## Research Article

# Construction of Biholomorphic Convex Mappings of Order $\alpha$ on $B_{p}^{n}$ 

Ming-Sheng Liu, ${ }^{1}$ Fengying Yang, ${ }^{1}$ Kit Ian Kou, ${ }^{2}$ and Changqin Huang ${ }^{3}$<br>${ }^{1}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China<br>${ }^{2}$ Department of Mathematics, Faculty of Science and Technology, University of Macau, Taipa, Macao, China<br>${ }^{3}$ School of Information Technology in Education, South China Normal University, Guangzhou 510631, China<br>Correspondence should be addressed to Ming-Sheng Liu; liumsh@scnu.edu.cn

Received 1 October 2013; Accepted 20 December 2013; Published 8 April 2014
Academic Editor: Tatsuhiro Honda
Copyright © 2014 Ming-Sheng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Some sufficient conditions for biholomorphic convex mappings of order $\alpha$ on the Reinhardt domain $B_{p}^{n}$ in $C^{n}$ are given; from that, criteria for biholomorphic convex mappings of order $\alpha$ with particular form become direct. As applications of these sufficient conditions, some concrete biholomorphic convex mappings of order $\alpha$ on $B_{p}^{n}$ are provided.

## 1. Introduction and Preliminaries

The analytic functions of one complex variable, which map the unit disk $U=\{z \in C:|z|<1\}$ onto starlike domains or convex domains, have been extensively studied. These functions are easily characterized by simple analytic or geometric conditions. In the case of one complex variable, the following notions are well known.

Let $H(U)=\{f: U \mapsto \mathbb{C}$ be analytic in $U$ with $f(0)=$ $\left.f^{\prime}(0)-1=0\right\}$. A function $f \in H(U)$ is said to be convex if $f(U)$ is convex, that is, given $w_{1}, w_{2} \in f(U), t w_{1}+(1-t) w_{2} \in$ $f(U)$ for all $t \in[0,1]$. We let $K$ denote the class of univalent convex functions in $U$. Suppose $\alpha \in[0,1)$. If $f \in H(U)$ satisfies $f^{\prime}(z) \neq 0$ for all $z \in U$ and the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right\}>\alpha, \quad \forall z \in U \tag{1}
\end{equation*}
$$

then we call $f(z)$ a convex function of order $\alpha$ in $U$. We let $K(\alpha)$ denote the class of convex functions of order $\alpha$ in $U$. It is evident that $K \equiv K(0)$.

In higher dimensions, demanding that a mapping takes the unit ball to a convex domain turned out to be a very restrictive condition. It is rather hard to construct concrete biholomorphic convex mappings on some domains in $\mathbb{C}^{n}$, even on the Euclidean unit ball.

Suppose $n$ is a fixed positive integer, $p>1$. Let $C^{n}$ be the space of $n$ complex variables $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ with the usual inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$, where $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in C^{n}$. We introduce the $p$-norm of $C^{n}:\|z\|_{p}=\left(\sum_{j=1}^{n}\left|z_{j}\right|^{p}\right)^{1 / p}$, and let $B_{p}^{n}=\left\{z \in C^{n}:\|z\|_{p}<1\right\}$; it is evident that $B_{p}^{n}$ is a Reinhardt domain. For simplicity, let $\|z\|=\|z\|_{2}=\sqrt{\langle z, z\rangle}$.

Let $H\left(B_{p}^{n}\right)$ be the class of holomorphic mappings $f(z)=$ $\left(f_{1}(z), \ldots, f_{n}(z)\right)$ in the Reinhardt domain $B_{p}^{n}$, where $z=$ $\left(z_{1}, \ldots, z_{n}\right) \in C^{n}$. A mapping $f \in H\left(B_{p}^{n}\right)$ is said to be locally biholomorphic in $B_{p}^{n}$ if $f$ has a local inverse at each point $z \in B_{p}^{n}$ or, equivalently, if the first Fréchet derivative $D f(z)=\left(\partial f_{j}(z) / \partial z_{k}\right)_{1 \leq j, k \leq n}$ is nonsingular at each point in $B_{p}^{n}$.

The second Fréchet derivative of a mapping $f \in H\left(B_{p}^{n}\right)$ is a symmetric bilinear operator $D^{2} f(z)(\cdot, \cdot)$ on $C^{n} \times C^{n}$, and $D^{2} f(z)(z, \cdot)$ is the linear operator obtained by restricting $D^{2} f(z)$ to $\{z\} \times C^{n}$. The matrix representation of $D^{2} f(z)(b, \cdot)$ is

$$
\begin{equation*}
D^{2} f(z)(b, \cdot)=\left(\sum_{l=1}^{n} \frac{\partial^{2} f_{j}(z)}{\partial z_{k} \partial z_{l}} b_{l}\right)_{1 \leq j, k \leq n} \tag{2}
\end{equation*}
$$

where $f(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right), b=\left(b_{1}, \ldots, b_{n}\right) \in C^{n}$.

Let $N\left(B_{p}^{n}\right)$ denote the class of all locally biholomorphic mappings $f: B_{p}^{n} \rightarrow C^{n}$ such that $f(0)=0, D f(0)=I$, where $I$ is the unit matrix of $n \times n$. If $f \in N\left(B_{p}^{n}\right)$ is a biholomorphic mapping on $B_{p}^{n}$ and $f\left(B_{p}^{n}\right)$ is a convex domain in $C^{n}$, then we call $f$ a biholomorphic convex mapping on $B_{p}^{n}$. The class of all biholomorphic convex mappings on $B_{p}^{n}$ is denoted by $K\left(B_{p}^{n}\right)$. Obviously, $K=K\left(B_{p}^{1}\right)$. The biholomorphic convex mapping of order $\alpha$ on $B_{p}^{n}$ was introduced and investigated in [1-5]; the $\varepsilon$ starlike and $\varepsilon$ quasi-convex mappings were investigated in $[4,6]$.

Definition 1 (see [1-3,5]). Suppose $0 \leq \alpha<1, p \geq$ 2, $u(z)=\sum_{j=1}^{n}\left|z_{j}\right|^{p}$, and $f \in N\left(B_{p}^{n}\right)$. Assume that for any $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}$ and $b=\left(b_{1}, \ldots, b_{n}\right) \in C^{n}$ with $\operatorname{Re}\langle b, \partial u / \partial \bar{z}\rangle=0$, we have

$$
\begin{align*}
& J_{f}(z, b)= \operatorname{Re}\left\{\frac{p^{2}}{4} \sum_{k=1}^{n}\left|z_{k}\right|^{p-2}\left|b_{k}\right|^{2}+\frac{p}{2}\left(\frac{p}{2}-1\right)\right. \\
& \times \sum_{k=1}^{n} \frac{\left|z_{k}\right|^{p}}{z_{k}^{2}} b_{k}^{2}  \tag{3}\\
&\left.\quad-\left\langle D f(z)^{-1} D^{2} f(z)(b, b), \frac{\partial u}{\partial \bar{z}}\right\rangle\right\} \\
& \geq \alpha \cdot \frac{p}{2} \sum_{k=1}^{n}\left|z_{k}\right|^{p-2}\left|b_{k}\right|^{2}
\end{align*}
$$

where $\partial u / \partial \bar{z}=\left(\partial u / \partial \overline{z_{1}}, \ldots, \partial u / \partial \overline{z_{n}}\right)$. Then, $f(z)$ is called a biholomorphic convex mapping of order $\alpha$ on $B_{p}^{n}$. The class of all biholomorphic convex mappings of order $\alpha$ on $B_{p}^{n}$ is denoted by $K\left(B_{p}^{n}, \alpha\right)$. It is evident that $K\left(B_{p}^{n}\right) \equiv K\left(B_{p}^{n}, 0\right)$ and $K\left(B_{p}^{1}, \alpha\right) \equiv K(\alpha)$.

In 1995, Roper and Suffridge [7] proved that if $f \in K$ and $F(f)(z)=\left(f\left(z_{1}\right), \sqrt{f^{\prime}\left(z_{1}\right)} z_{0}\right)$, where $z=\left(z_{1}, z_{0}\right) \in$ $B^{n}, z_{1} \in U, z_{0}=\left(z_{2}, \ldots, z_{n}\right) \in C^{n-1}$, then $F(f)(z) \in$ $K\left(B_{2}^{n}\right) . F(f)$ is popularly referred to as the Roper-Suffridge operator. Using this operator, we may construct a lot of concrete biholomorphic convex mappings on $B_{2}^{n}$. Roper and suffridge [8] also obtained some sufficient conditions for biholomorphic convex mappings on the Euclidean unit ball. Liu and Zhu [9] had given some sufficient conditions and concrete examples of biholomorphic convex mappings on the Reinhardt domain $B_{p}^{n}$. Liu [3] also gave some sufficient conditions for biholomorphic convex mappings of order $\alpha$ on $B_{p}^{n}$. A problem is naturally posed: can we give several direct criteria for biholomorphic convex mapping of order $\alpha$ on $B_{p}^{n}$ ? For example, can we get some sufficient conditions such that the mapping of the form

$$
\begin{gather*}
f(z)=\left(p_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right), p_{2}\left(z_{2}, z_{n}\right), \ldots,\right. \\
\left.p_{n-1}\left(z_{n-1}, z_{n}\right), p_{n}\left(z_{n}\right)\right) \tag{4}
\end{gather*}
$$

is a biholomorphic convex mapping of order $\alpha$ on $B_{p}^{n}$ ?

The aim of this paper is to give an answer to the above problem. From these, we may construct some concrete biholomorphic convex mappings of order $\alpha$ on $B_{p}^{n}$.

## 2. Main Results

Theorem 2. Suppose that $n \geq 2, p \geq 2,0 \leq \alpha<1, q=$ $p /(p-1)$. Let

$$
\begin{equation*}
f(z)=\left(f_{1}\left(z_{1}, z_{n}\right), f_{2}\left(z_{2}, z_{n}\right) \ldots, f_{n-1}\left(z_{n-1}, z_{n}\right), p_{n}\left(z_{n}\right)\right), \tag{5}
\end{equation*}
$$

where $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in B_{p}^{n}, p_{n}(\zeta) \in H(U)$ and $f_{j}\left(z_{j}, z_{n}\right): B_{p}^{2} \rightarrow C$ is holomorphic with $f_{j}(0,0)=$ $0,\left(\partial f_{j} / \partial z_{j}\right)(0,0)=1,\left(\partial f_{j} / \partial z_{n}\right)(0,0)=0(j=1,2, \ldots, n-$ 1). If $f$ satisfies the following conditions:
(1) $\prod_{j=1}^{n-1} \frac{\partial f_{j}}{\partial z_{j}} \cdot p_{n}^{\prime}\left(z_{n}\right) \neq 0$,

$$
\left|z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)\right| \leq(1-\alpha)\left|p_{n}^{\prime}\left(z_{n}\right)\right|
$$

(2) $\left|z_{j} \frac{\partial^{2} f_{j}}{\partial z_{j}^{2}}\right|+\left|z_{j} \frac{\partial^{2} f_{j}}{\partial z_{j} \partial z_{n}}\right|$

$$
\leq(1-\alpha)\left|\frac{\partial f_{j}}{\partial z_{j}}\right| \quad(j=1,2, \ldots, n-1)
$$

(3) $\left(1-\left|z_{n}\right|^{p}\right)^{1 / q}\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j} \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p}$

$$
\begin{aligned}
& +\left(1-\left|z_{n}\right|^{p}\right)^{1 / q}\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j}^{2}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p} \\
& +\left(1-\left|z_{n}\right|^{p}\right)^{1 / q} \\
& \times\left(\sum_{j=1}^{n-1}\left|\frac{\partial f_{j} / \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|^{p}\right)^{1 / p} \\
& \leq\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)\left|z_{n}\right|^{p-2}
\end{aligned}
$$

for all $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}$, then $f \in K\left(B_{p}^{n}, \alpha\right)$.
Proof. By direct computation of the Fréchet derivatives of $f(z)$, we obtain

$$
\begin{align*}
& D f(z)=\left(\begin{array}{ccccc}
\frac{\partial f_{1}}{\partial z_{1}} & 0 & \cdots & 0 & \frac{\partial f_{1}}{\partial z_{n}} \\
0 & \frac{\partial f_{2}}{\partial z_{2}} & \cdots & 0 & \frac{\partial f_{2}}{\partial z_{n}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \frac{\partial f_{n-1}}{\partial z_{n-1}} & \frac{\partial f_{n-1}}{\partial z_{n}} \\
0 & 0 & \cdots & 0 & p_{n}^{\prime}\left(z_{n}\right)
\end{array}\right), \\
& D f(z)^{-1}=\left(\begin{array}{ccccc}
\frac{1}{\partial f_{1} / \partial z_{1}} & 0 & \cdots & 0 & -\frac{\partial f_{1} / \partial z_{n}}{\left(\partial f_{1} / \partial z_{1}\right) p_{n}^{\prime}\left(z_{n}\right)} \\
0 & \frac{1}{\partial f_{2} / \partial z_{2}} & \cdots & 0 & -\frac{\partial f_{2} / \partial z_{n}}{\left(\partial f_{2} / \partial z_{2}\right) p_{n}^{\prime}\left(z_{n}\right)} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \frac{1}{\partial f_{n-1} / \partial z_{n-1}} & -\frac{\partial f_{n-1} / \partial z_{n}}{\left(\partial f_{n-1} / \partial z_{n-1}\right) p_{n}^{\prime}\left(z_{n}\right)} \\
0 & 0 & \cdots & 0 & \frac{1}{p_{n}^{\prime}\left(z_{n}\right)}
\end{array}\right) \text {, }  \tag{7}\\
& D^{2} f(z)(b, b)=\left(\begin{array}{ccccc}
B_{1} & 0 & \cdots & 0 & A_{1} \\
0 & B_{2} & \cdots & 0 & A_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & B_{n-1} & A_{n-1} \\
0 & 0 & \cdots & 0 & A_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{n-1} \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
\frac{\partial^{2} f_{1}}{\partial z_{1}^{2}} b_{1}^{2}+2 \frac{\partial^{2} f_{1}}{\partial z_{1} \partial z_{n}} b_{1} b_{n}+\frac{\partial^{2} f_{1}}{\partial z_{n}^{2} b_{n}^{2}} \\
\frac{\partial^{2} f_{2}}{\partial z_{2}^{2}} b_{2}^{2}+2 \frac{\partial^{2} f_{2}}{\partial z_{2} \partial z_{n}} b_{2} b_{n}+\frac{\partial^{2} f_{2}}{\partial z_{n}^{2}} b_{n}^{2} \\
\vdots \\
\frac{\partial^{2} f_{n-1}}{\partial z_{n-1}^{2}} b_{n-1}^{2}+2 \frac{\partial^{2} f_{n-1}}{\partial z_{n-1} \partial z_{n}} b_{n-1} b_{n}+\frac{\partial^{2} f_{n-1}}{\partial z_{n}^{2}} b_{n}^{2} \\
p_{n}^{\prime \prime}\left(z_{n}\right) b_{n}^{2}
\end{array}\right),
\end{align*}
$$

where

$$
\begin{gather*}
A_{j}=\frac{\partial^{2} f_{j}}{\partial z_{n} \partial z_{j}} b_{j}+\frac{\partial^{2} f_{j}}{\partial z_{n}^{2}} b_{n} \quad(j=1,2, \ldots, n-1), \\
A_{n}=p_{n}^{\prime \prime}\left(z_{n}\right) b_{n},  \tag{8}\\
B_{j}=\frac{\partial^{2} f_{j}}{\partial z_{j}^{2}} b_{j}+\frac{\partial^{2} f_{j}}{\partial z_{j} \partial z_{n}} b_{n} \quad(j=1,2, \ldots, n-1) .
\end{gather*}
$$

Taking $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}, b=\left(b_{1}, \ldots, b_{n}\right) \in C^{n}$ such that $\operatorname{Re}\langle b,(\partial u / \partial \bar{z})\rangle=0$, by the hypothesis of Theorem 2 , we have

$$
\begin{aligned}
& =(1-\alpha) \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} \\
& -\operatorname{Re}\left\{\begin{array}{l}
\sum_{j=1}^{n-1} \frac{1}{\partial f_{j} / \partial z_{j}}\left[\frac{\partial^{2} f_{j}}{\partial z_{j}^{2}} b_{j}^{2}+2 \frac{\partial^{2} f_{j}}{\partial z_{j} \partial z_{n}} b_{j} b_{n}\right. \\
\\
\left.\quad+\frac{\partial^{2} f_{j}}{\partial z_{n}} b_{n}^{2}-\frac{\partial f_{j}}{\partial z_{n}} \frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)} b_{n}^{2}\right]
\end{array}\right. \\
& \left.\quad \times \frac{\left|z_{j}\right|^{p}}{z_{j}}+\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)} b_{n}^{2} \frac{\left|z_{n}\right|^{p}}{z_{n}}\right\}
\end{aligned}
$$

$$
\begin{array}{lr}
\frac{2}{p} J_{f}(z, b)-\alpha \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} & \geq(1-\alpha) \sum_{j=1}^{n-1}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} \\
\quad \geq(1-\alpha) \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} & -\sum_{j=1}^{n}\left|\frac{1}{\partial f_{j} / \partial z_{j}}\right|\left[\left|\frac{\partial^{2} f_{j}}{\partial z_{j}^{2}}\right|\left|b_{j}\right|^{2}+\left|\frac{\partial^{2} f_{j}}{\partial z_{j} \partial z_{n}}\right|\left|b_{j}\right|^{2}\right. \\
\quad-\frac{2}{p} \operatorname{Re}\left\langle D f(z)^{-1} D^{2} f(z)(b, b), \frac{\partial u}{\partial \bar{z}}\right\rangle & +\left|\frac{\partial^{2} f_{j}}{\partial z_{j} \partial z_{n}}\right|\left|b_{n}\right|^{2}+\left|\frac{\partial^{2} f_{j}}{\partial z_{n}^{2}}\right|\left|b_{n}\right|^{2}
\end{array}
$$

$$
\begin{gather*}
\left.+\left|\frac{\partial f_{j}}{\partial z_{n}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|b_{n}\right|^{2}\right]\left|z_{j}\right|^{p-1} \\
-\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|b_{n}\right|^{2}\left|z_{n}\right|^{p-1} \\
=\sum_{j=1}^{n-1}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} \\
\times\left[1-\alpha-\frac{\left|\partial^{2} f_{j} / \partial z_{j}^{2}\right|+\left|\partial^{2} f_{j} / \partial z_{j} \partial z_{n}\right|}{\left|\partial f_{j} / \partial z_{j}\right|}\left|z_{j}\right|\right] \\
+\left|b_{n}\right|^{2}\left[\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)\left|z_{n}\right|^{p-2}\right. \\
\quad-\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j} \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
\quad-\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{n}^{2}}{\partial f_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
\left.-\left.\sum_{j=1}^{n-1}\left|\frac{\partial f_{j} / \partial z_{n}}{\partial f_{j} / \partial z_{j} \mid}\right| \frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}| | z_{j}\right|^{p-1}\right] \tag{9}
\end{gather*}
$$

By Hölder's inequality, we have

$$
\begin{aligned}
& \sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j} \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
& \quad \leq\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j} \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p}\left(\sum_{j=1}^{n-1}\left|z_{j}\right|^{(p-1) q}\right)^{1 / q} \\
& \quad \leq\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j} \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p}\left(1-\left|z_{n}\right|^{p}\right)^{1 / q} \\
& \quad \leq\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{n}^{2}}{\partial f_{j}}\right|\left|z_{j}\right|^{p-1}\right. \\
& \sum_{j} / \partial z_{j} / \partial z_{j} \\
& \quad \leq\left(\sum_{j=1}^{n-1}\right)^{2}\left(\left.\frac{\partial^{2} f_{j}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p}\left(\left.z_{j}\right|^{(p-1) q}\right)^{1 / q} \\
& \\
& \quad \leq\left(1-\left|z_{n}\right|^{p}\right)^{1 / q},
\end{aligned}
$$

$$
\begin{align*}
& \sum_{j=1}^{n-1}\left|\frac{\partial f_{j} / \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|z_{j}\right|^{p-1} \\
& \quad \leq\left(\sum_{j=1}^{n-1}\left|\frac{\partial f_{j} / \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|^{p}\right)^{1 / p}\left(\sum_{j=1}^{n-1}\left|z_{j}\right|^{(p-1) q}\right)^{1 / q} \\
& \quad \leq\left(\sum_{j=1}^{n-1}\left|\frac{\partial f_{j} / \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|^{p}\right)^{1 / p}\left(1-\left|z_{n}\right|^{p}\right)^{1 / q} . \tag{10}
\end{align*}
$$

Hence, we conclude from the above inequalities and the hypothesis of Theorem 2 that

$$
\begin{align*}
& \frac{2}{p} J_{f}(z, b)-\alpha \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} \\
& \geq\left|b_{n}\right|^{2}\left[\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)\left|z_{n}\right|^{p-2}\right. \\
& \\
& \quad-\left(1-\left|z_{n}\right|^{p}\right)^{1 / q}  \tag{11}\\
& \\
& \quad \times\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j} \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p}
\end{align*}
$$

$$
\begin{aligned}
& -\left(1-\left|z_{n}\right|^{p}\right)^{1 / q}\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j}^{2}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p} \\
& -\left(1-\left|z_{n}\right|^{p}\right)^{1 / q} \\
& \left.\times\left(\sum_{j=1}^{n-1}\left|\frac{\partial f_{j} / \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p} \cdot\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|^{p}\right)^{1 / p}\right]
\end{aligned}
$$

$\geq 0$,
for all $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}, b=\left(b_{1}, \ldots, b_{n}\right)$ such that $\operatorname{Re}\langle b, \partial u / \partial \bar{z}\rangle=0$. Thus, it follows from Definition 1 that $f \in K\left(B_{p}^{n}, \alpha\right)$. The proof is complete.

Remark 3. Setting $\alpha=0, f_{j}\left(z_{j}, z_{n}\right)=p_{j}\left(z_{j}\right)+f_{j}\left(z_{n}\right), \quad(j=$ $1,2, \ldots, n-1)$ in Theorem 2, we get Theorem 1 of [9].

Let us give two examples to illustrate the application of Theorem 2 in the following.

Example 4. Suppose that $p \geq 2,0 \leq \alpha<1,0<|\lambda| \leq 1-\alpha$ and $k$ is a positive integer such that $k<p \leq k+1$. Let

$$
\begin{gather*}
f(z)=\left(\begin{array}{ll}
\left.z_{1}+a_{1} z_{1} z_{n}^{k+1}, z_{2}+a_{2} z_{2} z_{n}^{k+1}, \ldots, z_{n-1}+a_{n-1} z_{n-1} z_{n}^{k+1}, \frac{e^{\lambda z_{n}}-1}{\lambda}\right) \\
M(p)= \begin{cases}\frac{(1-\alpha-|\lambda|)^{p}}{(1+|\lambda|)^{p}(k+1)^{p}}, & p=k+1 \\
\frac{k^{k}(1-\alpha-|\lambda|)^{p}}{(1+|\lambda|)^{p}(k+1)^{p}(p-1)^{p-1}(k-p+1)^{k-p+1}}, & k<p<k+1\end{cases}
\end{array} . \begin{array}{ll}
(1)
\end{array}\right.
\end{gather*}
$$

If $\max \left\{\left|a_{j}\right|: j=1,2, \ldots, n-1\right\} \leq(1-\alpha) /(k+2-\alpha)$ and

$$
\begin{equation*}
\sum_{j=1}^{n-1} \frac{\left|a_{j}\right|^{p}}{\left(1-\left|a_{j}\right|\right)^{p}} \leq M(p) \tag{13}
\end{equation*}
$$

then $f(z) \in K\left(B_{p}^{n}, \alpha\right)$.
Proof. Let

$$
\begin{gather*}
f_{j}\left(z_{j}, z_{n}\right)=z_{j}+a_{j} z_{j} z_{n}^{k+1} \quad(j=1,2, \ldots, n-1) \\
p_{n}\left(z_{n}\right)=\frac{e^{\lambda z_{n}}-1}{\lambda} \tag{14}
\end{gather*}
$$

Then,

$$
\begin{align*}
\frac{\partial f_{j}}{\partial z_{j}} & =1+a_{j} z_{n}^{k+1}, \quad \frac{\partial f_{j}}{\partial z_{n}}=(k+1) a_{j} z_{j} z_{n}^{k} \\
\frac{\partial^{2} f_{j}}{\partial z_{j} \partial z_{n}} & =(k+1) a_{j} z_{n}^{k}, \quad \frac{\partial^{2} f_{j}}{\partial z_{j}^{2}}=0 \\
p_{n}^{\prime}\left(z_{n}\right) & =e^{\lambda z_{n}}, \quad p_{n}^{\prime \prime}\left(z_{n}\right)=\lambda p_{n}^{\prime}\left(z_{n}\right) . \tag{15}
\end{align*}
$$

So it follows from $\left|a_{j}\right| \leq(1-\alpha) /(k+2-\alpha)<1$ that

$$
\begin{align*}
& \left\lvert\, \begin{aligned}
\mid z_{j} & \frac{\partial^{2} f_{j}}{\partial z_{j}^{2}}\left|+\left|z_{j} \frac{\partial^{2} f_{j}}{\partial z_{j} \partial z_{n}}\right|\right. \\
& =\left|z_{j}(k+1) a_{j} z_{n}^{k}\right| \leq(k+1)\left|a_{j}\right| \\
& \leq(1-\alpha)\left(1-\left|a_{j}\right|\right) \\
& \leq(1-\alpha)\left(1-\left|a_{j} z_{n}^{k+1}\right|\right) \\
& \leq(1-\alpha)\left|1+a_{j} z_{n}^{k+1}\right| \\
& =(1-\alpha)\left|\frac{\partial f_{j}}{\partial z_{j}}\right|, \quad(j=1,2, \ldots, n-1) \\
\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right| & =|\lambda|\left|z_{n}\right| \leq|\lambda| \leq 1-\alpha \Longrightarrow\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right| \leq|\lambda|
\end{aligned} .\right.
\end{align*}
$$

Set $q=p /(p-1)$. Then,

$$
\begin{align*}
& \left(1-\left|z_{n}\right|^{p}\right)^{1 / q}\left(\sum_{j=1}^{n-1}\left|\frac{\partial^{2} f_{j} / \partial z_{j} \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\right)^{1 / p} \\
& \quad \leq(k+1)\left\{\sum_{j=1}^{n-1} \frac{\left|a_{j}\right|^{p}}{\left(1-\left|a_{j}\right|\right)^{p}}\right\}^{1 / p} \varphi\left(\left|z_{n}\right|\right)\left|z_{n}\right|^{p-2}, \\
& \left(1-\left|z_{n}\right|^{p}\right)^{1 / q}\left(\sum_{j=1}^{n-1}\left|\frac{\partial f_{j} / \partial z_{n}}{\partial f_{j} / \partial z_{j}}\right|^{p}\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|^{p}\right)^{1 / p}  \tag{19}\\
& \quad \leq(k+1)|\lambda|\left\{\sum_{j=1}^{n-1} \frac{\left|a_{j}\right|^{p}}{\left(1-\left|a_{j}\right|\right)^{p}}\right\}^{1 / p} \varphi\left(\left|z_{n}\right|\right)\left|z_{n}\right|^{p-2},
\end{align*}
$$

where $\varphi(x)=\left(1-x^{p}\right)^{1 / q} x^{k-p+1}, x \in[0,1]$.
When $p=k+1$, we have $\max _{0 \leq x \leq 1} \varphi(x)=1$.
When $k<p<k+1$, we have $0<k-p+1<1$ and

$$
\begin{equation*}
\varphi^{\prime}(x)=\left(1-x^{p}\right)^{(1 / q)-1} x^{k-p}\left[(k-p+1)-k x^{p}\right] \tag{20}
\end{equation*}
$$

so

$$
\begin{align*}
\max _{0 \leq x \leq 1} \varphi(x) & =\varphi\left(\sqrt[p]{\frac{k-p+1}{k}}\right)  \tag{21}\\
& =\left(\frac{p-1}{k}\right)^{1 / q}\left(\frac{k-p+1}{k}\right)^{(k-p+1) / p} .
\end{align*}
$$

Hence, when

$$
\begin{equation*}
\sum_{j=1}^{n-1} \frac{\left|a_{j}\right|^{p}}{\left(1-\left|a_{j}\right|\right)^{p}} \leq M(p) \tag{22}
\end{equation*}
$$

we have

$$
\begin{gather*}
f(z)=\left(z_{1}+a_{1} z_{1} z_{n}^{k+1}, z_{2}+a_{2} z_{2} z_{n}^{k+1}, \ldots, z_{n-1}+a_{n-1} z_{n-1} z_{n}^{k+1}, z_{n}+a_{n} z_{n}^{2}\right), \\
M^{\prime}(p)= \begin{cases}\frac{\left[1-\alpha-(4-2 \alpha)\left|a_{n}\right|\right]^{p}}{(k+1)^{p}}, & p=k+1, \\
\frac{k^{k}\left[1-\alpha-(4-2 \alpha)\left|a_{n}\right|\right]^{p}}{(k+1)^{p}(p-1)^{p-1}(k-p+1)^{k-p+1}}, & k<p<k+1 .\end{cases} \tag{24}
\end{gather*}
$$

If $\max \left\{\left|a_{j}\right|: j=1,2, \ldots, n-1\right\} \leq(1-\alpha) /(k+2-\alpha)<1$ and

$$
\begin{equation*}
\sum_{j=1}^{n-1} \frac{\left|a_{j}\right|^{p}}{\left(1-\left|a_{j}\right|\right)^{p}} \leq M^{\prime}(p) \tag{25}
\end{equation*}
$$

then $f(z) \in K\left(B_{p}^{n}, \alpha\right)$.
By applying the same method of the proof for Theorem 2, we may prove the following result.

Theorem 6. Suppose that $n \geq 2,0 \leq \alpha<1, p \geq 2$ and $f_{j}$ : $U \rightarrow C$ are analytic on $U, f_{j}(0)=f_{j}^{\prime}(0)=0(j=1,2, \ldots, n-$
1), $p_{j} \in H(U), P_{j}^{\prime}(\xi) \neq 0,\left|\xi p_{j}^{\prime \prime}(\xi)\right| \leq(1-\alpha)\left|p_{j}^{\prime}(\xi)\right|(\xi \in U, j=$ $1,2, \ldots n)$. Let

$$
\begin{align*}
& f(z)=\left(p_{1}\left(z_{1}\right)+f_{1}\left(z_{k}\right), p_{2}\left(z_{2}\right)+f_{2}\left(z_{k}\right) \ldots\right. \\
& \left.\quad p_{k}\left(z_{k}\right), \ldots, p_{n-1}\left(z_{n-1}\right)+f_{n-1}\left(z_{n}\right), p_{n}\left(z_{n}\right)\right), \tag{26}
\end{align*}
$$

$\left(1 \leq k \leq n\right.$, when $\left.k=j, f_{j}\left(z_{k}\right)=0\right)$.
If for any $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in B_{p}^{n}$, we have

$$
\begin{aligned}
& \left(1-\left|z_{k}\right|^{p}\right)^{1 / q}\left(\sum_{j=1}^{k-1}\left|\frac{f_{j}^{\prime \prime}\left(z_{k}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|^{p}\right)^{1 / p}+\left(1-\left|z_{k}\right|^{p}\right)^{1 / q} \\
& \quad \times\left(\sum_{j=1}^{k-1}\left|\frac{f_{j}^{\prime}\left(z_{k}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|^{p}\left|\frac{p_{k}^{\prime \prime}\left(z_{k}\right)}{p_{k}^{\prime}\left(z_{k}\right)}\right|^{p}\right)^{1 / p}
\end{aligned}
$$

$$
\begin{align*}
& \quad \leq\left(1-\alpha-\left|\frac{z_{k} p_{k}^{\prime \prime}\left(z_{k}\right)}{p_{k}^{\prime}\left(z_{k}\right)}\right|\right)\left|z_{k}\right|^{p-2} \\
& \left(1-\left|z_{n}\right|^{p}\right)^{1 / q}\left(\sum_{j=k+1}^{n-1}\left|\frac{f_{j}^{\prime \prime}\left(z_{n}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|^{p}\right)^{1 / p} \\
& \\
& \quad+\left(1-\left|z_{n}\right|^{p}\right)^{1 / q}\left(\sum_{j=k+1}^{n-1}\left|\frac{f_{j}^{\prime}\left(z_{n}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|^{p}\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|^{p}\right)^{1 / p}  \tag{27}\\
& \\
& \leq\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)\left|z_{n}\right|^{p-2},
\end{align*}
$$

then $f(z) \in K\left(B_{p}^{n}, \alpha\right)$.
Remark 7. Setting $k=n, \alpha=0$ in Theorem 6, we get Theorem 1 in [9].

Example 8. Suppose that $p \geq 2,0 \leq \alpha<1,0<|\lambda| \leq 1-\alpha$ and $k$ is a positive integer such that $k<p \leq k+1$. Let

$$
\begin{gather*}
f(z)=\left(z_{1}+a_{1}^{\prime} z_{1}^{2}+a_{1} z_{2}^{k+1}+b_{1} z_{2}^{k+2}, \frac{e^{\lambda z_{2}-1}}{\lambda},\right. \\
z_{3}+a_{3}^{\prime} z_{3}^{2}+a_{3} z_{n}^{k+1}+b_{3} z_{n}^{k+2}, \ldots, z_{n-1} \\
+a_{n-1}^{\prime} z_{n-1}^{2}+a_{n-1} z_{n}^{k+1} \\
\left.+b_{n-1} z_{n}^{k+2}, \frac{e^{\lambda z_{n}-1}}{\lambda}\right), \\
M^{\prime \prime}(p)=\left\{\begin{array}{l}
\frac{(1-2 c)^{p}(1-\alpha-|\lambda|)^{p}}{(k+1+|\lambda|)^{p}}, \\
\frac{p=k+1,}{(1-2 c)^{p} k^{k}(1-\alpha-|\lambda|)^{p}} \\
\frac{(k+1+|\lambda|)^{p}(p-1)^{p-1}(k-p+1)^{k-p+1}}{k<p<k+1,},
\end{array}\right. \tag{28}
\end{gather*}
$$

where $c=\max \left\{\left|a_{j}^{\prime}\right|: j=1,2, \ldots, n-1\right\}$. If $c \leq(1-\alpha) / 4<1$ and

$$
\begin{gather*}
{\left[(k+1)\left|a_{1}\right|+(k+2)\left|b_{1}\right|\right]^{p} \leq M^{\prime \prime}(p),} \\
\sum_{j=3}^{n-1}\left[(k+1)\left|a_{j}\right|+(k+2)\left|b_{j}\right|\right]^{p} \leq M^{\prime \prime}(p), \tag{29}
\end{gather*}
$$

then $f(z) \in K\left(B_{p}^{n}, \alpha\right)$.
Now, we give another sufficient condition for $K\left(B_{p}^{n}, \alpha\right)$, which gives an answer to the problem mentioned in the introduction.

Theorem 9. Suppose that $n \geq 2,0 \leq \alpha<1, p \geq 2$ and $k$ is a positive integer such that $k<p \leq k+1$. Let

$$
\begin{align*}
f(z)= & \left(p_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right),\right. \\
& \left.p_{2}\left(z_{2}, z_{n}\right), \ldots, p_{n-1}\left(z_{n-1}, z_{n}\right), p_{n}\left(z_{n}\right)\right), \tag{30}
\end{align*}
$$

where $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in B_{p}^{n}, p_{n} \in H(U), p_{j}\left(z_{j}, z_{n}\right)$ : $B_{p}^{2} \rightarrow C$ is holomorphic with $p_{j}(0,0)=0, \quad\left(\partial p_{j} / \partial z_{j}\right)(0,0)=$ $1,\left(\partial p_{j} / \partial z_{n}\right)(0,0)=0$ and $p_{1}\left(z_{1}, \ldots, z_{n}\right): B_{p}^{n} \rightarrow C$ is holomorphic with $p_{1}(0,0, \ldots, 0)=0,\left(\partial p_{1} / \partial z_{1}\right)(0,0, \ldots, 0)=$ 1 , $\left(\partial p_{1} / \partial z_{l}\right)(0,0, \ldots, 0)=0$ for $2 \leq l \leq n$. If $f(z)$ satisfies the following conditions:

$$
\begin{aligned}
& \text { (1) } \prod_{j=1}^{n-1} \frac{\partial p_{j}}{\partial z_{j}} p_{n}^{\prime}\left(z_{n}\right) \neq 0, \\
& \left|z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)\right| \leq(1-\alpha)\left|p_{n}^{\prime}\left(z_{n}\right)\right| ; \\
& \text { (2) } \sum_{l=1}^{n}\left|z_{1} \frac{\partial^{2} p_{1}}{\partial z_{1} \partial z_{l}}\right| \leq(1-\alpha)\left|\frac{\partial p_{1}}{\partial z_{1}}\right|, \\
& \left|z_{j} \frac{\partial^{2} p_{j}}{\partial z_{j}^{2}}\right|+\left|z_{j} \frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}\right| \leq(1-\alpha)\left|\frac{\partial p_{j}}{\partial z_{j}}\right| \\
& \qquad(j=2,3, \ldots, n-1) ;
\end{aligned}
$$

$$
\text { (3) } \begin{aligned}
& \frac{\left|z_{1}\right|^{p-1}}{\left|\partial p_{1} / \partial z_{1}\right|}\left(\frac{\left|\partial p_{1} / \partial z_{j}\right|\left(\left|\partial^{2} p_{j} / \partial z_{j}^{2}\right|+\left|\partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right|\right)}{\left|\partial p_{j} / \partial z_{j}\right|}\right. \\
& \left.\quad+\sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1}}{\partial z_{j} \partial z_{l}}\right|\right) \\
& \leq\left|z_{j}\right|^{p-2}\left(1-\alpha-\frac{\left|z_{j} \partial^{2} p_{j} / \partial z_{j}^{2}\right|+\left|z_{j} \partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right|}{\left|\partial p_{j} / \partial z_{j}\right|}\right) \\
& \quad(j=2,3, \ldots, n-1) ;
\end{aligned}
$$

$$
\text { (4) } \sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{j} \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1}
$$

$$
+\sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{n}^{2}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1}
$$

$$
+\sum_{j=2}^{n-1}\left|\frac{\partial p_{j} / \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|z_{j}\right|^{p-1}
$$

$$
+\frac{\left|z_{1}\right|^{p-1}}{\left|\partial p_{1} / \partial z_{1}\right|}
$$

$$
\times\left(\sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1}}{\partial z_{n} \partial z_{l}}\right|\right.
$$

$$
+\sum_{j=2}^{n-1}\left(\left|\frac{\partial p_{1}}{\partial z_{j}}\right|\left(\left|\frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}\right|+\left|\frac{\partial^{2} p_{j}}{\partial z_{n}^{2}}\right|\right)\right.
$$

$$
\left.\times\left|\frac{\partial p_{j}}{\partial z_{j}}\right|^{-1}\right)+\left|\frac{\partial p_{1}}{\partial z_{n}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|
$$

$$
\left.+\sum_{j=2}^{n-1}\left|\frac{\partial p_{1}}{\partial z_{j}}\right|\left|\frac{\left(\partial p_{j} / \partial z_{n}\right)}{\left(\partial p_{j} / \partial z_{j}\right)}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)
$$

$\leq\left|z_{n}\right|^{p-2}\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right) ;$
Proof. By calculating the Fréchet derivatives of $f(z)$ straightforwardly, we obtain
then $f \in K\left(B_{p}^{n}, \alpha\right)$.

$$
D f(z)=\left(\begin{array}{ccccc}
\frac{\partial p_{1}}{\partial z_{1}} & \frac{\partial p_{1}}{\partial z_{2}} & \cdots & \frac{\partial p_{1}}{\partial z_{n-1}} & \frac{\partial p_{1}}{\partial z_{n}} \\
0 & \frac{\partial p_{2}}{\partial z_{2}} & \cdots & 0 & \frac{\partial p_{2}}{\partial z_{n}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \frac{\partial p_{n-1}}{\partial z_{n-1}} & \frac{\partial p_{n-1}}{\partial z_{n}} \\
0 & 0 & \cdots & 0 & p_{n}^{\prime}\left(z_{n}\right)
\end{array}\right) \text {, }
$$

$$
\begin{align*}
& D f(z)^{-1} \\
& =\left(\begin{array}{ccccc}
\frac{1}{\partial p_{1} / \partial z_{1}} & -\frac{\partial p_{1} / \partial z_{2}}{\left(\partial p_{1} / \partial z_{1}\right)\left(\partial p_{2} / \partial z_{2}\right)} & \cdots & -\frac{\partial p_{1} / \partial z_{n-1}}{\left(\partial p_{1} / \partial z_{1}\right)\left(\partial p_{n-1} / \partial z_{n-1}\right)} & -\frac{\partial p_{1} / \partial z_{n}}{\left(\partial p_{1} / \partial z_{1}\right) p_{n}^{\prime}\left(z_{n}\right)}+\sum_{j=2}^{n-1} \frac{\partial p_{j} / \partial z_{n}}{\partial p_{j} / \partial z_{j}} \frac{\partial p_{1} / \partial z_{j}}{\left(\partial p_{1} / \partial z_{1}\right) p_{n}^{\prime}\left(z_{n}\right)} \\
0 & \frac{1}{\partial p_{2} / \partial z_{2}} & \cdots & 0 & -\frac{\partial p_{2} / \partial z_{n}}{\left(\partial p_{2} / \partial z_{2}\right) p_{n}^{\prime}\left(z_{n}\right)} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \frac{1}{\partial p_{n-1} / \partial z_{n-1}} & -\frac{\partial p_{n-1} / \partial z_{n}}{\left(\partial p_{n-1} / \partial z_{n-1}\right) p_{n}^{\prime}\left(z_{n}\right)} \\
0 & 0 & \cdots & 0 & \frac{1}{p_{n}^{\prime}\left(z_{n}\right)}
\end{array}\right)  \tag{32}\\
& D^{2} f(z)(b, b)=\left(\begin{array}{ccccc}
\sum_{l=1}^{n} \frac{\partial^{2} p_{1}}{\partial z_{1} \partial z_{l}} b_{l} & \sum_{l=1}^{n} \frac{\partial^{2} p_{1}}{\partial z_{2} \partial z_{l}} b_{l} & \cdots & \sum_{l=1}^{n} \frac{\partial^{2} p_{1}}{\partial z_{n-1} \partial z_{l}} b_{l} & C_{1} \\
0 & D_{2} & \cdots & 0 & C_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & D_{n-1} & C_{n-1} \\
0 & 0 & \cdots & 0 & C_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{n-1} \\
b_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\sum_{j=1}^{n} \sum_{l=1}^{n} \frac{\partial^{2} p_{1}}{\partial z_{j} \partial z_{l}} b_{l} b_{j} \\
\frac{\partial^{2} p_{2}}{\partial z_{2}^{2}} b_{2}^{2}+2 \frac{\partial^{2} p_{2}}{\partial z_{2} \partial z_{n}} b_{2} b_{n}+\frac{\partial^{2} p_{2}}{\partial z_{n}^{2}} b_{n}^{2} \\
\vdots \\
\frac{\partial^{2} p_{n-1}}{\partial z_{n-1}^{2}} b_{n-1}^{2}+2 \frac{\partial^{2} p_{n-1}}{\partial z_{n-1} \partial z_{n}} b_{n-1} b_{n}+\frac{\partial^{2} p_{n-1}}{\partial z_{n}^{2}} b_{n}^{2} \\
p_{n}^{\prime \prime}\left(z_{n}\right) b_{n}^{2}
\end{array}\right),
\end{align*}
$$

where

$$
\begin{gather*}
C_{1}=\sum_{l=1}^{n} \frac{\partial^{2} p_{1}}{\partial z_{n} \partial z_{l}} b_{l}, \\
C_{j}=\frac{\partial^{2} p_{j}}{\partial z_{n} \partial z_{j}} b_{j}+\frac{\partial^{2} p_{j}}{\partial z_{n}^{2}} b_{n} \quad(j=2,3, \ldots, n-1),  \tag{33}\\
C_{n}=p_{n}^{\prime \prime}\left(z_{n}\right) b_{n}, \\
D_{j}=\frac{\partial^{2} p_{j}}{\partial z_{j}^{2}} b_{j}+\frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}} b_{n} \quad(j=2,3, \ldots, n-1) .
\end{gather*}
$$

Taking $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}, \quad b=\left(b_{1}, \ldots, b_{n}\right) \in C^{n}$ such that $\operatorname{Re}\langle b, \partial u / \partial \bar{z}\rangle=0$, by Definition 1 and the hypothesis of Theorem 9, we have

$$
\begin{aligned}
& \frac{2}{p} J_{f}(z, b)-\alpha \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} \\
& \quad \geq(1-\alpha) \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2} \\
& \quad-\frac{2}{p} \operatorname{Re}\left\langle D f(z)^{-1} D^{2} f(z)(b, b), \frac{\partial u}{\partial \bar{z}}\right\rangle \\
& \quad=(1-\alpha) \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2}
\end{aligned}
$$

$$
\begin{aligned}
& -\operatorname{Re}\left\{\frac{1}{\partial p_{1} / \partial z_{1}}\right. \\
& \times\left[\sum_{j=1}^{n} \sum_{l=1}^{n} \frac{\partial^{2} p_{1}}{\partial z_{j} \partial z_{l}} b_{l} b_{j}\right. \\
& -\sum_{j=2}^{n-1} \frac{\partial p_{1} / \partial z_{j}}{\partial p_{j} / \partial z_{j}} \\
& \times\left(\frac{\partial^{2} p_{j}}{\partial z_{j}^{2}} b_{j}^{2}+2 \frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}} b_{j} b_{n}+\frac{\partial^{2} p_{j}}{\partial z_{n}^{2}} b_{n}^{2}\right) \\
& -\frac{\partial p_{1}}{\partial z_{n}} \frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)} b_{n}^{2} \\
& \left.+\sum_{j=2}^{n-1} \frac{\left(\partial p_{j} / \partial z_{n}\right)\left(\partial p_{1} / \partial z_{j}\right)}{\partial p_{j} / \partial z_{j}} \frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)} b_{n}^{2}\right] \frac{\left|z_{1}^{p}\right|}{z_{1}} \\
& +\sum_{j=2}^{n-1} \frac{1}{\partial p_{j} / \partial z_{j}}\left(\frac{\partial^{2} p_{j}}{\partial z_{j}^{2}} b_{j}^{2}+2 \frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}} b_{j} b_{n}\right. \\
& \left.+\frac{\partial^{2} p_{j}}{\partial z_{n}^{2}} b_{n}^{2}-\frac{\partial p_{j}}{\partial z_{n}} \frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)} b_{n}^{2}\right) \\
& \left.\times \frac{\left|z_{j}\right|^{p}}{z_{j}}+\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)} b_{n}^{2} \frac{\left|z_{n}\right|^{p}}{z_{n}}\right\} \\
& \geq(1-\alpha) \sum_{j=1}^{n}\left|b_{j}\right|^{2}\left|z_{j}\right|^{p-2}-\frac{1}{\left|\partial p_{1} / \partial z_{1}\right|} \\
& \times\left[\sum_{j=1}^{n} \sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1}}{\partial z_{j} \partial z_{l}}\right|\left|b_{j}\right|^{2}+\sum_{j=2}^{n-1}\left|\frac{\partial p_{1} / \partial z_{j}}{\partial p_{j} / \partial z_{j}}\right|\right. \\
& \times\left(\left|\frac{\partial^{2} p_{j}}{\partial z_{j}^{2}}\right|\left|b_{j}\right|^{2}+\left|\frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}\right|\left|b_{j}\right|^{2}\right. \\
& \left.+\left|\frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}\right|\left|b_{n}\right|^{2}+\left|\frac{\partial^{2} p_{j}}{\partial z_{n}}\right|\left|b_{n}^{2}\right|\right)+\left|\frac{\partial p_{1}}{\partial z_{n}}\right| \\
& \times\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|b_{n}\right|^{2} \\
& \left.+\sum_{j=2}^{n-1}\left|\frac{\left(\partial p_{j} / \partial z_{n}\right)\left(\partial p_{1} / \partial z_{j}\right)}{\partial p_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|b_{n}\right|^{2}\right]\left|z_{1}\right|^{p-1} \\
& -\sum_{j=2}^{n-1} \frac{1}{\partial p_{j} / \partial z_{j} \mid}\left(\left|\frac{\partial^{2} p_{j}}{\partial z_{j}^{2}}\right|\left|b_{j}\right|^{2}+\left|\frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}\right|\left|b_{j}\right|^{2}\right. \\
& +\left|\frac{\partial p_{j}}{\partial z_{j} \partial z_{n}}\right|\left|b_{n}\right|^{2}+\left|\frac{\partial^{2} p_{j}}{\partial z_{n}^{2}}\right|\left|b_{n}\right|^{2} \\
& \left.+\left|\frac{\partial p_{j}}{\partial z_{n}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|b_{n}\right|^{2}\right)\left|z_{j}\right|^{p-1} \\
& -\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|b_{n}\right|^{2}\left|z_{n}\right|^{p-1} \\
& =\left|b_{1}\right|\left|z_{1}\right|^{p-2} \\
& \times\left[1-\alpha-\frac{\sum_{l=1}^{n}\left|z_{1} \partial^{2} p_{1} / \partial z_{1} \partial z_{l}\right|}{\left|\partial p_{1} / \partial z_{1}\right|}\right] \\
& +\sum_{j=2}^{n-1}\left|b_{j}\right|^{2}\left[\left|z_{j}\right|^{p-2}\right. \\
& \times(1-\alpha \\
& \left.-\frac{\left|z_{j} \partial^{2} p_{j} / \partial z_{j}^{2}\right|+\left|z_{j} \partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right|}{\left|\partial p_{j} / \partial z_{j}\right|}\right) \\
& -\frac{\left|z_{1}\right|^{p-1}}{\left|\partial p_{1} / \partial z_{1}\right|} \\
& \times\left(\sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1}}{\partial z_{j} \partial z_{l}}\right|+\left|\frac{\partial p_{1}}{\partial z_{j}}\right|\right. \\
& \left.\left.\times \frac{\left|\partial^{2} p_{j} / \partial z_{j}^{2}\right|+\left|\partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right|}{\left|\partial p_{j} / \partial z_{j}\right|}\right)\right] \\
& +\left|b_{n}\right|^{2}\left[\left|z_{n}\right|^{p-2}\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)\right. \\
& -\frac{\left|z_{1}\right|^{p-1}}{\left|\partial p_{1} / \partial z_{1}\right|} \\
& \times\left(\sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1}}{\partial z_{n} \partial z_{l}}\right|\right. \\
& +\sum_{j=2}^{n-1}\left|\frac{\partial p_{1}}{\partial z_{j}}\right| \\
& \times \frac{\left|\partial^{2} p_{j} / \partial z_{n}^{2}\right|+\left|\partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right|}{\left|\partial p_{j} / \partial z_{j}\right|} \\
& +\left|\frac{\partial p_{1}}{\partial z_{n}}\right|\left|\frac{\mid p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|+\sum_{j=2}^{n-1}\left|\frac{\partial p_{1}}{\partial z_{j}}\right| \\
& \left.\times\left|\frac{\partial p_{j} / \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{j} \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
& -\sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{n}^{2}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
& \left.-\sum_{j=2}^{n-1}\left|\frac{\partial p_{j} / \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|z_{j}\right|^{p-1}\right]
\end{aligned}
$$

$\geq 0$
for all $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}, b=\left(b_{1}, \ldots, b_{n}\right)$ such that $\operatorname{Re}\langle b, \partial u / \partial \bar{z}\rangle=0$. Thus, it follows from Definition 1 that $f \in K\left(B_{p}^{n}, \alpha\right)$. The proof is complete.

Corollary 10. Suppose that $0 \leq \alpha<1, n \geq 2, p \geq 2$ and $k$ is a positive integer such that $k<p \leq k+1$. Let

$$
\begin{gather*}
f(z)=\left(p_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right), p_{2}\left(z_{2}\right)+f_{2}\left(z_{n}\right), \ldots,\right.  \tag{35}\\
\left.p_{n-1}\left(z_{n-1}\right)+f_{n-1}\left(z_{n}\right), p_{n}\left(z_{n}\right)\right),
\end{gather*}
$$

where $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in B_{p}^{n}, f_{j}: U \rightarrow C$ is holomorphic with $f_{j}(0)=0, f_{j}^{\prime}(0)=0(j=2,3, \ldots, n-1), p_{j} \in$ $H(U)(j=2,3, \ldots, n)$ and $p_{1}\left(z_{1}, \ldots, z_{n}\right): B_{p}^{n} \rightarrow C$ is holomorphic with $p_{1}(0,0, \ldots, 0)=0,\left(\partial p_{1} / \partial z_{1}\right)(0,0, \ldots, 0)=$ $1,\left(\partial p_{1} / \partial z_{l}\right)(0,0, \ldots, 0)=0(l=2,3, \ldots, n)$. If $f$ satisfies the following conditions:
(1) $\frac{\partial p_{1}}{\partial z_{1}} \cdot \prod_{j=2}^{n} p_{j}^{\prime}\left(z_{j}\right) \neq 0$,

$$
\begin{gathered}
\left|z_{j} p_{j}^{\prime \prime}\left(z_{j}\right)\right| \leq(1-\alpha)\left|p_{j}^{\prime}\left(z_{j}\right)\right| \\
j=2, \ldots, n
\end{gathered}
$$

(2) $\sum_{l=1}^{n}\left|z_{1} \frac{\partial^{2} p_{1}}{\partial z_{1} \partial z_{l}}\right| \leq(1-\alpha)\left|\frac{\partial p_{1}}{\partial z_{1}}\right|$;
(3) $\left|z_{1}\right|^{p-1}\left|\frac{\left(\partial p_{1} / \partial z_{j}\right) \cdot\left(p_{j}^{\prime \prime}\left(z_{j}\right) / p_{j}^{\prime}\left(z_{j}\right)\right)}{\partial p_{1} / \partial z_{1}}\right|+\left|z_{1}\right|^{p-1}$

$$
\begin{gathered}
\times \sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1} / \partial z_{j} \partial z_{l}}{\partial p_{1} / \partial z_{1}}\right| \\
\leq\left(1-\alpha-\left|\frac{z_{j} p_{j}^{\prime \prime}\left(z_{j}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|\right)\left|z_{j}\right|^{p-2}, \\
j=2, \ldots, n-1
\end{gathered}
$$

$$
\text { (4) } \sum_{j=2}^{n-1}\left|\frac{f_{j}^{\prime \prime}\left(z_{n}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|\left|z_{j}\right|^{p-1}
$$

$$
+\sum_{j=2}^{n-1}\left|\frac{f_{j}^{\prime}\left(z_{n}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|z_{j}\right|^{p-1}
$$

$$
+\left|z_{1}\right|^{p-1} \sum_{j=2}^{n-1}\left|\frac{\left(f_{j}^{\prime \prime}\left(z_{n}\right) / p_{j}^{\prime}\left(z_{j}\right)\right)\left(\partial p_{1} / \partial z_{j}\right)}{\partial p_{1} / \partial z_{1}}\right|
$$

$$
+\left|z_{1}\right|^{p-1}
$$

$$
\times \sum_{j=2}^{n-1}\left|\frac{f_{j}^{\prime}\left(z_{n}\right)}{p_{j}^{\prime}\left(z_{j}\right)} \frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)} \frac{\partial p_{1}}{\partial z_{j}}\left(\frac{\partial p_{1}}{\partial z_{1}}\right)^{-1}\right|
$$

$$
+\left|z_{1}\right|^{p-1} \sum_{l=1}^{n} \frac{\partial^{2} p_{1} / \partial z_{l} \partial z_{n}}{\partial p_{1} / \partial z_{1}}
$$

$$
+\left|z_{1}\right|^{p-1}\left|\frac{\left(p_{n}^{\prime \prime}\left(z_{n}\right) / p_{n}^{\prime}\left(z_{n}\right)\right)\left(\partial p_{1} / \partial z_{n}\right)}{\partial p_{1} / \partial z_{1}}\right|
$$

$$
\begin{equation*}
\leq\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right)\left|z_{n}\right|^{p-2} \tag{36}
\end{equation*}
$$

for all $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}$, then $f \in K\left(B_{p}^{n}, \alpha\right)$.
Remark 11. Setting $p_{j}\left(z_{j}, z_{n}\right)=f_{j}\left(z_{j}\right), 2 \leq j \leq n-1, \alpha=0$ in Theorem 9 or $f_{j}\left(z_{n}\right)=0,2 \leq j \leq n, \alpha=0$ in Corollary 10, we get Theorem 2 in [9].

Example 12. Suppose that $p \geq 2,0 \leq \alpha<1,0<|\lambda| \leq 1-\alpha$ and $k$ is a positive integer such that $k<p \leq k+1$. Let

$$
f(z)=\left(z_{1}+\sum_{j=2}^{n-1} a_{j} z_{j}^{k+1}+a_{n} z_{1} z_{n}^{k+1}, z_{2}+b_{2} z_{2} z_{n}^{k+1}, \ldots, z_{n-1}+b_{n-1} z_{n-1} z_{n}^{k+1}, \frac{e^{\lambda z_{n}}-1}{\lambda}\right)
$$

$N(p)$

$$
= \begin{cases}\left(\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{1-\left|b_{j}\right|^{p}}\right)^{1 / p}+\frac{a}{1-a}\left(1+(k+1) \sum_{j=2}^{n-1} \frac{\left|b_{j}\right|}{1-\left|b_{j}\right|}\right), & p=k+1,  \tag{37}\\ \left(\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{1-\left|b_{j}\right|^{p}}\right)^{1 / p}\left(\frac{p-1}{k}\right)^{1 / q}\left(\frac{k-p+1}{k}\right)^{(k-p+1) / p}+\frac{a}{1-a}\left(1+(k+1) \sum_{j=2}^{n-1} \frac{\left|b_{j}\right|}{1-\left|b_{j}\right|}\right), & k<p<k+1,\end{cases}
$$

where $a=\max \left\{\left|a_{j}\right|: j=2, \ldots, n\right\}, b=\max \left\{\left|b_{j}\right|: j=\right.$ $2, \ldots, n-1\}$. If

$$
\begin{aligned}
a & \leq \frac{1-|\lambda|-\alpha}{(k+1)^{2}(k+1+|\lambda|)+1-|\lambda|-\alpha}<1, \\
b & \leq \frac{(k+|\lambda|)(1-\alpha)+|\lambda|}{(k+2-\alpha)(k+1+|\lambda|)}<1, \\
N(p) & \leq \frac{1-\alpha-|\lambda|}{(k+1)(k+1+|\lambda|)},
\end{aligned}
$$

for all $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}$, then $f(z) \in K\left(B_{p}^{n}, \alpha\right)$.
Proof. Put

$$
\begin{gather*}
p_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{1}+\sum_{j=2}^{n-1} a_{j} z_{j}^{k+1}+a_{n} z_{1} z_{n}^{k+1} \\
p_{n}\left(z_{n}\right)=\frac{e^{\lambda z_{n}}-1}{\lambda}  \tag{39}\\
p_{j}\left(z_{j}, z_{n}\right)=z_{j}+b_{j} z_{j} z_{n}^{k+1} \quad(j=2,3, \ldots, n-1) .
\end{gather*}
$$

Then,

$$
\begin{gathered}
\frac{\partial p_{1}}{\partial z_{1}}=1+a_{n} z_{n}^{k+1}, \\
\frac{\partial p_{1}}{\partial z_{j}}=(k+1) a_{j} z_{j}^{k} \quad(j=2,3, \ldots, n-1), \\
\frac{\partial p_{1}}{\partial z_{n}}=(k+1) a_{n} z_{1} z_{n}^{k}, \\
\frac{\partial^{2} p_{1}}{\partial z_{n}^{2}}=k(k+1) a_{n} z_{1} z_{n}^{k-1}, \\
\frac{\partial^{2} p_{1}}{\partial z_{j}^{2}}=k(k+1) a_{j} z_{j}^{k-1}, \\
\frac{\partial^{2} p_{1}}{\partial z_{1} \partial z_{n}}=\frac{\partial^{2} p_{1}}{\partial z_{n} \partial z_{1}}=(k+1) a_{n} z_{n}^{k} \\
\frac{\partial^{2} p_{1}}{\partial z_{1} \partial z_{j}}=0 \quad(j=2,3, \ldots, n-1), \\
\frac{\partial p_{j}}{\partial z_{j}}=1+b_{j} z_{n}^{k+1}, \\
\frac{\partial p_{j}}{\partial z_{n}}=(k+1) b_{j} z_{j} z_{n}^{k}, \\
\frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}=\frac{\partial^{2} p_{j}}{\partial z_{n} \partial z_{j}}=(k+1) b_{j} z_{n}^{k} \\
\frac{\partial^{2} p_{j}}{\partial z_{n}^{2}}=k(k+1) b_{j} z_{j} z_{n}^{k-1}, \\
p_{n}^{\prime}\left(z_{n}\right)=e^{\lambda z_{n}}, \\
p_{n}^{\prime \prime}\left(z_{n}\right)=\lambda p_{n}^{\prime}\left(z_{n}\right)
\end{gathered}
$$

so it follows from $a=\max \left\{\left|a_{j}\right|: j=2, \ldots, n\right\} \leq(1-|\lambda|-$ $\alpha) /\left((k+1)^{2}(k+1+|\lambda|)+1-|\lambda|-\alpha\right)<(1-\alpha) /(k+2-\alpha)<1$
and $b=\max \left\{\left|b_{j}\right|: j=2, \ldots, n-1\right\} \leq((k+|\lambda|)(1-\alpha)+$ $|\lambda|) /(k+2-\alpha)(k+1+|\lambda|) \leq(1-\alpha) /(k+2-\alpha)<1$ that

$$
\begin{gathered}
\left|\frac{\partial p_{1}}{\partial z_{1}}\right|=\left|1+a_{n} z_{n}^{k+1}\right| \geq 1-\left|a_{n}\right| \geq 1-a>0 \\
\left|\frac{\partial p_{j}}{\partial z_{j}}\right|=\left|1+b_{j} z_{n}^{k+1}\right| \geq 1-\left|b_{j}\right| \\
\geq 1-b>0 \quad(j=2,3, \ldots, n-1) \\
p_{n}^{\prime}\left(z_{n}\right)=e^{\lambda z_{n}} \neq 0
\end{gathered}
$$

By calculating straightforwardly, we obtain

$$
\begin{align*}
&(1-\alpha)\left|\frac{\partial p_{1}}{\partial z_{1}}\right|-\sum_{l=1}^{n}\left|z_{1} \frac{\partial^{2} p_{1}}{\partial z_{1} \partial z_{l}}\right| \\
&=(1-\alpha)\left|1+a_{n} z_{n}^{k+1}\right|-\left|(k+1) a_{n} z_{1} z_{n}^{k}\right| \\
& \geq(1-\alpha)\left(1-\left|a_{n}\right|\right)-(k+1)\left|a_{n}\right| \\
&=1-\alpha-(k+2-\alpha)\left|a_{n}\right| \\
&>1-\alpha-(k+2-\alpha) \frac{1-\alpha}{k+2-\alpha}=0, \\
&(1-\alpha)\left|\frac{\partial p_{j}}{\partial z_{j}}\right|-\left|z_{j} \frac{\partial^{2} p_{j}}{\partial z_{j}^{2}}\right|-\left|z_{j} \frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}\right|  \tag{42}\\
&=(1-\alpha)\left|1+b_{j} z_{n}^{k+1}\right|-(k+1)\left|b_{j} z_{j} z_{n}^{k}\right| \\
& \geq(1-\alpha)\left(1-\left|b_{j}\right|\right)-(k+1)\left|b_{j}\right| \\
&=1-\alpha-(k+2-\alpha)\left|b_{j}\right| \\
& \geq 1-\alpha-(k+2-\alpha) \frac{1-\alpha}{k+2-\alpha}=0, \\
& \quad(j=2, \ldots, n-1) \\
&\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|=|\lambda|\left|z_{n}\right| \leq|\lambda| \leq 1-\alpha .
\end{align*}
$$

By calculating straightforwardly, we also obtain

$$
\begin{aligned}
& \left|z_{j}\right|^{p-2}\left(1-\alpha-\frac{\left|z_{j} \partial^{2} p_{j} / \partial z_{j}^{2}\right|+\left|\left(\partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right)\right|}{\left(\partial p_{j} / \partial z_{j}\right)}\right) \\
& \quad-\frac{\left|z_{1}\right|^{p-1}}{\left|\partial p_{1} / \partial z_{1}\right|} \\
& \quad \times\left(\frac{\left|\partial p_{1} / \partial z_{j}\right|\left(\left|\partial^{2} p_{j} / \partial z_{j}^{2}\right|+\left|\partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right|\right)}{\left|\partial p_{j} / \partial z_{j}\right|}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1}}{\partial z_{j} \partial z_{l}}\right|\right) \\
& =\left|z_{j}\right|^{p-2}\left(1-\alpha-\left|\frac{(k+1) z_{j} b_{j} z_{n}^{k}}{1+b_{j} z_{n}^{k+1}}\right|\right) \\
& -\frac{\left|z_{1}\right|^{p-1}}{\left|1+a_{n} z_{n}^{k+1}\right|} \\
& \times\left(\left|\frac{(k+1) a_{j} z_{j}^{k}(k+1) b_{j} z_{n}^{k}}{b_{j} z_{n}^{k+1}}\right|\right. \\
& \left.+\left|k(k+1) a_{j} z_{j}^{k-1}\right|\right) \\
& \geq\left|z_{j}\right|^{p-2}\left(1-\alpha-\frac{(k+1)\left|b_{j}\right|}{1-\left|b_{j}\right|}\right) \\
& -\frac{1}{1-\left|a_{n}\right|}\left(\frac{(k+1)^{2}\left|a_{j}\right|\left|b_{j}\right|}{1-\left|b_{j}\right|}+k(k+1)\left|a_{j}\right|\right) \\
& \times\left|z_{j}\right|^{k-1} \\
& \geq\left|z_{j}\right|^{p-2}\left(1-\alpha-\frac{(k+1) b}{1-b}\right) \\
& -\frac{1}{1-a}\left(\frac{(k+1)^{2} a b}{1-b}+(k+1)^{2} a\right)\left|z_{j}\right|^{p-2} \\
& \geq\left|z_{j}\right|^{p-2}\left(1-\alpha-\frac{(k+1) b}{1-b}-\frac{(k+1) 2 a}{1-a} \frac{1}{1-b}\right) \\
& =\frac{\left|z_{j}\right|^{p-2}}{1-b}\left((1-\alpha)(1-b)-(k+1) b-\frac{(k+1)^{2}}{1-a} a\right) \\
& =\frac{\left|z_{j}\right|^{p-2}}{1-b}\left(1-\alpha-(k+2-\alpha) b-(k+1)^{2} \frac{a}{1-a}\right) \\
& \geq \frac{\left|z_{j}\right|^{p-2}}{1-b}(1-\alpha-(k+2-\alpha) \\
& \times \frac{(k+|\lambda|)(1-\alpha)+|\lambda|}{(k+2-\alpha)(k+1+|\lambda|)} \\
& -\frac{(k+1)^{2}(1-|\lambda|-\alpha)}{(k+1)^{2}(k+1+|\lambda|)+1-|\lambda|-\alpha} \\
& \left.\times \frac{(k+1)^{2}(k+1+|\lambda|)+1-|\lambda|-\alpha}{(k+1)^{2}(k+1+|\lambda|)}\right) \\
& =\frac{\left|z_{j}\right|^{p-2}}{1-b}\left(1-\alpha-\frac{(k+|\lambda|)(1-\alpha)+|\lambda|}{k+1+|\lambda|}-\frac{1-|\lambda|-\alpha}{k+1+|\lambda|}\right) \\
& =0 \text {. } \\
& \text { Set } q=p /(p-1) \text {, then by Hölder's inequality, we have } \\
& \sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{j} \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
& =\sum_{j=2}^{n-1}\left|\frac{(k+1) b_{j} z_{n}^{k}}{1+b_{j} z_{n}^{k+1}}\right|\left|z_{j}\right|^{p-1} \\
& \leq(k+1) \sum_{j=2}^{n-1} \frac{\left|b_{j}\right|\left|z_{n}\right|^{k-1}}{1-\left|b_{j}\right|}\left|z_{j}\right|^{p-1} \\
& \leq(k+1)\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left|b_{j}\right|\right)^{p}}\right]^{1 / p} \\
& \times\left[\sum_{j=2}^{n-1}\left|z_{j}\right|^{(p-1) q}\right]^{1 / q}\left|z_{n}\right|^{k-1} \\
& \leq(k+1)\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left|b_{j}\right|\right)^{p}}\right]^{1 / p} \\
& \times\left(1-\left|z_{1}\right|^{p}-\left|z_{n}\right|^{p}\right)^{1 / q}\left|z_{n}\right|^{k-1} \\
& \leq(k+1)\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left|b_{j}\right|\right)^{p}}\right]^{1 / p} \varphi\left(\left|z_{n}\right|,\left|z_{1}\right|\right)\left|z_{n}\right|^{p-2}, \\
& \sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{n}^{2}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
& =\sum_{j=2}^{n-1}\left|\frac{k(k+1) b_{j} z_{j} z_{n}^{k+1}}{1+b_{j} z_{n}^{k+1}}\right|\left|z_{j}\right|^{p-1} \\
& \leq k(k+1) \sum_{j=2}^{n-1} \frac{\left|b_{j}\right|\left|z_{n}\right|^{k-1}}{1-\left|b_{j}\right|}\left|z_{j}\right|^{p-1} \\
& \leq k(k+1)\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left|b_{j}\right|\right)^{p}}\right]^{1 / p} \\
& \times\left[\sum_{j=2}^{n-1}\left|z_{j}\right|^{(p-1) q}\right]^{1 / q}\left|z_{n}\right|^{k-1}, \\
& \leq k(k+1)\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left|b_{j}\right|\right)^{p}}\right]^{1 / p} \\
& \times\left(1-\left|z_{1}\right|^{p}-\left|z_{n}\right|^{p}\right)^{1 / q}\left|z_{n}\right|^{k-1} \tag{43}
\end{align*}
$$

$$
\begin{align*}
& \leq k(k+1)\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left|b_{j}\right|\right)^{p}}\right]^{1 / p} \\
& \times \varphi\left(\left|z_{n}\right|,\left|z_{1}\right|\right)\left|z_{n}\right|^{p-2}, \\
& \left.\sum_{j=2}^{n-1}\left|\frac{\partial p_{j} / \partial z_{n}}{\partial p_{j}}\right| \partial z_{j}| | \frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}| | z_{j}\right|^{p-1} \\
& =\sum_{j=2}^{n-1}\left|\frac{(k+1) b_{j} z_{j} z_{z}^{k}}{1+b_{j} z_{n}^{k+1}}\right||\lambda|\left|z_{j}\right|^{p-1} \\
& \leq(k+1)|\lambda| \sum_{j=2}^{n-1} \frac{\left|b_{j}\right|\left|z_{n}\right|^{k-1}}{1-\left|b_{j}\right|}\left|z_{j}\right|^{p-1} \\
& \leq(k+1)|\lambda|\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left.\left|b_{j}\right|\right|^{p}\right.}\right]^{1 / p} \\
& \times\left[\sum_{j=2}^{n-1}\left|z_{j}\right|^{(p-1) q}\right]^{1 / q}\left|z_{n}\right|^{k-1} \\
& \leq(k+1)|\lambda|\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left.\left|b_{j}\right|\right|^{p}\right.}\right]^{1 / p} \\
& \times\left(1-\left|z_{1}\right|^{p}-\left|z_{n}\right|^{p}\right)^{1 / / /}\left|z_{n}\right|^{k-1} \\
& \leq(k+1)|\lambda|\left[\sum_{j=2}^{n-1} \frac{\left|b_{j}\right|^{p}}{\left(1-\left.\left|b_{j}\right|\right|^{p}\right.}\right]^{1 / p} \\
& \times \varphi\left(\left|z_{n}\right|,\left|z_{1}\right|\right)\left|z_{n}\right|^{p-2}, \tag{44}
\end{align*}
$$

where $\psi(x)=\left(1-x^{p}-y^{p}\right)^{1 / q} x^{k-p+1}, x, y \in[0,1]$.
When $p=k+1$, we have $\max _{0 \leq x, y \leq 1} \psi(x, y)=1$.
When $k<p<k+1$, we have $0<k-p+1<1$ and

$$
\begin{align*}
\psi_{x}(x, y)= & \left(1-x^{p}-y^{p}\right)^{(1 / q)-1} x^{k-p} \\
& \times\left[(k-p+1)\left(1-y^{p}\right)-k x^{p}\right]  \tag{45}\\
\psi_{y}(x, y)= & (1-p) y^{p-1}\left(1-x^{p}-y^{p}\right)^{(1 / q)-1} x^{k-p+1},
\end{align*}
$$

so

$$
\begin{aligned}
\max _{0 \leq x, y \leq 1} \psi(x, y) & =\psi\left(\sqrt{\frac{k-p+1}{k}}, 0\right) \\
& =\left(\frac{p-1}{k}\right)^{1 / q}\left(\frac{k-p+1}{k}\right)^{(k-p+1) / p},
\end{aligned}
$$

$$
\begin{align*}
& \frac{\left|z_{1}\right|^{p-1}}{\left|\partial p_{1} / \partial z_{1}\right|} \\
& \times\left(\sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1}}{\partial z_{n} \partial z_{l}}\right|\right. \\
& +\sum_{j=2}^{n-1}\left(\left|\frac{\partial p_{1}}{\partial z_{j}}\right|\right. \\
& \times\left(\left|\frac{\partial^{2} p_{j}}{\partial z_{j} \partial z_{n}}\right|+\left|\frac{\partial^{2} p_{j}}{\partial z_{n}^{2}}\right|\right) \\
& \left.\times\left(\left|\frac{\partial p_{j}}{\partial z_{j}}\right|\right)^{-1}\right) \\
& +\left|\frac{\partial p_{1}}{\partial z_{n}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right| \\
& \left.+\sum_{j=2}^{n-1}\left|\frac{\partial p_{1}}{\partial z_{j}}\right|\left|\frac{\partial p_{j} / \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right) \\
& \leq \frac{1}{1-\left|a_{n}\right|}\left[(k+1)\left|a_{n}\right|+k(k+1)\left|a_{n}\right|\right. \\
& +\sum_{j=2}^{n-1}(k+1)\left|a_{j}\right| \frac{(k+1)^{2}\left|b_{j}\right|}{1-\left|b_{j}\right|} \\
& +(k+1)\left|a_{n}\right||\lambda| \\
& \left.+\sum_{j=2}^{n-1} \frac{(k+1)^{2}|\lambda|\left|a_{j}\right|\left|b_{j}\right|}{1-\left|b_{j}\right|}\right] \\
& \times\left|z_{n}\right|^{p-2} \\
& \leq \frac{(k+1)(k+1+\lambda) a}{1-a} \\
& \times\left[1+(k+1) \sum_{j=2}^{n-1} \frac{\left|b_{j}\right|}{1-\left|b_{j}\right|}\right]\left|z_{n}\right|^{p-2} . \tag{46}
\end{align*}
$$

Hence, we have

$$
\begin{aligned}
& \sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{j} \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1}+\sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{j} / \partial z_{n}^{2}}{\partial p_{j} / \partial z_{j}}\right|\left|z_{j}\right|^{p-1} \\
& \quad+\sum_{j=2}^{n-1}\left|\frac{\partial p_{j} / \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\left|z_{j}\right|^{p-1}+\frac{\left|z_{1}\right|^{p-1}}{\left|\partial p_{1} / \partial z_{1}\right|} \\
& \quad \times\left(\sum_{j=2}^{n-1}\left|\frac{\partial^{2} p_{1}}{\partial z_{n} \partial z_{j}}\right|\right.
\end{aligned}
$$

$$
\begin{align*}
& \quad+\sum_{j=2}^{n-1} \frac{\left|\partial p_{1} / \partial z_{j}\right|\left(\left|\partial^{2} p_{j} / \partial z_{j} \partial z_{n}\right|+\left|\partial^{2} p_{j} / \partial z_{n}^{2}\right|\right)}{\left|\partial p_{j} / \partial z_{j}\right|} \\
& \quad+\left|\frac{\partial p_{1}}{\partial z_{n}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right| \\
& \left.\quad+\sum_{j=2}^{n-1}\left|\frac{\partial p_{1}}{\partial z_{j}}\right|\left|\frac{\partial p_{j} / \partial z_{n}}{\partial p_{j} / \partial z_{j}}\right|\left|\frac{p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right) \\
& \leq(k+1)(k+1+\lambda) N(p)\left|z_{n}\right|^{p-2} \\
& \leq(k+1)(k+1+\lambda) \frac{1-\alpha-|\lambda|}{(k+1)(k+1+|\lambda|)}\left|z_{n}\right|^{p-2} \\
& \leq(1-\alpha-|\lambda|)\left|z_{n}\right|^{p-2} \\
& \leq\left(1-\alpha-\left|\lambda z_{n}\right|\right)\left|z_{n}\right|^{p-2} \\
& =\left|z_{n}\right|^{p-2}\left(1-\alpha-\left|\frac{z_{n} p_{n}^{\prime \prime}\left(z_{n}\right)}{p_{n}^{\prime}\left(z_{n}\right)}\right|\right) . \tag{47}
\end{align*}
$$

By Theorem 6, we obtain that $f \in K\left(B_{p}^{n}, \alpha\right)$. The proof is complete.

By applying the same method of the proof for Example 12, we only need to let $2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)$ instead of $|\lambda|$, we may prove the following result.

Example 13. Suppose that $p \geq 2,0 \leq \alpha<1,0 \leq\left|b_{n}\right| \leq(1-$ $\alpha) /(4-2 \alpha)$ and $k$ is a positive integer such that $k<p \leq k+1$. Let

$$
\begin{gather*}
f(z)=\left(z_{1}+\sum_{j=2}^{n-1} a_{j} z_{j}^{k+1}+a_{n} z_{1} z_{n}^{k+1}, z_{2}+b_{2} z_{2} z_{n}^{k+1}, \ldots,\right. \\
\left.z_{n-1}+b_{n-1} z_{n-1} z_{n}^{k+1}, z_{n}+b_{n} z_{n}^{2}\right) \tag{48}
\end{gather*}
$$

where $a=\max \left\{\left|a_{j}\right|: j=2, \ldots, n\right\}$ and $b=\max \left\{\left|b_{j}\right|: j=\right.$ $2, \ldots, n-1\}$. If

$$
\begin{equation*}
a \leq \frac{1-\left(2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)-\alpha}{(k+1)^{2}\left(k+1+2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)+1-\left(2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)-\alpha}<1 \tag{49}
\end{equation*}
$$

$b \leq\left(\left(k+\left(2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)\right)(1-\alpha)+\left(2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)\right) /(k+$ $2-\alpha)\left(k+1+\left(2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)\right)<1$, and

$$
\begin{align*}
N(p) & \leq \frac{1-\alpha-\left(2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)}{(k+1)\left(k+1+\left(2\left|b_{n}\right| /\left(1-2\left|b_{n}\right|\right)\right)\right)} \\
& =\frac{1-(4-2 \alpha)\left|b_{n}\right|-\alpha}{(k+1)\left(k+1-2 k\left|b_{n}\right|\right)} \tag{50}
\end{align*}
$$

where $N(p)$ is defined in Example 12, then $f(z) \in K\left(B_{p}^{n}, \alpha\right)$.
By applying the same method of the proof for Theorem 2, we may get the following result.

Theorem 14. Suppose that $0 \leq \alpha<1, n \geq 2, p \geq 2$ and $l$ is a positive integer such that $l<p \leq l+1$. Let

$$
\begin{align*}
& f(z)=\left(p_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right), p_{2}\left(z_{2}\right)+f_{2}\left(z_{k}\right), \ldots,\right. \\
& \left.p_{k}\left(z_{k}\right), \ldots p_{n}\left(z_{n}\right)+f_{n}\left(z_{k}\right)\right) \quad(2 \leq k \leq n), \tag{51}
\end{align*}
$$

where $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in B_{p}^{n}, f_{k}\left(z_{k}\right)=0, f_{j}:$ $U \rightarrow C$ is holomorphic with $f_{j}(0)=0, f_{j}^{\prime}(0)=$ $0(j=2,3, \ldots, n-1), p_{j} \in H(U)(j=2,3, \ldots, n)$ and $p_{1}\left(z_{1}, \ldots, z_{n}\right): B_{p}^{n} \rightarrow C$ is holomorphic with $p_{1}(0,0, \ldots, 0)=$
$0,\left(\partial p_{1} / \partial z_{1}\right)(0,0, \ldots, 0)=1,\left(\partial p_{1} / \partial z_{l}\right)(0,0, \ldots, 0)=0(l=$ $2,3, \ldots, n)$. If $f$ satisfies the following conditions:
(1) $\frac{\partial p_{1}}{\partial z_{1}} \cdot \prod_{j=2}^{n} p_{j}^{\prime}\left(z_{j}\right) \neq 0$,

$$
\left|z_{j} p_{j}^{\prime \prime}\left(z_{j}\right)\right| \leq(1-\alpha)\left|p_{j}^{\prime}\left(z_{j}\right)\right|, \quad j=2, \ldots, n ;
$$

(2) $\sum_{l=1}^{n}\left|z_{1} \frac{\partial^{2} p_{1}}{\partial z_{1} \partial z_{l}}\right| \leq(1-\alpha)\left|\frac{\partial p_{1}}{\partial z_{1}}\right|$;
(3) $\left|z_{1}\right|^{p-1}\left|\frac{\left(\partial p_{1} / \partial z_{j}\right) \cdot\left(p_{j}^{\prime \prime}\left(z_{j}\right) / p_{j}^{\prime}\left(z_{j}\right)\right)}{\partial p_{1} / \partial z_{1}}\right|$

$$
\begin{aligned}
& +\left|z_{1}\right|^{p-1} \sum_{l=1}^{n}\left|\frac{\partial^{2} p_{1} / \partial z_{j} \partial z_{l}}{\partial p_{1} / \partial z_{1}}\right| \\
& \leq\left(1-\alpha-\left|\frac{z_{j} p_{j}^{\prime \prime}\left(z_{j}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|\right)\left|z_{j}\right|^{p-2}, \\
& \quad(j=2, \ldots, k-1, k+1, \ldots, n-1) ;
\end{aligned}
$$

(4) $\sum_{j=2, j \neq k}^{n}\left|\frac{f_{j}^{\prime \prime}\left(z_{k}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|\left|z_{j}\right|^{p-1}$

$$
\begin{align*}
& +\sum_{j=2, j \neq k}^{n}\left|\frac{f_{j}^{\prime}\left(z_{k}\right)}{p_{j}^{\prime}\left(z_{j}\right)}\right|\left|\frac{p_{k}^{\prime \prime}\left(z_{k}\right)}{p_{k}^{\prime}\left(z_{k}\right)}\right|\left|z_{j}\right|^{p-1} \\
& +\sum_{j=2, j \neq k}^{n}\left|\frac{f_{j}^{\prime \prime}\left(z_{k}\right)}{p_{j}^{\prime}\left(z_{j}\right)} \frac{\partial p_{1}}{\partial z_{j}}\left(\frac{\partial p_{1}}{\partial z_{1}}\right)^{-1}\right|\left|z_{1}\right|^{p-1} \\
& +\sum_{j=2, j \neq k}^{n} \left\lvert\, \frac{f_{j}^{\prime}\left(z_{k}\right)}{p_{j}^{\prime}\left(z_{j}\right)} \frac{p_{k}^{\prime \prime}\left(z_{k}\right)}{p_{k}^{\prime}\left(z_{k}\right)}\right. \\
& \left.\times \frac{\partial p_{1}}{\partial z_{j}}\left(\frac{\partial p_{1}}{\partial z_{1}}\right)^{-1} \right\rvert\, \\
& +\sum_{l=1}^{n}\left|\frac{\left(\partial^{2} p_{1} / \partial z_{l} \partial z_{k}\right)}{\left(\partial p_{1} / \partial z_{1}\right)}\right|\left|z_{1}\right|^{p-1} \\
& +\left|\frac{\left(p_{k}^{\prime \prime}\left(z_{k}\right) / p_{k}^{\prime}\left(z_{k}\right)\right)\left(\partial p_{1} / \partial z_{k}\right)}{\left(\partial p_{1} / \partial z_{1}\right)}\right|\left|z_{1}\right|^{p-1} \\
& \leq\left(1-\alpha-\left|\frac{z_{k} p_{k}^{\prime \prime}\left(z_{k}\right)}{p_{k}^{\prime}\left(z_{k}\right)}\right|\right)\left|z_{k}\right|^{p-2},
\end{align*}
$$

for all $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{p}^{n}$, then $f \in K\left(B_{p}^{n}, \alpha\right)$.

## Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

## Acknowledgments

Kit Ian Kou acknowledges financial support from the research grant of the University of Macau nos. MYRG142 (Y3-L2)-FST11-KKI, MRG002/KKI/2013/FST, and MYRG099 (Y1-L3)-FST13-KKI and MRG012/KKI/2014/FST, and the Macao Science and Technology Development Fund nos. FDCT/094/2011A and FDCT/099/2012/A3 and MSAR/041/2012/A. The work was financially supported by the National Natural Science Foundation of China (61370229), the National Key Technology R and D Program of China(2013BAH72B01), the Natural Science Foundation of GDP (S2013010015178), the Science-Technology Project of Guangdong Province (2012A032200018); the ScienceTechnology Project of DEGDP (2012KJCX0037). The authors are also grateful to the anonymous referees and

Professor Tatsuhiro Honda for making many suggestions that improved the readability of this paper.

## References

[1] G. Kohr, "On some alpha convex mappings on the unit ball of $C^{n}$," Demonstratio Mathematica, vol. 31, no. 1, pp. 209-222, 1998.
[2] H. Liu and K.-P. Lu, "Two subclasses of starlike mappings in several complex variables," Chinese Annals of Mathematics A, vol. 21, no. 5, pp. 533-546, 2000 (Chinese).
[3] M. -S. Liu, "Biholomorphic convex mappings of order $\alpha$ on $B_{p}^{n}$ ", Complex Variables and Elliptic Equations, vol. 58, no. 7, pp. 899908, 2013.
[4] M.-S. Liu and Y.-C. Zhu, "Biholomorphic convex mappings of order $\alpha$ on the unit ball in Hilbert spaces," Journal of Mathematical Analysis and Applications, vol. 406, no. 1, pp. 7585, 2013.
[5] Y. C. Zhu, " $\alpha$-convex mappings on $B_{P}$," Acta Mathematica Scientia A, vol. 25, no. 1, pp. 84-92, 2005 (Chinese).
[6] M.-S. Liu and X.-M. Tang, "Sufficient conditions for $\varepsilon$ quasiconvex mappings in a complex Banach space," Complex Variables and Elliptic Equations, vol. 58, no. 9, pp. 1273-1282, 2013.
[7] K. A. Roper and T. J. Suffridge, "Convex mappings on the unit ball of C ${ }^{n}$ ", Journal d'Analyse Mathématique, vol. 65, pp. 333-347, 1995.
[8] K. A. Roper and T. J. Suffridge, "Convexity properties of holomorphic mappings in $C^{n}$," Transactions of the American Mathematical Society, vol. 351, pp. 1803-1833, 1999.
[9] M.-S. Liu and Y.-C. Zhu, "Some sufficient conditions for biholomorphic convex mappings on $B_{p}^{n}$ ", Journal of Mathematical Analysis and Applications, vol. 316, no. 1, pp. 210-228, 2006.

