𝑓
(1)
(𝑥)

)

𝑝

) . (33)

From this lemma

𝑓 (𝑥)

𝑓
(1)
(𝑥)

[Λ 𝑝−2 (𝜉) −

Γ𝑝−3 (𝜉)

Γ𝑝−2 (𝜉)

]









𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

= 𝑂((

𝑓 (𝑥)

𝑓
(1)
(𝑥)

)

𝑝

) ,

(34)

and so

[Λ 𝑝−2 (𝜉) −

Γ𝑝−3 (𝜉)

Γ𝑝−2 (𝜉)

]









𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

= 𝑂((

𝑓 (𝑥)

𝑓
(1)
(𝑥)

)

𝑝−1

) .

(35)

The next step is to consider the following basic result
about polynomial and rational approximations.

Lemma 2. Let us consider the expression

Λ 𝑝 (𝜉) =

Γ𝑝−1 (𝜉)

Γ𝑝 (𝜉)

+ 𝑂 (𝜉
p+1
) , (36)

where Λ 𝑝(𝜉) and Γ𝑝(𝜉) are polynomials of degree 𝑝 such that
Λ 𝑝(0) = 1 = Γ𝑝(0).

(a) If Γ𝑝−1(𝜉) and Γ𝑝(𝜉) are given, there exists one and only
one polynomial Λ 𝑝(𝜉) such that (36) holds.

(b) If Γ𝑝−1(𝜉) andΛ 𝑝(𝜉) are given, there exists one and only
one polynomial Γ𝑝(𝜉) such that (36) holds.

Proof. This result is based on the following identity:

Γ𝑝−1 (𝜉)

Γ𝑝 (𝜉)

=

Γ𝑝−1 (𝜉)

1 − (1 − Γ𝑝 (𝜉))

= Γ𝑝−1 (𝜉)

+∞

∑

𝑙=0

(1 − Γ𝑝 (𝜉))

𝑙

= Γ𝑝−1 (𝜉)

𝑝

∑

𝑙=0

(1 − Γ𝑝 (𝜉))

𝑙

+ 𝑂 (𝜉
𝑝+1
) ,

(37)

and we would like to have

Λ 𝑝 (𝜉) = Γ𝑝−1 (𝜉)

𝑝

∑

𝑙=0

(1 − Γ𝑝 (𝜉))

𝑙

+ 𝑂 (𝜉
𝑝+1
) . (38)

We know that 𝜆0 = 𝛾𝑝−1,0 = 𝛾𝑝,0 = 1. Moreover the coefficient
of 𝜉𝑙 on the left-hand side is 𝜆𝑙 and on the right-hand side is

𝛾𝑝,𝑙

+ an expression in terms of {
𝛾𝑝−1,𝑗 for 𝑗 = 0, . . . , 𝑙,
𝛾𝑝,𝑗 for 𝑗 = 0, . . . , 𝑙 − 1

(39)
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for 𝑙 = 1, . . . , 𝑝. This expression shows that if the 𝛾𝑝’s and the
𝛾𝑝−1’s are given, we can obtain 𝜆𝑝’s, and conversely if the 𝜆𝑝’s
and the 𝛾𝑝−1’s are given, we can obtain the 𝛾𝑝’s.

In view of these two lemmas we obtain the main result of
this paper.

Theorem 3. 𝐸𝑝(𝑥) and 𝑆𝑝(𝑥) are related as follows.

(a) For 𝑆𝑝(𝑥) given by (28), one can obtain the form (9) of
𝐸𝑝(𝑥) by expanding the denominator in (28), multiply-
ing, and truncating to keep powers of 𝑓(𝑥)/𝑓(1)(𝑥) up
to 𝑝 − 1.

(b) Since 𝑆2(𝑥) = 𝐸2(𝑥) = 𝑁𝑓(𝑥), one can obtain
recursively 𝑆𝑝(𝑥) given by (28) from𝐸𝑝(𝑥) given by (9).

Proof. (a) Indeed, if 𝑆𝑝(𝑥) is given, which means we know
Γ𝑝−3(𝜉) and Γ𝑝−2(𝜉), we can write

𝑆𝑝 (𝑥) = 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

[

Γ𝑝−3 (𝜉)

Γ𝑝−2 (𝜉)

]









𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

= 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

[

Γ𝑝−3 (𝜉)

1 − (1 − Γ𝑝−2 (𝜉))

]











𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

= 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

[Γ𝑝−3 (𝜉)

𝑝−2

∑

𝑙=0

(1 − Γ𝑝−2 (𝜉))

𝑙

+ 𝑂 (𝜉
𝑝−1
) ]










𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

= 𝑥 −

𝑓 (𝑥)

𝑓
(1)
(𝑥)

Λ 𝑝−2 (𝜉)




𝜉=𝑓(𝑥)/𝑓(1)(𝑥)

+ 𝑂 (𝑓
𝑝
(𝑥))

= 𝐸𝑝 (𝑥) + 𝑂 (𝑓
𝑝
(𝑥)) ,

(40)

which follows from part (a) of Lemma 1.
(b) As already observed, 𝐸2(𝑥) = 𝑆2(𝑥) = 𝑁𝑓(𝑥). If, for

𝑝 > 2, we have 𝑆𝑝−1(𝑥), and we know Γ𝑝−4(𝜉) and Γ𝑝−3(𝜉),
and𝐸𝑝(𝑥), and we know alsoΛ 𝑝−2(𝜉), then we can determine
Γ𝑝−2(𝜉) from part (b) of Lemma 1. Consequently we obtain
𝑆𝑝(𝑥).

The computation of the polynomialsΛ 𝑝(𝜉) and Γ𝑝(𝜉), and
their coefficients 𝜆𝑝’s and the 𝛾𝑝’s, can be done explicitely
using (11) for the 𝜆𝑝’s and (22) and (26) for the 𝛾𝑝’s. The
verification of the link between the two Schröder’s processes
has already been done using symbolic computation up to
order 20 [5, 6].
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