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Some sufficient conditions for biholomorphic convex mappings of order 𝛼 on the Reinhardt domain 𝐵𝑛
𝑝
in 𝐶𝑛 are given; from

that, criteria for biholomorphic convex mappings of order 𝛼 with particular form become direct. As applications of these sufficient
conditions, some concrete biholomorphic convex mappings of order 𝛼 on 𝐵𝑛

𝑝
are provided.

1. Introduction and Preliminaries

The analytic functions of one complex variable, which map
the unit disk 𝑈 = {𝑧 ∈ 𝐶 : |𝑧| < 1} onto starlike
domains or convex domains, have been extensively studied.
These functions are easily characterized by simple analytic or
geometric conditions. In the case of one complex variable, the
following notions are well known.

Let 𝐻(𝑈)= {𝑓 :𝑈 → C be analytic in 𝑈 with 𝑓(0) =
𝑓


(0) − 1 = 0}. A function 𝑓 ∈ 𝐻(𝑈) is said to be convex if
𝑓(𝑈) is convex, that is, given𝑤

1
, 𝑤
2
∈ 𝑓(𝑈), 𝑡𝑤

1
+(1−𝑡)𝑤

2
∈

𝑓(𝑈) for all 𝑡 ∈ [0, 1]. We let 𝐾 denote the class of univalent
convex functions in 𝑈. Suppose 𝛼 ∈ [0, 1). If 𝑓 ∈ 𝐻(𝑈)
satisfies 𝑓(𝑧) ̸= 0 for all 𝑧 ∈ 𝑈 and the following inequality:

Re{
𝑧𝑓


(𝑧)

𝑓

(𝑧)

+ 1} > 𝛼, ∀𝑧 ∈ 𝑈, (1)

then we call 𝑓(𝑧) a convex function of order 𝛼 in 𝑈. We let
𝐾(𝛼) denote the class of convex functions of order 𝛼 in 𝑈. It
is evident that 𝐾 ≡ 𝐾(0).

In higher dimensions, demanding that a mapping takes
the unit ball to a convex domain turned out to be a very
restrictive condition. It is rather hard to construct concrete
biholomorphic convex mappings on some domains in C𝑛,
even on the Euclidean unit ball.

Suppose 𝑛 is a fixed positive integer, 𝑝 > 1. Let 𝐶𝑛
be the space of 𝑛 complex variables 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
)

with the usual inner product ⟨𝑧, 𝑤⟩ = ∑𝑛
𝑗=1
𝑧
𝑗
𝑤
𝑗
, where

𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) ∈ 𝐶

𝑛. We introduce the 𝑝-norm of
𝐶
𝑛 : ‖𝑧‖

𝑝
= (∑
𝑛

𝑗=1
|𝑧
𝑗
|
𝑝

)
1/𝑝, and let 𝐵𝑛

𝑝
= {𝑧 ∈ 𝐶

𝑛 : ‖𝑧‖
𝑝
< 1};

it is evident that 𝐵𝑛
𝑝
is a Reinhardt domain. For simplicity, let

‖𝑧‖ = ‖𝑧‖
2
= √⟨𝑧, 𝑧⟩.

Let𝐻(𝐵𝑛
𝑝
) be the class of holomorphic mappings 𝑓(𝑧) =

(𝑓
1
(𝑧), . . . , 𝑓

𝑛
(𝑧)) in the Reinhardt domain 𝐵𝑛

𝑝
, where 𝑧 =

(𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐶

𝑛. A mapping 𝑓 ∈ 𝐻(𝐵𝑛
𝑝
) is said to be

locally biholomorphic in 𝐵𝑛
𝑝
if 𝑓 has a local inverse at each

point 𝑧 ∈ 𝐵𝑛
𝑝
or, equivalently, if the first Fréchet derivative

𝐷𝑓(𝑧) = (𝜕𝑓
𝑗
(𝑧)/𝜕𝑧

𝑘
)
1≤𝑗, 𝑘≤𝑛

is nonsingular at each point in
𝐵
𝑛

𝑝
.
The second Fréchet derivative of a mapping 𝑓 ∈ 𝐻(𝐵𝑛

𝑝
)

is a symmetric bilinear operator 𝐷2𝑓(𝑧)(⋅, ⋅) on 𝐶𝑛 × 𝐶𝑛,
and𝐷2𝑓(𝑧)(𝑧, ⋅) is the linear operator obtained by restricting
𝐷
2

𝑓(𝑧) to {𝑧} ×𝐶𝑛. Thematrix representation of𝐷2𝑓(𝑧)(𝑏, ⋅)
is

𝐷
2

𝑓 (𝑧) (𝑏, ⋅) = (

𝑛

∑

𝑙=1

𝜕
2

𝑓
𝑗
(𝑧)

𝜕𝑧
𝑘
𝜕𝑧
𝑙

𝑏
𝑙
)

1≤𝑗, 𝑘≤𝑛

, (2)

where 𝑓(𝑧) = (𝑓
1
(𝑧), . . . , 𝑓

𝑛
(𝑧)), 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
) ∈ 𝐶
𝑛.
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Let 𝑁(𝐵𝑛
𝑝
) denote the class of all locally biholomorphic

mappings 𝑓 : 𝐵𝑛
𝑝
→ 𝐶

𝑛 such that 𝑓(0) = 0, 𝐷𝑓(0) = 𝐼,
where 𝐼 is the unit matrix of 𝑛 × 𝑛. If 𝑓 ∈ 𝑁(𝐵𝑛

𝑝
) is a biholo-

morphic mapping on 𝐵𝑛
𝑝
and𝑓(𝐵𝑛

𝑝
) is a convex domain in𝐶𝑛,

then we call 𝑓 a biholomorphic convex mapping on 𝐵𝑛
𝑝
. The

class of all biholomorphic convex mappings on 𝐵𝑛
𝑝
is denoted

by𝐾(𝐵𝑛
𝑝
). Obviously,𝐾 = 𝐾(𝐵1

𝑝
). The biholomorphic convex

mapping of order 𝛼 on 𝐵𝑛
𝑝
was introduced and investigated

in [1–5]; the 𝜀 starlike and 𝜀 quasi-convex mappings were
investigated in [4, 6].

Definition 1 (see [1–3, 5]). Suppose 0 ≤ 𝛼 < 1, 𝑝 ≥
2, 𝑢(𝑧) = ∑

𝑛

𝑗=1
|𝑧
𝑗
|
𝑝, and 𝑓 ∈ 𝑁(𝐵𝑛

𝑝
). Assume that for any

𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵

𝑛

𝑝
and 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
) ∈ 𝐶

𝑛 with
Re⟨𝑏, 𝜕𝑢/𝜕𝑧⟩ = 0, we have

𝐽
𝑓
(𝑧, 𝑏) = Re{

𝑝
2

4

𝑛

∑

𝑘=1





𝑧
𝑘






𝑝−2



𝑏
𝑘






2

+

𝑝

2

(

𝑝

2

− 1)

×

𝑛

∑

𝑘=1





𝑧
𝑘






𝑝

𝑧
2

𝑘

𝑏
2

𝑘

−⟨𝐷𝑓(𝑧)
−1

𝐷
2

𝑓 (𝑧) (𝑏, 𝑏) ,

𝜕𝑢

𝜕𝑧

⟩}

≥ 𝛼 ⋅

𝑝

2

𝑛

∑

𝑘=1





𝑧
𝑘






𝑝−2



𝑏
𝑘






2

,

(3)

where 𝜕𝑢/𝜕𝑧 = (𝜕𝑢/𝜕𝑧
1
, . . . , 𝜕𝑢/𝜕𝑧

𝑛
). Then, 𝑓(𝑧) is called a

biholomorphic convex mapping of order 𝛼 on 𝐵𝑛
𝑝
. The class

of all biholomorphic convex mappings of order 𝛼 on 𝐵𝑛
𝑝
is

denoted by 𝐾(𝐵𝑛
𝑝
, 𝛼). It is evident that 𝐾(𝐵𝑛

𝑝
) ≡ 𝐾(𝐵

𝑛

𝑝
, 0) and

𝐾(𝐵
1

𝑝
, 𝛼) ≡ 𝐾(𝛼).

In 1995, Roper and Suffridge [7] proved that if 𝑓 ∈ 𝐾
and 𝐹(𝑓)(𝑧) = (𝑓(𝑧

1
), √𝑓

(𝑧
1
)𝑧
0
), where 𝑧 = (𝑧

1
, 𝑧
0
) ∈

𝐵
𝑛

, 𝑧
1
∈ 𝑈, 𝑧

0
= (𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝐶

𝑛−1, then 𝐹(𝑓)(𝑧) ∈
𝐾(𝐵
𝑛

2
). 𝐹(𝑓) is popularly referred to as the Roper-Suffridge

operator. Using this operator, we may construct a lot of
concrete biholomorphic convex mappings on 𝐵𝑛

2
. Roper and

suffridge [8] also obtained some sufficient conditions for
biholomorphic convex mappings on the Euclidean unit ball.
Liu and Zhu [9] had given some sufficient conditions and
concrete examples of biholomorphic convex mappings on
the Reinhardt domain 𝐵𝑛

𝑝
. Liu [3] also gave some sufficient

conditions for biholomorphic convexmappings of order 𝛼 on
𝐵
𝑛

𝑝
. A problem is naturally posed: can we give several direct

criteria for biholomorphic convexmapping of order 𝛼 on 𝐵𝑛
𝑝
?

For example, can we get some sufficient conditions such that
the mapping of the form

𝑓 (𝑧) = (𝑝
1
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) , 𝑝
2
(𝑧
2
, 𝑧
𝑛
) , . . . ,

𝑝
𝑛−1
(𝑧
𝑛−1
, 𝑧
𝑛
) , 𝑝
𝑛
(𝑧
𝑛
))

(4)

is a biholomorphic convex mapping of order 𝛼 on 𝐵𝑛
𝑝
?

The aim of this paper is to give an answer to the
above problem. From these, we may construct some concrete
biholomorphic convex mappings of order 𝛼 on 𝐵𝑛

𝑝
.

2. Main Results

Theorem 2. Suppose that 𝑛 ≥ 2, 𝑝 ≥ 2, 0 ≤ 𝛼 < 1, 𝑞 =
𝑝/(𝑝 − 1). Let

𝑓 (𝑧) = (𝑓
1
(𝑧
1
, 𝑧
𝑛
) , 𝑓
2
(𝑧
2
, 𝑧
𝑛
) . . . , 𝑓

𝑛−1
(𝑧
𝑛−1
, 𝑧
𝑛
) , 𝑝
𝑛
(𝑧
𝑛
)) ,

(5)

where 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝐵

𝑛

𝑝
, 𝑝
𝑛
(𝜁) ∈ 𝐻(𝑈) and

𝑓
𝑗
(𝑧
𝑗
, 𝑧
𝑛
) : 𝐵

2

𝑝
→ 𝐶 is holomorphic with 𝑓

𝑗
(0, 0) =

0, (𝜕𝑓
𝑗
/𝜕𝑧
𝑗
)(0, 0) = 1, (𝜕𝑓

𝑗
/𝜕𝑧
𝑛
)(0, 0) = 0 (𝑗 = 1, 2, . . . , 𝑛 −

1). If 𝑓 satisfies the following conditions:

(1)

𝑛−1

∏

𝑗=1

𝜕𝑓
𝑗

𝜕𝑧
𝑗

⋅ 𝑝


𝑛
(𝑧
𝑛
) ̸= 0,






𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)






≤ (1 − 𝛼)






𝑝


𝑛
(𝑧
𝑛
)






,

(2)












𝑧
𝑗

𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑗












+












𝑧
𝑗

𝜕
2

𝑓
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛












≤ (1 − 𝛼)












𝜕𝑓
𝑗

𝜕𝑧
𝑗












(𝑗 = 1, 2, . . . , 𝑛 − 1) ,

(3) (1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

+ (1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑗

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

+ (1 −




𝑧
𝑛






𝑝

)

1/𝑞

×(

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

≤ (1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)




𝑧
𝑛






𝑝−2

(6)

for all 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, then 𝑓 ∈ 𝐾(𝐵𝑛

𝑝
, 𝛼).

Proof. By direct computation of the Fréchet derivatives of
𝑓(𝑧), we obtain
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𝐷𝑓 (𝑧) =

(

(

(

(

(

(

(

𝜕𝑓
1

𝜕𝑧
1

0 ⋅ ⋅ ⋅ 0

𝜕𝑓
1

𝜕𝑧
𝑛

0

𝜕𝑓
2

𝜕𝑧
2

⋅ ⋅ ⋅ 0

𝜕𝑓
2

𝜕𝑧
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅

𝜕𝑓
𝑛−1

𝜕𝑧
𝑛−1

𝜕𝑓
𝑛−1

𝜕𝑧
𝑛

0 0 ⋅ ⋅ ⋅ 0 𝑝


𝑛
(𝑧
𝑛
)

)

)

)

)

)

)

)

,

𝐷𝑓(𝑧)
−1

=

(

(

(

(

(

(

(

(

(

(

(

1

𝜕𝑓
1
/𝜕𝑧
1

0 ⋅ ⋅ ⋅ 0 −

𝜕𝑓
1
/𝜕𝑧
𝑛

(𝜕𝑓
1
/𝜕𝑧
1
) 𝑝


𝑛
(𝑧
𝑛
)

0

1

𝜕𝑓
2
/𝜕𝑧
2

⋅ ⋅ ⋅ 0 −

𝜕𝑓
2
/𝜕𝑧
𝑛

(𝜕𝑓
2
/𝜕𝑧
2
) 𝑝


𝑛
(𝑧
𝑛
)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅

1

𝜕𝑓
𝑛−1
/𝜕𝑧
𝑛−1

−

𝜕𝑓
𝑛−1
/𝜕𝑧
𝑛

(𝜕𝑓
𝑛−1
/𝜕𝑧
𝑛−1
) 𝑝


𝑛
(𝑧
𝑛
)

0 0 ⋅ ⋅ ⋅ 0

1

𝑝


𝑛
(𝑧
𝑛
)

)

)

)

)

)

)

)

)

)

)

)

,

𝐷
2

𝑓 (𝑧) (𝑏, 𝑏) = (

𝐵
1
0 ⋅ ⋅ ⋅ 0 𝐴

1

0 𝐵
2
⋅ ⋅ ⋅ 0 𝐴

2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝐵
𝑛−1
𝐴
𝑛−1

0 0 ⋅ ⋅ ⋅ 0 𝐴
𝑛

)(

𝑏
1

𝑏
2

⋅ ⋅ ⋅

𝑏
𝑛−1

𝑏
𝑛

)=

(

(

(

(

(

(

(

(

(

(

(

(

𝜕
2

𝑓
1

𝜕𝑧
2

1

𝑏
2

1
+ 2

𝜕
2

𝑓
1

𝜕𝑧
1
𝜕𝑧
𝑛

𝑏
1
𝑏
𝑛
+

𝜕
2

𝑓
1

𝜕𝑧
2

𝑛

𝑏
2

𝑛

𝜕
2

𝑓
2

𝜕𝑧
2

2

𝑏
2

2
+ 2

𝜕
2

𝑓
2

𝜕𝑧
2
𝜕𝑧
𝑛

𝑏
2
𝑏
𝑛
+

𝜕
2

𝑓
2

𝜕𝑧
2

𝑛

𝑏
2

𝑛

...
𝜕
2

𝑓
𝑛−1

𝜕𝑧
2

𝑛−1

𝑏
2

𝑛−1
+ 2

𝜕
2

𝑓
𝑛−1

𝜕𝑧
𝑛−1
𝜕𝑧
𝑛

𝑏
𝑛−1
𝑏
𝑛
+

𝜕
2

𝑓
𝑛−1

𝜕𝑧
2

𝑛

𝑏
2

𝑛

𝑝


𝑛
(𝑧
𝑛
) 𝑏
2

𝑛

)

)

)

)

)

)

)

)

)

)

)

)

,

(7)

where

𝐴
𝑗
=

𝜕
2

𝑓
𝑗

𝜕𝑧
𝑛
𝜕𝑧
𝑗

𝑏
𝑗
+

𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑛

𝑏
𝑛
(𝑗 = 1, 2, . . . , 𝑛 − 1) ,

𝐴
𝑛
= 𝑝


𝑛
(𝑧
𝑛
) 𝑏
𝑛
,

𝐵
𝑗
=

𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑗

𝑏
𝑗
+

𝜕
2

𝑓
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝑏
𝑛
(𝑗 = 1, 2, . . . , 𝑛 − 1) .

(8)

Taking 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
) ∈ 𝐶
𝑛 such that

Re⟨𝑏, (𝜕𝑢/𝜕𝑧)⟩ = 0, by the hypothesis of Theorem 2, we have

2

𝑝

𝐽
𝑓
(𝑧, 𝑏) − 𝛼

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

≥ (1 − 𝛼)

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

−

2

𝑝

Re⟨𝐷𝑓(𝑧)−1𝐷2𝑓 (𝑧) (𝑏, 𝑏) , 𝜕𝑢
𝜕𝑧

⟩

= (1 − 𝛼)

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

− Re
{

{

{

𝑛−1

∑

𝑗=1

1

𝜕𝑓
𝑗
/𝜕𝑧
𝑗

[

𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑗

𝑏
2

𝑗
+ 2

𝜕
2

𝑓
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝑏
𝑗
𝑏
𝑛

+

𝜕
2

𝑓
𝑗

𝜕𝑧
𝑛

𝑏
2

𝑛
−

𝜕𝑓
𝑗

𝜕𝑧
𝑛

𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)

𝑏
2

𝑛
]

×






𝑧
𝑗







𝑝

𝑧
𝑗

+

𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)

𝑏
2

𝑛





𝑧
𝑛






𝑝

𝑧
𝑛

}

}

}

≥ (1 − 𝛼)

𝑛−1

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

−

𝑛

∑

𝑗=1












1

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












[












𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑗

















𝑏
𝑗







2

+












𝜕
2

𝑓
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

















𝑏
𝑗







2

+












𝜕
2

𝑓
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛
















𝑏
𝑛






2

+












𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑛
















𝑏
𝑛






2
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+











𝜕𝑓
𝑗

𝜕𝑧
𝑛





















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)















𝑏
𝑛






2

]






𝑧
𝑗







𝑝−1

−











𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)















𝑏
𝑛






2



𝑧
𝑛






𝑝−1

=

𝑛−1

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

×
[

[

1 − 𝛼 −






𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑗






+






𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛












𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑧
𝑗







]

]

+




𝑏
𝑛






2
[

[

(1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)




𝑧
𝑛






𝑝−2

−

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

−

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

−

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)
















𝑧
𝑗







𝑝−1

]

]

.

(9)

By H ̈𝑜lder’s inequality, we have

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

≤ (

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

(

𝑛−1

∑

𝑗=1






𝑧
𝑗







(𝑝−1)𝑞

)

1/𝑞

≤ (

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

(1 −




𝑧
𝑛






𝑝

)

1/𝑞

,

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

≤ (

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

(

𝑛−1

∑

𝑗=1






𝑧
𝑗







(𝑝−1)𝑞

)

1/𝑞

≤ (

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

(1 −




𝑧
𝑛






𝑝

)

1/𝑞

,

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)
















𝑧
𝑗







𝑝−1

≤ (

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝









𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

(

𝑛−1

∑

𝑗=1






𝑧
𝑗







(𝑝−1)𝑞

)

1/𝑞

≤ (

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝









𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

(1 −




𝑧
𝑛






𝑝

)

1/𝑞

.

(10)

Hence, we conclude from the above inequalities and the
hypothesis of Theorem 2 that

2

𝑝

𝐽
𝑓
(𝑧, 𝑏) − 𝛼

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

≥




𝑏
𝑛






2
[

[

(1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)




𝑧
𝑛






𝑝−2

− (1 −




𝑧
𝑛






𝑝

)

1/𝑞

× (

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

− (1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑗

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

− (1 −




𝑧
𝑛






𝑝

)

1/𝑞

× (

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

⋅











𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

]

]

≥ 0,

(11)

for all 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵

𝑛

𝑝
, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
) such that

Re⟨𝑏, 𝜕𝑢/𝜕𝑧⟩ = 0. Thus, it follows from Definition 1 that
𝑓 ∈ 𝐾(𝐵

𝑛

𝑝
, 𝛼). The proof is complete.

Remark 3. Setting 𝛼 = 0, 𝑓
𝑗
(𝑧
𝑗
, 𝑧
𝑛
) = 𝑝

𝑗
(𝑧
𝑗
) + 𝑓
𝑗
(𝑧
𝑛
), (𝑗 =

1, 2, . . . , 𝑛 − 1) in Theorem 2, we get Theorem 1 of [9].

Let us give two examples to illustrate the application of
Theorem 2 in the following.

Example 4. Suppose that 𝑝 ≥ 2, 0 ≤ 𝛼 < 1, 0 < |𝜆| ≤ 1 − 𝛼
and 𝑘 is a positive integer such that 𝑘 < 𝑝 ≤ 𝑘 + 1. Let
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𝑓 (𝑧) = (𝑧
1
+ 𝑎
1
𝑧
1
𝑧
𝑘+1

𝑛
, 𝑧
2
+ 𝑎
2
𝑧
2
𝑧
𝑘+1

𝑛
, . . . , 𝑧

𝑛−1
+ 𝑎
𝑛−1
𝑧
𝑛−1
𝑧
𝑘+1

𝑛
,

𝑒
𝜆𝑧
𝑛
− 1

𝜆

) ,

𝑀 (𝑝) =

{
{
{
{
{
{

{
{
{
{
{
{

{

(1 − 𝛼 − |𝜆|)
𝑝

(1 + |𝜆|)
𝑝

(𝑘 + 1)
𝑝
, 𝑝 = 𝑘 + 1,

𝑘
𝑘

(1 − 𝛼 − |𝜆|)
𝑝

(1 + |𝜆|)
𝑝

(𝑘 + 1)
𝑝

(𝑝 − 1)
𝑝−1

(𝑘 − 𝑝 + 1)
𝑘−𝑝+1

, 𝑘 < 𝑝 < 𝑘 + 1.

(12)

If max{|𝑎
𝑗
| : 𝑗 = 1, 2, . . . , 𝑛 − 1} ≤ (1 − 𝛼)/(𝑘 + 2 − 𝛼) and

𝑛−1

∑

𝑗=1






𝑎
𝑗







𝑝

(1 −






𝑎
𝑗






)

𝑝
≤ 𝑀(𝑝) , (13)

then 𝑓(𝑧) ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼).

Proof. Let

𝑓
𝑗
(𝑧
𝑗
, 𝑧
𝑛
) = 𝑧
𝑗
+ 𝑎
𝑗
𝑧
𝑗
𝑧
𝑘+1

𝑛
(𝑗 = 1, 2, . . . , 𝑛 − 1) ,

𝑝
𝑛
(𝑧
𝑛
) =

𝑒
𝜆𝑧
𝑛
− 1

𝜆

.

(14)

Then,

𝜕𝑓
𝑗

𝜕𝑧
𝑗

= 1 + 𝑎
𝑗
𝑧
𝑘+1

𝑛
,

𝜕𝑓
𝑗

𝜕𝑧
𝑛

= (𝑘 + 1) 𝑎
𝑗
𝑧
𝑗
𝑧
𝑘

𝑛
,

𝜕
2

𝑓
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

= (𝑘 + 1) 𝑎
𝑗
𝑧
𝑘

𝑛
,

𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑗

= 0,

𝑝


𝑛
(𝑧
𝑛
) = 𝑒
𝜆𝑧
𝑛

, 𝑝


𝑛
(𝑧
𝑛
) = 𝜆𝑝



𝑛
(𝑧
𝑛
) .

(15)

So it follows from |𝑎
𝑗
| ≤ (1 − 𝛼)/(𝑘 + 2 − 𝛼) < 1 that












𝑧
𝑗

𝜕
2

𝑓
𝑗

𝜕𝑧
2

𝑗












+












𝑧
𝑗

𝜕
2

𝑓
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛












=






𝑧
𝑗
(𝑘 + 1) 𝑎

𝑗
𝑧
𝑘

𝑛






≤ (𝑘 + 1)






𝑎
𝑗







≤ (1 − 𝛼) (1 −






𝑎
𝑗






)

≤ (1 − 𝛼) (1 −






𝑎
𝑗
𝑧
𝑘+1

𝑛






)

≤ (1 − 𝛼)






1 + 𝑎
𝑗
𝑧
𝑘+1

𝑛







= (1 − 𝛼)












𝜕𝑓
𝑗

𝜕𝑧
𝑗












, (𝑗 = 1, 2, . . . , 𝑛 − 1) ,











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











= |𝜆|




𝑧
𝑛





≤ |𝜆| ≤ 1 − 𝛼 ⇒











𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











≤ |𝜆| .

(16)

Since max{|𝑎
𝑗
| : 𝑗 = 1, 2, . . . , 𝑛 − 1} ≤ (1 − 𝛼)/(𝑘 + 2 − 𝛼),

we have












𝜕𝑓
𝑗

𝜕𝑧
𝑗












=






1 + 𝑎
𝑗
𝑧
𝑘+1

𝑛






≥ 1 −






𝑎
𝑗






> 0. (17)

By straightforward calculations, we obtain

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

≤

{

{

{

𝑛−1

∑

𝑗=1












(𝑘 + 1) 𝑎
𝑗
𝑧
𝑘

𝑛

1 + 𝑎
𝑗
𝑧
𝑘+1

𝑛












𝑝

}

}

}

1/𝑝

≤ (𝑘 + 1)

{

{

{

𝑛−1

∑

𝑗=1






𝑎
𝑗







𝑝

(1 −






𝑎
𝑗






)

𝑝

}

}

}

1/𝑝

×




𝑧
𝑛






𝑘−1

,

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑗

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

= 0,

(

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝









𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

≤ |𝜆|

{

{

{

𝑛−1

∑

𝑗=1












(𝑘 + 1) 𝑎
𝑗
𝑧
𝑗
𝑧
𝑘

𝑛

1 + 𝑎
𝑗
𝑧
𝑘+1

𝑛












𝑝

}

}

}

1/𝑝

≤ (𝑘 + 1) |𝜆|

×

{

{

{

𝑛−1

∑

𝑗=1






𝑎
𝑗







𝑝

(1 −






𝑎
𝑗






)

𝑝

}

}

}

1/𝑝

×




𝑧
𝑛






𝑘−1

.

(18)
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Set 𝑞 = 𝑝/(𝑝 − 1). Then,

(1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

≤ (𝑘 + 1)

{

{

{

𝑛−1

∑

𝑗=1






𝑎
𝑗







𝑝

(1 −






𝑎
𝑗






)

𝑝

}

}

}

1/𝑝

𝜑 (




𝑧
𝑛





)




𝑧
𝑛






𝑝−2

,

(1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝









𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

≤ (𝑘 + 1) |𝜆|

{

{

{

𝑛−1

∑

𝑗=1






𝑎
𝑗







𝑝

(1 −






𝑎
𝑗






)

𝑝

}

}

}

1/𝑝

𝜑 (




𝑧
𝑛





)




𝑧
𝑛






𝑝−2

,

(19)

where 𝜑(𝑥) = (1 − 𝑥𝑝)1/𝑞𝑥𝑘−𝑝+1, 𝑥 ∈ [0, 1].
When 𝑝 = 𝑘 + 1, we have max

0≤𝑥≤1
𝜑(𝑥) = 1.

When 𝑘 < 𝑝 < 𝑘 + 1, we have 0 < 𝑘 − 𝑝 + 1 < 1 and

𝜑


(𝑥) = (1 − 𝑥
𝑝

)

(1/𝑞)−1

𝑥
𝑘−𝑝

[(𝑘 − 𝑝 + 1) − 𝑘𝑥
𝑝

] , (20)

so

max
0≤𝑥≤1

𝜑 (𝑥) = 𝜑(
𝑝

√
𝑘 − 𝑝 + 1

𝑘

)

= (

𝑝 − 1

𝑘

)

1/𝑞

(

𝑘 − 𝑝 + 1

𝑘

)

(𝑘−𝑝+1)/𝑝

.

(21)

Hence, when

𝑛−1

∑

𝑗=1






𝑎
𝑗







𝑝

(1 −






𝑎
𝑗






)

𝑝
≤ 𝑀(𝑝) , (22)

we have

(1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

+ (1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕
2

𝑓
𝑗
/𝜕𝑧
2

𝑗

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝

)

1/𝑝

+ (1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=1












𝜕𝑓
𝑗
/𝜕𝑧
𝑛

𝜕𝑓
𝑗
/𝜕𝑧
𝑗












𝑝









𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

≤ (1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)




𝑧
𝑛






𝑝−2

,

𝑧
𝑗
∈ 𝑈, 𝑗 = 1, 2, . . . , 𝑛.

(23)

By Theorem 2, we obtain that 𝑓 ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼). The proof is

complete.

Example 5. Suppose that 𝑝 ≥ 2, 0 ≤ 𝛼 < 1, |𝑎
𝑛
| ≤ (1 −

𝛼)/(4−2𝛼) and 𝑘 is a positive integer such that 𝑘 < 𝑝 ≤ 𝑘+1.
Let

𝑓 (𝑧) = (𝑧
1
+ 𝑎
1
𝑧
1
𝑧
𝑘+1

𝑛
, 𝑧
2
+ 𝑎
2
𝑧
2
𝑧
𝑘+1

𝑛
, . . . , 𝑧

𝑛−1
+ 𝑎
𝑛−1
𝑧
𝑛−1
𝑧
𝑘+1

𝑛
, 𝑧
𝑛
+ 𝑎
𝑛
𝑧
2

𝑛
) ,

𝑀


(𝑝) =

{
{
{
{

{
{
{
{

{

[1 − 𝛼 − (4 − 2𝛼)




𝑎
𝑛





]
𝑝

(𝑘 + 1)
𝑝

, 𝑝 = 𝑘 + 1,

𝑘
𝑘

[1 − 𝛼 − (4 − 2𝛼)




𝑎
𝑛





]
𝑝

(𝑘 + 1)
𝑝

(𝑝 − 1)
𝑝−1

(𝑘 − 𝑝 + 1)
𝑘−𝑝+1

, 𝑘 < 𝑝 < 𝑘 + 1.

(24)

If max{|𝑎
𝑗
| : 𝑗 = 1, 2, . . . , 𝑛 − 1} ≤ (1 − 𝛼)/(𝑘 + 2 − 𝛼) < 1 and

𝑛−1

∑

𝑗=1






𝑎
𝑗







𝑝

(1 −






𝑎
𝑗






)

𝑝
≤ 𝑀


(𝑝) , (25)

then 𝑓(𝑧) ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼).

By applying the samemethod of the proof forTheorem 2,
we may prove the following result.

Theorem 6. Suppose that 𝑛 ≥ 2, 0 ≤ 𝛼 < 1, 𝑝 ≥ 2 and 𝑓
𝑗
:

𝑈 → 𝐶 are analytic on𝑈,𝑓
𝑗
(0) = 𝑓



𝑗
(0) = 0 (𝑗 = 1, 2, . . . , 𝑛−

1), 𝑝
𝑗
∈ 𝐻(𝑈), 𝑃



𝑗
(𝜉) ̸= 0, |𝜉𝑝



𝑗
(𝜉)| ≤ (1 − 𝛼)|𝑝



𝑗
(𝜉)| (𝜉 ∈ 𝑈, 𝑗 =

1, 2, . . . 𝑛). Let
𝑓 (𝑧) = (𝑝

1
(𝑧
1
) + 𝑓
1
(𝑧
𝑘
) , 𝑝
2
(𝑧
2
) + 𝑓
2
(𝑧
𝑘
) . . . ,

𝑝
𝑘
(𝑧
𝑘
) , . . . , 𝑝

𝑛−1
(𝑧
𝑛−1
) + 𝑓
𝑛−1
(𝑧
𝑛
) , 𝑝
𝑛
(𝑧
𝑛
)) ,

(26)
(1 ≤ 𝑘 ≤ 𝑛, when 𝑘 = 𝑗, 𝑓

𝑗
(𝑧
𝑘
) = 0).

If for any 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, we have

(1 −




𝑧
𝑘






𝑝

)

1/𝑞

(

𝑘−1

∑

𝑗=1













𝑓


𝑗
(𝑧
𝑘
)

𝑝


𝑗
(𝑧
𝑗
)













𝑝

)

1/𝑝

+ (1 −




𝑧
𝑘






𝑝

)

1/𝑞

× (

𝑘−1

∑

𝑗=1













𝑓


𝑗
(𝑧
𝑘
)

𝑝


𝑗
(𝑧
𝑗
)













𝑝










𝑝


𝑘
(𝑧
𝑘
)

𝑝


𝑘
(𝑧
𝑘
)











𝑝

)

1/𝑝
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≤ (1 − 𝛼 −











𝑧
𝑘
𝑝


𝑘
(𝑧
𝑘
)

𝑝


𝑘
(𝑧
𝑘
)











)




𝑧
𝑘






𝑝−2

,

(1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=𝑘+1













𝑓


𝑗
(𝑧
𝑛
)

𝑝


𝑗
(𝑧
𝑗
)













𝑝

)

1/𝑝

+ (1 −




𝑧
𝑛






𝑝

)

1/𝑞

(

𝑛−1

∑

𝑗=𝑘+1













𝑓


𝑗
(𝑧
𝑛
)

𝑝


𝑗
(𝑧
𝑗
)













𝑝










𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











𝑝

)

1/𝑝

≤ (1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)




𝑧
𝑛






𝑝−2

,

(27)

then 𝑓(𝑧) ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼).

Remark 7. Setting 𝑘 = 𝑛, 𝛼 = 0 in Theorem 6, we get
Theorem 1 in [9].

Example 8. Suppose that 𝑝 ≥ 2, 0 ≤ 𝛼 < 1, 0 < |𝜆| ≤ 1 − 𝛼
and 𝑘 is a positive integer such that 𝑘 < 𝑝 ≤ 𝑘 + 1. Let

𝑓 (𝑧) = (𝑧
1
+ 𝑎


1
𝑧
2

1
+ 𝑎
1
𝑧
𝑘+1

2
+ 𝑏
1
𝑧
𝑘+2

2
,

𝑒
𝜆𝑧
2
−1

𝜆

,

𝑧
3
+ 𝑎


3
𝑧
2

3
+ 𝑎
3
𝑧
𝑘+1

𝑛
+ 𝑏
3
𝑧
𝑘+2

𝑛
, . . . , 𝑧

𝑛−1

+ 𝑎


𝑛−1
𝑧
2

𝑛−1
+ 𝑎
𝑛−1
𝑧
𝑘+1

𝑛

+𝑏
𝑛−1
𝑧
𝑘+2

𝑛
,

𝑒
𝜆𝑧
𝑛
−1

𝜆

) ,

𝑀


(𝑝) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

(1 − 2𝑐)
𝑝

(1 − 𝛼 − |𝜆|)
𝑝

(𝑘 + 1 + |𝜆|)
𝑝

,

𝑝 = 𝑘 + 1,

(1 − 2𝑐)
𝑝

𝑘
𝑘

(1 − 𝛼 − |𝜆|)
𝑝

(𝑘 + 1 + |𝜆|)
𝑝

(𝑝 − 1)
𝑝−1

(𝑘 − 𝑝 + 1)
𝑘−𝑝+1

,

𝑘 < 𝑝 < 𝑘 + 1,

(28)

where 𝑐 = max{|𝑎
𝑗
| : 𝑗 = 1, 2, . . . , 𝑛 − 1}. If 𝑐 ≤ (1 − 𝛼)/4 < 1

and
[(𝑘 + 1)





𝑎
1





+ (𝑘 + 2)





𝑏
1





]
𝑝

≤ 𝑀


(𝑝) ,

𝑛−1

∑

𝑗=3

[(𝑘 + 1)






𝑎
𝑗






+ (𝑘 + 2)






𝑏
𝑗






]

𝑝

≤ 𝑀


(𝑝) ,

(29)

then 𝑓(𝑧) ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼).

Now, we give another sufficient condition for 𝐾(𝐵𝑛
𝑝
, 𝛼),

which gives an answer to the problem mentioned in the
introduction.

Theorem 9. Suppose that 𝑛 ≥ 2, 0 ≤ 𝛼 < 1, 𝑝 ≥ 2 and 𝑘 is a
positive integer such that 𝑘 < 𝑝 ≤ 𝑘 + 1. Let

𝑓 (𝑧) = (𝑝
1
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ,

𝑝
2
(𝑧
2
, 𝑧
𝑛
) , . . . , 𝑝

𝑛−1
(𝑧
𝑛−1
, 𝑧
𝑛
) , 𝑝
𝑛
(𝑧
𝑛
)) ,

(30)

where 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝐵

𝑛

𝑝
, 𝑝
𝑛
∈ 𝐻(𝑈), 𝑝

𝑗
(𝑧
𝑗
, 𝑧
𝑛
) :

𝐵
2

𝑝
→ 𝐶 is holomorphic with 𝑝

𝑗
(0, 0) = 0, (𝜕𝑝

𝑗
/𝜕𝑧
𝑗
)(0, 0) =

1, (𝜕𝑝
𝑗
/𝜕𝑧
𝑛
) (0, 0) = 0 and 𝑝

1
(𝑧
1
, . . . , 𝑧

𝑛
) : 𝐵

𝑛

𝑝
→ 𝐶 is

holomorphic with 𝑝
1
(0, 0, . . . , 0) = 0, (𝜕𝑝

1
/𝜕𝑧
1
)(0, 0, . . . , 0) =

1, (𝜕𝑝
1
/𝜕𝑧
𝑙
)(0, 0, . . . , 0) = 0 for 2 ≤ 𝑙 ≤ 𝑛. If 𝑓(𝑧) satisfies the

following conditions:

(1)

𝑛−1

∏

𝑗=1

𝜕𝑝
𝑗

𝜕𝑧
𝑗

𝑝


𝑛
(𝑧
𝑛
) ̸= 0,






𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)






≤ (1−𝛼)






𝑝


𝑛
(𝑧
𝑛
)






;

(2)

𝑛

∑

𝑙=1











𝑧
1

𝜕
2

𝑝
1

𝜕𝑧
1
𝜕𝑧
𝑙











≤ (1 − 𝛼)










𝜕𝑝
1

𝜕𝑧
1










,












𝑧
𝑗

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑗












+












𝑧
𝑗

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛












≤ (1−𝛼)












𝜕𝑝
𝑗

𝜕𝑧
𝑗












(𝑗 = 2, 3, . . . , 𝑛 − 1) ;

(3)





𝑧
1






𝑝−1





𝜕𝑝
1
/𝜕𝑧
1






(






𝜕𝑝
1
/𝜕𝑧
𝑗






(






𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑗






+






𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛






)






𝜕𝑝
𝑗
/𝜕𝑧
𝑗







+

𝑛

∑

𝑙=1












𝜕
2

𝑝
1

𝜕𝑧
𝑗
𝜕𝑧
𝑙












)

≤






𝑧
𝑗







𝑝−2

(1−𝛼 −






𝑧
𝑗
𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑗






+






𝑧
𝑗
𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛












𝜕𝑝
𝑗
/𝜕𝑧
𝑗







)

(𝑗=2, 3, . . . , 𝑛 − 1) ;

(4)

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

+

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

+

𝑛−1

∑

𝑗=2












𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)
















𝑧
𝑗







𝑝−1

+





𝑧
1






𝑝−1





𝜕𝑝
1
/𝜕𝑧
1






× (

𝑛

∑

𝑙=1











𝜕
2

𝑝
1

𝜕𝑧
𝑛
𝜕𝑧
𝑙











+

𝑛−1

∑

𝑗=2

(












𝜕𝑝
1

𝜕𝑧
𝑗












(












𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛












+












𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑛












)

×












𝜕𝑝
𝑗

𝜕𝑧
𝑗












−1

) +










𝜕𝑝
1

𝜕𝑧
𝑛




















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











+

𝑛−1

∑

𝑗=2












𝜕𝑝
1

𝜕𝑧
𝑗
























(𝜕𝑝
𝑗
/𝜕𝑧
𝑛
)

(𝜕𝑝
𝑗
/𝜕𝑧
𝑗
)























𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)
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≤




𝑧
𝑛






𝑝−2

(1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











) ;

(31)

then 𝑓 ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼).

Proof. By calculating the Fréchet derivatives of 𝑓(𝑧) straight-
forwardly, we obtain

𝐷𝑓 (𝑧) =

(

(

(

(

(

(

𝜕𝑝
1

𝜕𝑧
1

𝜕𝑝
1

𝜕𝑧
2

⋅ ⋅ ⋅

𝜕𝑝
1

𝜕𝑧
𝑛−1

𝜕𝑝
1

𝜕𝑧
𝑛

0

𝜕𝑝
2

𝜕𝑧
2

⋅ ⋅ ⋅ 0

𝜕𝑝
2

𝜕𝑧
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅

𝜕𝑝
𝑛−1

𝜕𝑧
𝑛−1

𝜕𝑝
𝑛−1

𝜕𝑧
𝑛

0 0 ⋅ ⋅ ⋅ 0 𝑝


𝑛
(𝑧
𝑛
)

)

)

)

)

)

)

,

𝐷𝑓(𝑧)
−1

=

(

(

(

(

(

(

(

(

(

1

𝜕𝑝
1
/𝜕𝑧
1

−

𝜕𝑝
1
/𝜕𝑧
2

(𝜕𝑝
1
/𝜕𝑧
1
) (𝜕𝑝
2
/𝜕𝑧
2
)

⋅ ⋅ ⋅ −

𝜕𝑝
1
/𝜕𝑧
𝑛−1

(𝜕𝑝
1
/𝜕𝑧
1
) (𝜕𝑝
𝑛−1
/𝜕𝑧
𝑛−1
)

−

𝜕𝑝
1
/𝜕𝑧
𝑛

(𝜕𝑝
1
/𝜕𝑧
1
) 𝑝


𝑛
(𝑧
𝑛
)

+

𝑛−1

∑

𝑗=2

𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

𝜕𝑝
1
/𝜕𝑧
𝑗

(𝜕𝑝
1
/𝜕𝑧
1
) 𝑝


𝑛
(𝑧
𝑛
)

0

1

𝜕𝑝
2
/𝜕𝑧
2

⋅ ⋅ ⋅ 0 −

𝜕𝑝
2
/𝜕𝑧
𝑛

(𝜕𝑝
2
/𝜕𝑧
2
) 𝑝


𝑛
(𝑧
𝑛
)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅

1

𝜕𝑝
𝑛−1
/𝜕𝑧
𝑛−1

−

𝜕𝑝
𝑛−1
/𝜕𝑧
𝑛

(𝜕𝑝
𝑛−1
/𝜕𝑧
𝑛−1
) 𝑝


𝑛
(𝑧
𝑛
)

0 0 ⋅ ⋅ ⋅ 0

1

𝑝


𝑛
(𝑧
𝑛
)

)

)

)

)

)

)

)

)

)

𝐷
2

𝑓 (𝑧) (𝑏, 𝑏) =(

𝑛

∑

𝑙=1

𝜕
2

𝑝
1

𝜕𝑧
1
𝜕𝑧
𝑙

𝑏
𝑙

𝑛

∑

𝑙=1

𝜕
2

𝑝
1

𝜕𝑧
2
𝜕𝑧
𝑙

𝑏
𝑙
⋅ ⋅ ⋅

𝑛

∑

𝑙=1

𝜕
2

𝑝
1

𝜕𝑧
𝑛−1
𝜕𝑧
𝑙

𝑏
𝑙
𝐶
1

0 𝐷
2

⋅ ⋅ ⋅ 0 𝐶
2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝐷
𝑛−1

𝐶
𝑛−1

0 0 ⋅ ⋅ ⋅ 0 𝐶
𝑛

)(

𝑏
1

𝑏
2

⋅ ⋅ ⋅

𝑏
𝑛−1

𝑏
𝑛

)

=

(

(

(

(

(

(

(

(

(

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝜕
2

𝑝
1

𝜕𝑧
𝑗
𝜕𝑧
𝑙

𝑏
𝑙
𝑏
𝑗

𝜕
2

𝑝
2

𝜕𝑧
2

2

𝑏
2

2
+ 2

𝜕
2

𝑝
2

𝜕𝑧
2
𝜕𝑧
𝑛

𝑏
2
𝑏
𝑛
+

𝜕
2

𝑝
2

𝜕𝑧
2

𝑛

𝑏
2

𝑛

...
𝜕
2

𝑝
𝑛−1

𝜕𝑧
2

𝑛−1

𝑏
2

𝑛−1
+ 2

𝜕
2

𝑝
𝑛−1

𝜕𝑧
𝑛−1
𝜕𝑧
𝑛

𝑏
𝑛−1
𝑏
𝑛
+

𝜕
2

𝑝
𝑛−1

𝜕𝑧
2

𝑛

𝑏
2

𝑛

𝑝


𝑛
(𝑧
𝑛
) 𝑏
2

𝑛

)

)

)

)

)

)

)

)

)

,

(32)

where

𝐶
1
=

𝑛

∑

𝑙=1

𝜕
2

𝑝
1

𝜕𝑧
𝑛
𝜕𝑧
𝑙

𝑏
𝑙
,

𝐶
𝑗
=

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑛
𝜕𝑧
𝑗

𝑏
𝑗
+

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑛

𝑏
𝑛
(𝑗 = 2, 3, . . . , 𝑛 − 1) ,

𝐶
𝑛
= 𝑝


𝑛
(𝑧
𝑛
) 𝑏
𝑛
,

𝐷
𝑗
=

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑗

𝑏
𝑗
+

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝑏
𝑛
(𝑗 = 2, 3, . . . , 𝑛 − 1) .

(33)

Taking 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
) ∈ 𝐶
𝑛 such

that Re⟨𝑏, 𝜕𝑢/𝜕𝑧⟩ = 0, by Definition 1 and the hypothesis of
Theorem 9, we have

2

𝑝

𝐽
𝑓
(𝑧, 𝑏) − 𝛼

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

≥ (1 − 𝛼)

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

−

2

𝑝

Re⟨𝐷𝑓(𝑧)−1𝐷2𝑓 (𝑧) (𝑏, 𝑏) , 𝜕𝑢
𝜕𝑧

⟩

= (1 − 𝛼)

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2
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− Re
{

{

{

1

𝜕𝑝
1
/𝜕𝑧
1

×

[

[

[

[

[

[

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝜕
2

𝑝
1

𝜕𝑧
𝑗
𝜕𝑧
𝑙

𝑏
𝑙
𝑏
𝑗

−

𝑛−1

∑

𝑗=2

𝜕𝑝
1
/𝜕𝑧
𝑗

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

× (

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑗

𝑏
2

𝑗
+ 2

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝑏
𝑗
𝑏
𝑛
+

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑛

𝑏
2

𝑛
)

−

𝜕𝑝
1

𝜕𝑧
𝑛

𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)

𝑏
2

𝑛

+

𝑛−1

∑

𝑗=2

(𝜕𝑝
𝑗
/𝜕𝑧
𝑛
) (𝜕𝑝
1
/𝜕𝑧
𝑗
)

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)

𝑏
2

𝑛

]

]

]

]

]

]






𝑧
𝑝

1







𝑧
1

+

𝑛−1

∑

𝑗=2

1

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

(

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑗

𝑏
2

𝑗
+ 2

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝑏
𝑗
𝑏
𝑛

+

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑛

𝑏
2

𝑛
−

𝜕𝑝
𝑗

𝜕𝑧
𝑛

𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)

𝑏
2

𝑛
)

×






𝑧
𝑗







𝑝

𝑧
𝑗

+

𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)

𝑏
2

𝑛





𝑧
𝑛






𝑝

𝑧
𝑛

}

}

}

≥ (1 − 𝛼)

𝑛

∑

𝑗=1






𝑏
𝑗







2




𝑧
𝑗







𝑝−2

−

1





𝜕𝑝
1
/𝜕𝑧
1






×
[

[

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1












𝜕
2

𝑝
1

𝜕𝑧
𝑗
𝜕𝑧
𝑙

















𝑏
𝑗







2

+

𝑛−1

∑

𝑗=2












𝜕𝑝
1
/𝜕𝑧
𝑗

𝜕𝑝
𝑗
/𝜕𝑧
𝑗












× (












𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑗

















𝑏
𝑗







2

+












𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

















𝑏
𝑗







2

+












𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛
















𝑏
𝑛






2

+












𝜕
2

𝑝
𝑗

𝜕𝑧
𝑛

















𝑏
2

𝑛






) +










𝜕𝑝
1

𝜕𝑧
𝑛










×











𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)















𝑏
𝑛






2

+

𝑛−1

∑

𝑗=2













(𝜕𝑝
𝑗
/𝜕𝑧
𝑛
) (𝜕𝑝
1
/𝜕𝑧
𝑗
)

𝜕𝑝
𝑗
/𝜕𝑧
𝑗























𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)















𝑏
𝑛






2
]

]





𝑧
1






𝑝−1

−

𝑛−1

∑

𝑗=2

1






𝜕𝑝
𝑗
/𝜕𝑧
𝑗







(












𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑗

















𝑏
𝑗







2

+












𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

















𝑏
𝑗







2

+












𝜕𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛
















𝑏
𝑛






2

+












𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑛
















𝑏
𝑛






2

+











𝜕𝑝
𝑗

𝜕𝑧
𝑛





















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)















𝑏
𝑛






2

)






𝑧
𝑗







𝑝−1

−











𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)















𝑏
𝑛






2



𝑧
𝑛






𝑝−1

=




𝑏
1










𝑧
1






𝑝−2

× [1 − 𝛼 −

∑
𝑛

𝑙=1






𝑧
1
𝜕
2

𝑝
1
/𝜕𝑧
1
𝜕𝑧
𝑙











𝜕𝑝
1
/𝜕𝑧
1






]

+

𝑛−1

∑

𝑗=2






𝑏
𝑗







2

[

[






𝑧
𝑗







𝑝−2

× (1 − 𝛼

−






𝑧
𝑗
𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑗






+






𝑧
𝑗
𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛












𝜕𝑝
𝑗
/𝜕𝑧
𝑗







)

−





𝑧
1






𝑝−1





𝜕𝑝
1
/𝜕𝑧
1






× (

𝑛

∑

𝑙=1












𝜕
2

𝑝
1

𝜕𝑧
𝑗
𝜕𝑧
𝑙












+












𝜕𝑝
1

𝜕𝑧
𝑗












×






𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑗






+






𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛












𝜕𝑝
𝑗
/𝜕𝑧
𝑗







)
]

]

+




𝑏
𝑛






2
[

[





𝑧
𝑛






𝑝−2

(1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)

−





𝑧
1






𝑝−1





𝜕𝑝
1
/𝜕𝑧
1






× (

𝑛

∑

𝑙=1











𝜕
2

𝑝
1

𝜕𝑧
𝑛
𝜕𝑧
𝑙











+

𝑛−1

∑

𝑗=2












𝜕𝑝
1

𝜕𝑧
𝑗












×






𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑛






+






𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛












𝜕𝑝
𝑗
/𝜕𝑧
𝑗







+










𝜕𝑝
1

𝜕𝑧
𝑛




















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











+

𝑛−1

∑

𝑗=2












𝜕𝑝
1

𝜕𝑧
𝑗












×












𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)
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−

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

−

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

−

𝑛−1

∑

𝑗=2












𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)
















𝑧
𝑗







𝑝−1

]

]

≥ 0

(34)

for all 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵

𝑛

𝑝
, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
) such that

Re⟨𝑏, 𝜕𝑢/𝜕𝑧⟩ = 0. Thus, it follows from Definition 1 that
𝑓 ∈ 𝐾(𝐵

𝑛

𝑝
, 𝛼). The proof is complete.

Corollary 10. Suppose that 0 ≤ 𝛼 < 1, 𝑛 ≥ 2, 𝑝 ≥ 2 and 𝑘 is
a positive integer such that 𝑘 < 𝑝 ≤ 𝑘 + 1. Let

𝑓 (𝑧) = (𝑝
1
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) , 𝑝
2
(𝑧
2
) + 𝑓
2
(𝑧
𝑛
) , . . . ,

𝑝
𝑛−1
(𝑧
𝑛−1
) + 𝑓
𝑛−1
(𝑧
𝑛
) , 𝑝
𝑛
(𝑧
𝑛
)) ,

(35)

where 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, 𝑓
𝑗
: 𝑈 → 𝐶 is holomorphic

with 𝑓
𝑗
(0) = 0, 𝑓



𝑗
(0) = 0 (𝑗 = 2, 3, . . . , 𝑛 − 1), 𝑝

𝑗
∈

𝐻(𝑈) (𝑗 = 2, 3, . . . , 𝑛) and 𝑝
1
(𝑧
1
, . . . , 𝑧

𝑛
) : 𝐵

𝑛

𝑝
→ 𝐶 is

holomorphic with 𝑝
1
(0, 0, . . . , 0) = 0, (𝜕𝑝

1
/𝜕𝑧
1
)(0, 0, . . . , 0) =

1, (𝜕𝑝
1
/𝜕𝑧
𝑙
)(0, 0, . . . , 0) = 0 (𝑙 = 2, 3, . . . , 𝑛). If 𝑓 satisfies the

following conditions:

(1)

𝜕𝑝
1

𝜕𝑧
1

⋅

𝑛

∏

𝑗=2

𝑝


𝑗
(𝑧
𝑗
) ̸= 0,






𝑧
𝑗
𝑝


𝑗
(𝑧
𝑗
)






≤ (1 − 𝛼)






𝑝


𝑗
(𝑧
𝑗
)






,

𝑗 = 2, . . . , 𝑛;

(2)

𝑛

∑

𝑙=1











𝑧
1

𝜕
2

𝑝
1

𝜕𝑧
1
𝜕𝑧
𝑙











≤ (1 − 𝛼)










𝜕𝑝
1

𝜕𝑧
1










;

(3)




𝑧
1






𝑝−1













(𝜕𝑝
1
/𝜕𝑧
𝑗
) ⋅ (𝑝


𝑗
(𝑧
𝑗
) /𝑝


𝑗
(𝑧
𝑗
))

𝜕𝑝
1
/𝜕𝑧
1













+




𝑧
1






𝑝−1

×

𝑛

∑

𝑙=1












𝜕
2

𝑝
1
/𝜕𝑧
𝑗
𝜕𝑧
𝑙

𝜕𝑝
1
/𝜕𝑧
1












≤ (1 − 𝛼 −













𝑧
𝑗
𝑝


𝑗
(𝑧
𝑗
)

𝑝


𝑗
(𝑧
𝑗
)













)






𝑧
𝑗







𝑝−2

,

𝑗 = 2, . . . , 𝑛 − 1;

(4)

𝑛−1

∑

𝑗=2













𝑓


𝑗
(𝑧
𝑛
)

𝑝


𝑗
(𝑧
𝑗
)


















𝑧
𝑗







𝑝−1

+

𝑛−1

∑

𝑗=2













𝑓


𝑗
(𝑧
𝑛
)

𝑝


𝑗
(𝑧
𝑗
)























𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)
















𝑧
𝑗







𝑝−1

+




𝑧
1






𝑝−1

𝑛−1

∑

𝑗=2













(𝑓


𝑗
(𝑧
𝑛
) /𝑝


𝑗
(𝑧
𝑗
)) (𝜕𝑝

1
/𝜕𝑧
𝑗
)

𝜕𝑝
1
/𝜕𝑧
1













+




𝑧
1






𝑝−1

×

𝑛−1

∑

𝑗=2













𝑓


𝑗
(𝑧
𝑛
)

𝑝


𝑗
(𝑧
𝑗
)

𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)

𝜕𝑝
1

𝜕𝑧
𝑗

(

𝜕𝑝
1

𝜕𝑧
1

)

−1












+




𝑧
1






𝑝−1

𝑛

∑

𝑙=1

𝜕
2

𝑝
1
/𝜕𝑧
𝑙
𝜕𝑧
𝑛

𝜕𝑝
1
/𝜕𝑧
1

+




𝑧
1






𝑝−1













(𝑝


𝑛
(𝑧
𝑛
) /𝑝


𝑛
(𝑧
𝑛
)) (𝜕𝑝

1
/𝜕𝑧
𝑛
)

𝜕𝑝
1
/𝜕𝑧
1













≤ (1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)




𝑧
𝑛






𝑝−2

,

(36)

for all 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, then 𝑓 ∈ 𝐾(𝐵𝑛

𝑝
, 𝛼).

Remark 11. Setting 𝑝
𝑗
(𝑧
𝑗
, 𝑧
𝑛
) = 𝑓
𝑗
(𝑧
𝑗
), 2 ≤ 𝑗 ≤ 𝑛 − 1, 𝛼 = 0

inTheorem 9or𝑓
𝑗
(𝑧
𝑛
) = 0, 2 ≤ 𝑗 ≤ 𝑛, 𝛼 = 0 inCorollary 10,

we get Theorem 2 in [9].

Example 12. Suppose that 𝑝 ≥ 2, 0 ≤ 𝛼 < 1, 0 < |𝜆| ≤ 1 − 𝛼
and 𝑘 is a positive integer such that 𝑘 < 𝑝 ≤ 𝑘 + 1. Let

𝑓 (𝑧) = (𝑧
1
+

𝑛−1

∑

𝑗=2

𝑎
𝑗
𝑧
𝑘+1

𝑗
+ 𝑎
𝑛
𝑧
1
𝑧
𝑘+1

𝑛
, 𝑧
2
+ 𝑏
2
𝑧
2
𝑧
𝑘+1

𝑛
, . . . , 𝑧

𝑛−1
+ 𝑏
𝑛−1
𝑧
𝑛−1
𝑧
𝑘+1

𝑛
,

𝑒
𝜆𝑧
𝑛
− 1

𝜆

) ,

𝑁 (𝑝)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

(

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

1 −






𝑏
𝑗







𝑝
)

1/𝑝

+

𝑎

1 − 𝑎

(1 + (𝑘 + 1)

𝑛−1

∑

𝑗=2






𝑏
𝑗







1 −






𝑏
𝑗







) , 𝑝 = 𝑘 + 1,

(

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

1 −






𝑏
𝑗







𝑝
)

1/𝑝

(

𝑝 − 1

𝑘

)

1/𝑞

(

𝑘 − 𝑝 + 1

𝑘

)

(𝑘−𝑝+1)/𝑝

+

𝑎

1 − 𝑎

(1 + (𝑘 + 1)

𝑛−1

∑

𝑗=2






𝑏
𝑗







1 −






𝑏
𝑗







) , 𝑘 < 𝑝 < 𝑘 + 1,

(37)
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where 𝑎 = max{|𝑎
𝑗
| : 𝑗 = 2, . . . , 𝑛}, 𝑏 = max{|𝑏

𝑗
| : 𝑗 =

2, . . . , 𝑛 − 1}. If

𝑎 ≤

1 − |𝜆| − 𝛼

(𝑘 + 1)
2

(𝑘 + 1 + |𝜆|) + 1 − |𝜆| − 𝛼

< 1,

𝑏 ≤

(𝑘 + |𝜆|) (1 − 𝛼) + |𝜆|

(𝑘 + 2 − 𝛼) (𝑘 + 1 + |𝜆|)

< 1,

𝑁 (𝑝) ≤

1 − 𝛼 − |𝜆|

(𝑘 + 1) (𝑘 + 1 + |𝜆|)

,

(38)

for all 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, then 𝑓(𝑧) ∈ 𝐾(𝐵𝑛

𝑝
, 𝛼).

Proof. Put

𝑝
1
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) = 𝑧
1
+

𝑛−1

∑

𝑗=2

𝑎
𝑗
𝑧
𝑘+1

𝑗
+ 𝑎
𝑛
𝑧
1
𝑧
𝑘+1

𝑛
,

𝑝
𝑛
(𝑧
𝑛
) =

𝑒
𝜆𝑧
𝑛
− 1

𝜆

,

𝑝
𝑗
(𝑧
𝑗
, 𝑧
𝑛
) = 𝑧
𝑗
+ 𝑏
𝑗
𝑧
𝑗
𝑧
𝑘+1

𝑛
(𝑗 = 2, 3, . . . , 𝑛 − 1) .

(39)

Then,
𝜕𝑝
1

𝜕𝑧
1

= 1 + 𝑎
𝑛
𝑧
𝑘+1

𝑛
,

𝜕𝑝
1

𝜕𝑧
𝑗

= (𝑘 + 1) 𝑎
𝑗
𝑧
𝑘

𝑗
(𝑗 = 2, 3, . . . , 𝑛 − 1) ,

𝜕𝑝
1

𝜕𝑧
𝑛

= (𝑘 + 1) 𝑎
𝑛
𝑧
1
𝑧
𝑘

𝑛
,

𝜕
2

𝑝
1

𝜕𝑧
2

𝑛

= 𝑘 (𝑘 + 1) 𝑎
𝑛
𝑧
1
𝑧
𝑘−1

𝑛
,

𝜕
2

𝑝
1

𝜕𝑧
2

𝑗

= 𝑘 (𝑘 + 1) 𝑎
𝑗
𝑧
𝑘−1

𝑗
,

𝜕
2

𝑝
1

𝜕𝑧
1
𝜕𝑧
𝑛

=

𝜕
2

𝑝
1

𝜕𝑧
𝑛
𝜕𝑧
1

= (𝑘 + 1) 𝑎
𝑛
𝑧
𝑘

𝑛
,

𝜕
2

𝑝
1

𝜕𝑧
1
𝜕𝑧
𝑗

= 0 (𝑗 = 2, 3, . . . , 𝑛 − 1) ,

𝜕𝑝
𝑗

𝜕𝑧
𝑗

= 1 + 𝑏
𝑗
𝑧
𝑘+1

𝑛
,

𝜕𝑝
𝑗

𝜕𝑧
𝑛

= (𝑘 + 1) 𝑏
𝑗
𝑧
𝑗
𝑧
𝑘

𝑛
,

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛

=

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑛
𝜕𝑧
𝑗

= (𝑘 + 1) 𝑏
𝑗
𝑧
𝑘

𝑛
,

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑛

= 𝑘 (𝑘 + 1) 𝑏
𝑗
𝑧
𝑗
𝑧
𝑘−1

𝑛
,

𝑝


𝑛
(𝑧
𝑛
) = 𝑒
𝜆𝑧
𝑛

, 𝑝


𝑛
(𝑧
𝑛
) = 𝜆𝑝



𝑛
(𝑧
𝑛
) ,

(40)

so it follows from 𝑎 = max{|𝑎
𝑗
| : 𝑗 = 2, . . . , 𝑛} ≤ (1 − |𝜆| −

𝛼)/((𝑘 + 1)
2

(𝑘+1+ |𝜆|)+1− |𝜆|−𝛼) < (1−𝛼)/(𝑘+2−𝛼) < 1

and 𝑏 = max{|𝑏
𝑗
| : 𝑗 = 2, . . . , 𝑛 − 1} ≤ ((𝑘 + |𝜆|)(1 − 𝛼) +

|𝜆|)/(𝑘 + 2 − 𝛼)(𝑘 + 1 + |𝜆|) ≤ (1 − 𝛼)/(𝑘 + 2 − 𝛼) < 1 that










𝜕𝑝
1

𝜕𝑧
1










=






1 + 𝑎
𝑛
𝑧
𝑘+1

𝑛






≥ 1 −





𝑎
𝑛





≥ 1 − 𝑎 > 0,












𝜕𝑝
𝑗

𝜕𝑧
𝑗












=






1 + 𝑏
𝑗
𝑧
𝑘+1

𝑛






≥ 1 −






𝑏
𝑗







≥ 1 − 𝑏 > 0 (𝑗 = 2, 3, . . . , 𝑛 − 1) ,

𝑝


𝑛
(𝑧
𝑛
) = 𝑒
𝜆𝑧
𝑛

̸= 0.

(41)

By calculating straightforwardly, we obtain

(1 − 𝛼)










𝜕𝑝
1

𝜕𝑧
1










−

𝑛

∑

𝑙=1











𝑧
1

𝜕
2

𝑝
1

𝜕𝑧
1
𝜕𝑧
𝑙











= (1 − 𝛼)






1 + 𝑎
𝑛
𝑧
𝑘+1

𝑛






−






(𝑘 + 1) 𝑎

𝑛
𝑧
1
𝑧
𝑘

𝑛







≥ (1 − 𝛼) (1 −




𝑎
𝑛





) − (𝑘 + 1)





𝑎
𝑛






= 1 − 𝛼 − (𝑘 + 2 − 𝛼)




𝑎
𝑛






> 1 − 𝛼 − (𝑘 + 2 − 𝛼)

1 − 𝛼

𝑘 + 2 − 𝛼

= 0,

(1 − 𝛼)












𝜕𝑝
𝑗

𝜕𝑧
𝑗












−












𝑧
𝑗

𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑗












−












𝑧
𝑗

𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛












= (1 − 𝛼)






1 + 𝑏
𝑗
𝑧
𝑘+1

𝑛






− (𝑘 + 1)






𝑏
𝑗
𝑧
𝑗
𝑧
𝑘

𝑛







≥ (1 − 𝛼) (1 −






𝑏
𝑗






) − (𝑘 + 1)






𝑏
𝑗







= 1 − 𝛼 − (𝑘 + 2 − 𝛼)






𝑏
𝑗







≥ 1 − 𝛼 − (𝑘 + 2 − 𝛼)

1 − 𝛼

𝑘 + 2 − 𝛼

= 0,

(𝑗 = 2, . . . , 𝑛 − 1) ,











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











= |𝜆|




𝑧
𝑛





≤ |𝜆| ≤ 1 − 𝛼.

(42)

By calculating straightforwardly, we also obtain






𝑧
𝑗







𝑝−2

(1 − 𝛼 −






𝑧
𝑗
𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑗






+






(𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛
)







(𝜕𝑝
𝑗
/𝜕𝑧
𝑗
)

)

−





𝑧
1






𝑝−1





𝜕𝑝
1
/𝜕𝑧
1






× (






𝜕𝑝
1
/𝜕𝑧
𝑗






(






𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑗






+






𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛






)






𝜕𝑝
𝑗
/𝜕𝑧
𝑗
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+

𝑛

∑

𝑙=1












𝜕
2

𝑝
1

𝜕𝑧
𝑗
𝜕𝑧
𝑙












)

=






𝑧
𝑗







𝑝−2

(1 − 𝛼 −












(𝑘 + 1) 𝑧
𝑗
𝑏
𝑗
𝑧
𝑘

𝑛

1 + 𝑏
𝑗
𝑧
𝑘+1

𝑛












)

−





𝑧
1






𝑝−1





1 + 𝑎
𝑛
𝑧
𝑘+1

𝑛






× (













(𝑘 + 1) 𝑎
𝑗
𝑧
𝑘

𝑗
(𝑘 + 1) 𝑏

𝑗
𝑧
𝑘

𝑛

𝑏
𝑗
𝑧
𝑘+1

𝑛













+






𝑘 (𝑘 + 1) 𝑎

𝑗
𝑧
𝑘−1

𝑗






)

≥






𝑧
𝑗







𝑝−2

(1 − 𝛼 −

(𝑘 + 1)






𝑏
𝑗







1 −






𝑏
𝑗







)

−

1

1 −




𝑎
𝑛






(

(𝑘 + 1)
2





𝑎
𝑗












𝑏
𝑗







1 −






𝑏
𝑗







+𝑘 (𝑘+1)






𝑎
𝑗






)

×






𝑧
𝑗







𝑘−1

≥






𝑧
𝑗







𝑝−2

(1 − 𝛼 −

(𝑘 + 1) 𝑏

1 − 𝑏

)

−

1

1 − 𝑎

(

(𝑘 + 1)
2

𝑎𝑏

1 − 𝑏

+ (𝑘 + 1)
2

𝑎)






𝑧
𝑗







𝑝−2

≥






𝑧
𝑗







𝑝−2

(1 − 𝛼 −

(𝑘 + 1) 𝑏

1 − 𝑏

−

(𝑘 + 1) 2𝑎

1 − 𝑎

1

1 − 𝑏

)

=






𝑧
𝑗







p−2

1 − 𝑏

((1 − 𝛼) (1 − 𝑏) − (𝑘 + 1) 𝑏 −

(𝑘 + 1)
2

1 − 𝑎

𝑎)

=






𝑧
𝑗







𝑝−2

1 − 𝑏

(1 − 𝛼 − (𝑘 + 2 − 𝛼) 𝑏 − (𝑘 + 1)
2
𝑎

1 − 𝑎

)

≥






𝑧
𝑗







𝑝−2

1 − 𝑏

(1 − 𝛼 − (𝑘 + 2 − 𝛼)

×

(𝑘 + |𝜆|) (1 − 𝛼) + |𝜆|

(𝑘 + 2 − 𝛼) (𝑘 + 1 + |𝜆|)

−

(𝑘 + 1)
2

(1 − |𝜆| − 𝛼)

(𝑘 + 1)
2

(𝑘 + 1 + |𝜆|) + 1 − |𝜆| − 𝛼

×

(𝑘 + 1)
2

(𝑘 + 1 + |𝜆|) + 1 − |𝜆| − 𝛼

(𝑘 + 1)
2

(𝑘 + 1 + |𝜆|)

)

=






𝑧
𝑗







𝑝−2

1 − 𝑏

(1 − 𝛼 −

(𝑘 + |𝜆|) (1 − 𝛼) + |𝜆|

𝑘 + 1 + |𝜆|

−

1 − |𝜆| − 𝛼

𝑘 + 1 + |𝜆|

)

= 0.

(43)

Set 𝑞 = 𝑝/(𝑝 − 1), then by Hölder’s inequality, we have

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

=

𝑛−1

∑

𝑗=2












(𝑘 + 1) 𝑏
𝑗
𝑧
𝑘

𝑛

1 + 𝑏
𝑗
𝑧
𝑘+1

𝑛

















𝑧
𝑗







𝑝−1

≤ (𝑘 + 1)

𝑛−1

∑

𝑗=2






𝑏
𝑗











𝑧
𝑛






𝑘−1

1 −






𝑏
𝑗












𝑧
𝑗







𝑝−1

≤ (𝑘 + 1)
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

×
[

[

𝑛−1

∑

𝑗=2






𝑧
𝑗







(𝑝−1)𝑞

]

]

1/𝑞





𝑧
𝑛






𝑘−1

≤ (𝑘 + 1)
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

× (1 −




𝑧
1






𝑝

−




𝑧
𝑛






𝑝

)

1/𝑞



𝑧
𝑛






𝑘−1

≤ (𝑘 + 1)
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

𝜑 (




𝑧
𝑛





,




𝑧
1





)




𝑧
𝑛






𝑝−2

,

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

=

𝑛−1

∑

𝑗=2












𝑘 (𝑘 + 1) 𝑏
𝑗
𝑧
𝑗
𝑧
𝑘+1

𝑛

1 + 𝑏
𝑗
𝑧
𝑘+1

𝑛

















𝑧
𝑗







𝑝−1

≤ 𝑘 (𝑘 + 1)

𝑛−1

∑

𝑗=2






𝑏
𝑗











𝑧
𝑛






𝑘−1

1 −






𝑏
𝑗












𝑧
𝑗







𝑝−1

≤ 𝑘 (𝑘 + 1)
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

×
[

[

𝑛−1

∑

𝑗=2






𝑧
𝑗







(𝑝−1)𝑞

]

]

1/𝑞





𝑧
𝑛






𝑘−1

,

≤ 𝑘 (𝑘 + 1)
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

× (1 −




𝑧
1






𝑝

−




𝑧
𝑛






𝑝

)

1/𝑞



𝑧
𝑛






𝑘−1
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≤ 𝑘 (𝑘 + 1)
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

× 𝜑 (




𝑧
𝑛





,




𝑧
1





)




𝑧
𝑛






𝑝−2

,

𝑛−1

∑

𝑗=2












𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)
















𝑧
𝑗







𝑝−1

=

𝑛−1

∑

𝑗=2












(𝑘 + 1) 𝑏
𝑗
𝑧
𝑗
𝑧
𝑘

𝑛

1 + 𝑏
𝑗
𝑧
𝑘+1

𝑛












|𝜆|






𝑧
𝑗







𝑝−1

≤ (𝑘 + 1) |𝜆|

𝑛−1

∑

𝑗=2






𝑏
𝑗











𝑧
𝑛






𝑘−1

1 −






𝑏
𝑗












𝑧
𝑗







𝑝−1

≤ (𝑘 + 1) |𝜆|
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

×
[

[

𝑛−1

∑

𝑗=2






𝑧
𝑗







(𝑝−1)𝑞

]

]

1/𝑞





𝑧
𝑛






𝑘−1

≤ (𝑘 + 1) |𝜆|
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

× (1 −




𝑧
1






𝑝

−




𝑧
𝑛






𝑝

)

1/𝑞



𝑧
𝑛






𝑘−1

≤ (𝑘 + 1) |𝜆|
[

[

𝑛−1

∑

𝑗=2






𝑏
𝑗







𝑝

(1 −






𝑏
𝑗






)

𝑝

]

]

1/𝑝

× 𝜑 (




𝑧
𝑛





,




𝑧
1





)




𝑧
𝑛






𝑝−2

,

(44)

where 𝜓(𝑥) = (1 − 𝑥𝑝 − 𝑦𝑝)1/𝑞𝑥𝑘−𝑝+1, 𝑥, 𝑦 ∈ [0, 1].
When 𝑝 = 𝑘 + 1, we have max

0≤𝑥,𝑦≤1
𝜓(𝑥, 𝑦) = 1.

When 𝑘 < 𝑝 < 𝑘 + 1, we have 0 < 𝑘 − 𝑝 + 1 < 1 and

𝜓
𝑥
(𝑥, 𝑦) = (1 − 𝑥

𝑝

− 𝑦
𝑝

)

(1/𝑞)−1

𝑥
𝑘−𝑝

× [(𝑘 − 𝑝 + 1) (1 − 𝑦
𝑝

) − 𝑘𝑥
𝑝

] ,

𝜓
𝑦
(𝑥, 𝑦) = (1 − 𝑝) 𝑦

𝑝−1

(1 − 𝑥
𝑝

− 𝑦
𝑝

)

(1/𝑞)−1

𝑥
𝑘−𝑝+1

,

(45)

so

max
0≤𝑥,𝑦≤1

𝜓 (𝑥, 𝑦) = 𝜓(
𝑝

√
𝑘 − 𝑝 + 1

𝑘

, 0)

= (

𝑝 − 1

𝑘

)

1/𝑞

(

𝑘 − 𝑝 + 1

𝑘

)

(𝑘−𝑝+1)/𝑝

,





𝑧
1






𝑝−1





𝜕𝑝
1
/𝜕𝑧
1






× (

𝑛

∑

𝑙=1











𝜕
2

𝑝
1

𝜕𝑧
𝑛
𝜕𝑧
𝑙











+

𝑛−1

∑

𝑗=2

(












𝜕𝑝
1

𝜕𝑧
𝑗












× (












𝜕
2

𝑝
𝑗

𝜕𝑧
𝑗
𝜕𝑧
𝑛












+












𝜕
2

𝑝
𝑗

𝜕𝑧
2

𝑛












)

× (












𝜕𝑝
𝑗

𝜕𝑧
𝑗












)

−1

)

+










𝜕𝑝
1

𝜕𝑧
𝑛




















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











+

𝑛−1

∑

𝑗=2












𝜕𝑝
1

𝜕𝑧
𝑗























𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)

≤

1

1 −




𝑎
𝑛






[

[

(𝑘 + 1)




𝑎
𝑛





+ 𝑘 (𝑘 + 1)





𝑎
𝑛






+

𝑛−1

∑

𝑗=2

(𝑘 + 1)






𝑎
𝑗







(𝑘 + 1)
2





𝑏
𝑗







1 −






𝑏
𝑗







+ (𝑘 + 1)




𝑎
𝑛





|𝜆|

+

𝑛−1

∑

𝑗=2

(𝑘 + 1)
2

|𝜆|






𝑎
𝑗












𝑏
𝑗







1 −






𝑏
𝑗







]

]

×




𝑧
𝑛






𝑝−2

≤

(𝑘 + 1) (𝑘 + 1 + 𝜆) 𝑎

1 − 𝑎

×
[

[

1 + (𝑘 + 1)

𝑛−1

∑

𝑗=2






𝑏
𝑗







1 −






𝑏
𝑗







]

]





𝑧
𝑛






𝑝−2

.

(46)

Hence, we have

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

+

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗

















𝑧
𝑗







𝑝−1

+

𝑛−1

∑

𝑗=2












𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)
















𝑧
𝑗







𝑝−1

+





𝑧
1






𝑝−1





𝜕𝑝
1
/𝜕𝑧
1






× (

𝑛−1

∑

𝑗=2












𝜕
2

𝑝
1

𝜕𝑧
𝑛
𝜕𝑧
𝑗
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+

𝑛−1

∑

𝑗=2






𝜕𝑝
1
/𝜕𝑧
𝑗






(






𝜕
2

𝑝
𝑗
/𝜕𝑧
𝑗
𝜕𝑧
𝑛






+






𝜕
2

𝑝
𝑗
/𝜕𝑧
2

𝑛






)






𝜕𝑝
𝑗
/𝜕𝑧
𝑗







+










𝜕𝑝
1

𝜕𝑧
𝑛




















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











+

𝑛−1

∑

𝑗=2












𝜕𝑝
1

𝜕𝑧
𝑗























𝜕𝑝
𝑗
/𝜕𝑧
𝑛

𝜕𝑝
𝑗
/𝜕𝑧
𝑗






















𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











)

≤ (𝑘 + 1) (𝑘 + 1 + 𝜆)𝑁 (𝑝)




𝑧
𝑛






𝑝−2

≤ (𝑘 + 1) (𝑘 + 1 + 𝜆)

1 − 𝛼 − |𝜆|

(𝑘 + 1) (𝑘 + 1 + |𝜆|)





𝑧
𝑛






𝑝−2

≤ (1 − 𝛼 − |𝜆|)




𝑧
𝑛






𝑝−2

≤ (1 − 𝛼 −




𝜆𝑧
𝑛





)




𝑧
𝑛






𝑝−2

=




𝑧
𝑛






𝑝−2

(1 − 𝛼 −











𝑧
𝑛
𝑝


𝑛
(𝑧
𝑛
)

𝑝


𝑛
(𝑧
𝑛
)











) .

(47)

By Theorem 6, we obtain that 𝑓 ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼). The proof is

complete.

By applying the samemethod of the proof for Example 12,
we only need to let 2|𝑏

𝑛
|/(1−2|𝑏

𝑛
|) instead of |𝜆|, wemay prove

the following result.

Example 13. Suppose that 𝑝 ≥ 2, 0 ≤ 𝛼 < 1, 0 ≤ |𝑏
𝑛
| ≤ (1 −

𝛼)/(4−2𝛼) and 𝑘 is a positive integer such that 𝑘 < 𝑝 ≤ 𝑘+1.
Let

𝑓 (𝑧) = (𝑧
1
+

𝑛−1

∑

𝑗=2

𝑎
𝑗
𝑧
𝑘+1

𝑗

+ 𝑎
𝑛
𝑧
1
𝑧
𝑘+1

𝑛
, 𝑧
2
+ 𝑏
2
𝑧
2
𝑧
𝑘+1

𝑛
, . . . ,

𝑧
𝑛−1
+ 𝑏
𝑛−1
𝑧
𝑛−1
𝑧
𝑘+1

𝑛
, 𝑧
𝑛
+ 𝑏
𝑛
𝑧
2

𝑛
) ,

(48)

where 𝑎 = max{|𝑎
𝑗
| : 𝑗 = 2, . . . , 𝑛} and 𝑏 = max{|𝑏

𝑗
| : 𝑗 =

2, . . . , 𝑛 − 1}. If

𝑎 ≤

1 − (2




𝑏
𝑛





/ (1 − 2





𝑏
𝑛





)) − 𝛼

(𝑘 + 1)
2

(𝑘 + 1 + 2




𝑏
𝑛





/ (1 − 2





𝑏
𝑛





)) + 1 − (2





𝑏
𝑛





/ (1 − 2





𝑏
𝑛





)) − 𝛼

< 1, (49)

𝑏 ≤ ((𝑘 + (2|𝑏
𝑛
|/(1 − 2|𝑏

𝑛
|)))(1 − 𝛼) + (2|𝑏

𝑛
|/(1 − 2|𝑏

𝑛
|)))/(𝑘 +

2 − 𝛼)(𝑘 + 1 + (2|𝑏
𝑛
|/(1 − 2|𝑏

𝑛
|))) < 1, and

𝑁(𝑝) ≤

1 − 𝛼 − (2




𝑏
𝑛





/ (1 − 2





𝑏
𝑛





))

(𝑘 + 1) (𝑘 + 1 + (2




𝑏
𝑛





/ (1 − 2





𝑏
𝑛





)))

=

1 − (4 − 2𝛼)




𝑏
𝑛





− 𝛼

(𝑘 + 1) (𝑘 + 1 − 2𝑘




𝑏
𝑛





)

,

(50)

where𝑁(𝑝) is defined in Example 12, then 𝑓(𝑧) ∈ 𝐾(𝐵𝑛
𝑝
, 𝛼).

By applying the samemethod of the proof forTheorem 2,
we may get the following result.

Theorem 14. Suppose that 0 ≤ 𝛼 < 1, 𝑛 ≥ 2, 𝑝 ≥ 2 and 𝑙 is a
positive integer such that 𝑙 < 𝑝 ≤ 𝑙 + 1. Let

𝑓 (𝑧) = (𝑝
1
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) , 𝑝
2
(𝑧
2
) + 𝑓
2
(𝑧
𝑘
) , . . . ,

𝑝
𝑘
(𝑧
𝑘
) , . . . 𝑝

𝑛
(𝑧
𝑛
) + 𝑓
𝑛
(𝑧
𝑘
)) (2 ≤ 𝑘 ≤ 𝑛) ,

(51)

where 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝐵

𝑛

𝑝
, 𝑓
𝑘
(𝑧
𝑘
) = 0, 𝑓

𝑗
:

𝑈 → 𝐶 is holomorphic with 𝑓
𝑗
(0) = 0, 𝑓



𝑗
(0) =

0 (𝑗 = 2, 3, . . . , 𝑛 − 1), 𝑝
𝑗
∈ 𝐻(𝑈) (𝑗 = 2, 3, . . . , 𝑛) and

𝑝
1
(𝑧
1
, . . . , 𝑧

𝑛
) : 𝐵
𝑛

𝑝
→ 𝐶 is holomorphic with 𝑝

1
(0, 0, . . . , 0) =

0, (𝜕𝑝
1
/𝜕𝑧
1
)(0, 0, . . . , 0) = 1, (𝜕𝑝

1
/𝜕𝑧
𝑙
)(0, 0, . . . , 0) = 0 (𝑙 =

2, 3, . . . , 𝑛). If 𝑓 satisfies the following conditions:

(1)

𝜕𝑝
1

𝜕𝑧
1

⋅

𝑛

∏

𝑗=2

𝑝


𝑗
(𝑧
𝑗
) ̸= 0,






𝑧
𝑗
𝑝


𝑗
(𝑧
𝑗
)






≤ (1 − 𝛼)






𝑝


𝑗
(𝑧
𝑗
)






, 𝑗 = 2, . . . , 𝑛;

(2)

𝑛

∑

𝑙=1











𝑧
1

𝜕
2

𝑝
1

𝜕𝑧
1
𝜕𝑧
𝑙











≤ (1 − 𝛼)










𝜕𝑝
1

𝜕𝑧
1










;

(3)




𝑧
1






𝑝−1













(𝜕𝑝
1
/𝜕𝑧
𝑗
) ⋅ (𝑝


𝑗
(𝑧
𝑗
) /𝑝


𝑗
(𝑧
𝑗
))

𝜕𝑝
1
/𝜕𝑧
1













+




𝑧
1






𝑝−1

𝑛

∑

𝑙=1












𝜕
2

𝑝
1
/𝜕𝑧
𝑗
𝜕𝑧
𝑙

𝜕𝑝
1
/𝜕𝑧
1












≤ (1 − 𝛼 −













𝑧
𝑗
𝑝


𝑗
(𝑧
𝑗
)

𝑝


𝑗
(𝑧
𝑗
)













)






𝑧
𝑗







𝑝−2

,

(𝑗 = 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛 − 1) ;
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(4)

𝑛

∑

𝑗=2,𝑗 ̸= 𝑘













𝑓


𝑗
(𝑧
𝑘
)

𝑝


𝑗
(𝑧
𝑗
)
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𝑘
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𝑗
(𝑧
𝑗
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𝜕𝑝
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𝜕𝑧
𝑗

(

𝜕𝑝
1

𝜕𝑧
1

)
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𝑛

∑
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(
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𝜕𝑧
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𝑝−1
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𝑘
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𝑘
(𝑧
𝑘
)

𝑝


𝑘
(𝑧
𝑘
)











)




𝑧
𝑘






𝑝−2

,

(52)

for all 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ 𝐵
𝑛

𝑝
, then 𝑓 ∈ 𝐾(𝐵𝑛

𝑝
, 𝛼).
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