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Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to
constant heat flux. Free convection heat transfer induces thermal boundary layerwithin a semi-infinite layer of Boussinesq fluid.The
nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system
of ordinary differential equations (ODE) using two-parameter groups.This technique reduces the number of independent variables
by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the
shootingmethod.The thermal and velocity boundary layers are studied by themeans of Prandtl number and non-Newtonian power
index plotted in curves.

1. Introduction

Non-Newtonian fluids such as foodstuffs, pulps, glues, ink,
polymers, molten plastics, or slurries are increasingly used
in various manufacturing, industrial, and engineering appli-
cations, particularly in the chemical engineering processes.
Many simultaneous transport processes exist in industrial or
engineering applications. For instance, mechanical forming
processes include extrusion and melt spinning where the
extruded material issues through a die. The ambient fluid
status is stagnant but a flow is induced adjacent to the
material being extruded, due to the moving surface. Noting
that the fluids employed in material processing or protective
coatings are in general non-Newtonian, so the study of non-
Newtonian liquid films is important.

The problem of heat and mass transfer from vertical plate
has been the subject of great interest for several researchers
in past decades. As an earlier study, Wang [1] considered

the flow problem within a finite liquid film of Newtonian
fluid over an unsteady stretching sheet. Later, Andersson
et al. [2] investigated the heat transfer characteristics of
the hydrodynamic problem solved by Wang [1]. Usha and
Sridharan [3] regarded a similar problem of axisymmetric
flow in a liquid film. The effect of thermocapillarity on the
flow and heat transfer in a thin liquid film was studied by
Dandapat et al. [4]. The free-surface flow of non-Newtonian
liquids in thin films is a widely occurring phenomenon in
various industrial applications, for instance, in polymer and
plastic fabrication, food processing, and coating equipment.
There are limited papers on gravity-driven power-law film
flows [5–7] and the studies of non-Newtonian film flows on
an unsteady stretching surface remain little.The heat transfer
aspect of such problem has also been considered by Chen [8].

The most distinctive works of Vajravelu and Hadjinico-
laou [9] and Mehmood and Ali [10] are available in the
literature describing the heat transfer characteristics in the
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laminar boundary layer of a viscous fluid over a linearly
stretching continuous surface with variable wall tempera-
ture and the incompressible generalized three-dimensional
viscous flow with heat transfer analysis in the presence of
viscous dissipation generated due to uniform stretching of the
plane wall, respectively. Unsteadiness of the similar problems
is stated by many researchers. For instance, Tsai et al. [11]
studied nonuniform heat source/sink effect on the flow and
heat transfer fromanunsteady stretching sheet through a qui-
escent fluidmediumextending to infinity.Theboundary layer
equations are converted by using similarity analysis to be a
set of ordinary differential equations including unsteadiness
parameter.

Recently, Sahoo and Do [12] investigated the entrained
flow and heat transfer of an electrically conducting non-
Newtonian fluid due to a stretching surface subject to partial
slip. The constitutive equation of the non-Newtonian fluid
is modeled by that for a third grade fluid. They found out
that slip decreases the momentum boundary layer thickness
and increases the thermal boundary layer thickness, whereas
the third grade fluid parameter has an opposite effect on the
thermal and velocity boundary layers.

Many efforts were made to find analytical and numer-
ical solutions, imposing certain status and using various
mathematical concepts to the same problem [13–19]. The
mathematical technique employed in the current analysis
is the two-parameter group transformation, which leads to
a similarity representation of the problem. Morgan [20]
presented a theorywhich led to amendments over earlier sim-
ilarity methods and Michal [21] extended Morgan’s theory.
Group methods, as a class of methods which assuage to a
reduction of the number of independent variables, were first
presented in [22, 23]. Moran and Gaggioli [24, 25] indicated
a general systematic group formalism for similarity study,
where a given combination of partial differential equations
was reduced to a system of ordinary differential equations
[25–34].

In the present work, we provide analytical solution for the
unsteady free convection non-Newtonian fluids flow over a
continuous moving vertical plate subjected to constant heat
flux using a two-parameter group. The specified technique
is explained at the following parts. Under the employment
of a two-parameter group, the governing partial differential
equations and boundary conditions are reduced to ordinary
differential equations with the appropriate boundary condi-
tions.The obtained differential equations are solved using the
shooting method.

2. Mathematical Formulation

Theunsteady laminar flow of an incompressible fluid induced
by a ceaseless moving sheet placed in a fluid at quiescent is
considered.The vertical flat sheet illustrated in Figure 1 arises
from a thin slit at 𝑥 = 𝑦 = 0 and is subsequently stretched
vertically. The positive 𝑥 and 𝑦coordinates are measured
along the direction of the moving film with the slot as the
origin and the normal to the sheet, respectively. Constant
heat flux, 𝑞

𝑤
, is imposed to the flat sheet, giving rise to a
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Figure 1: Physical model for laminar flow over stretching sheet.

buoyancy force, while the ambient fluid is kept at a constant
temperature, 𝑇

∞
. The boundary layer equations governing

the free convection flow over the moving sheet are expressed
as follows:

𝜕𝑢
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(1)

where the certain boundary conditions are

𝑢
∗

(𝑥, 𝑦, 0) = 𝑢
∗

0
(𝑥, 𝑦) , V (𝑥, 𝑦, 0) = V

0
(𝑥, 𝑦) ,

𝑇 (𝑥, 𝑦, 0) = 𝑇
0
(𝑥, 𝑦) , 𝑢

∗

(𝑥, 0, 𝑡) = 𝑢
𝑤
(𝑥, 𝑡) ,

V (𝑥, 0, 𝑡) = 0.

(2a)

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑦

=

−𝑞
𝑤
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, 𝑢
∗

(𝑥, 𝑦, 𝑡) = 0, 𝑇 (𝑥, 𝑦, 𝑡) = 𝑇
∞

as 𝑦 → +∞.

(2b)

𝑢
∗ and V are velocity components related to the 𝑥 and
𝑦 coordinates. 𝑇, 𝑔, and 𝑛 are fluid temperature, gravity,
and power index of non-Newtonian fluid, respectively. Pr
is defined as the ratio of kinematic viscosity (𝜐) to thermal
diffusion (𝛼). 𝛽 is thermal expansion coefficient at constant
pressure where 𝑢∗

0
, V
0
, and 𝑇

0
are initial velocity components

and initial temperature. 𝑢
𝑤
and 𝑇

𝑤
are fluid velocity and

temperature on vertical moving sheet. Dimensionless 𝑥-
velocity and temperature are defined using the following
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relationships: 𝑢 = 𝑢
∗

/𝑢
𝑤
and 𝜃(𝑥, 𝑦, 𝑡) = ((𝑇(𝑥, 𝑦, 𝑡) −

𝑇
∞
)/𝑞
𝑤
𝑥)𝑘√Re

𝑥
. Now, (1) is rewritten in the form
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and boundary conditions are

𝑢 (𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦) , V (𝑥, 𝑦, 0) = V

0
(𝑥, 𝑦) ,

𝜃 (𝑥, 𝑦, 0) = 𝜃
0
(𝑥, 𝑦) , 𝑢 (𝑥, 0, 𝑡) = 1, V (𝑥, 0, 𝑡) = 0,

(6a)

𝜕𝜃 (𝑥, 0, 𝑡)

𝜕𝑦

= −

√Re
𝑥

𝑥

, 𝑢 (𝑥, 𝑦, 𝑡) = 0, 𝜃 (𝑥, 𝑦, 𝑡) = 0

as 𝑦 → +∞.

(6b)

3. Group Formulation of the Problem

3.1. Group Formulation. The problem is solved by employing
a two-parameter group transformation to the partial differ-
ential equations of (3) to (5). This transformation decreases
the three independent variables (𝑥; 𝑦; 𝑡) to one similarity
variable; 𝜂(𝑥; 𝑦; 𝑡) and the governing equations of (3) to
(5) are transformed to a system of ordinary differential
equations in terms of the similarity variable 𝜂.This technique
is based on a class of transformation, namely, 𝐺, including
two parameters (𝑎

1
, 𝑎
2
):
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where 𝑆 is representative for 𝑥, 𝑦, 𝑡, 𝑢
𝑤
, V, and 𝜃.𝐶𝑠 and𝐾𝑠 are

real valued and at least differentiable in their real arguments
(𝑎
1
, 𝑎
2
). Dependent variables and related differentiates are as

follows via chain rule operations:
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(8)

For instance, (3) is transformed as follows:
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1
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𝐾
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= 𝐾
𝑢
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= 𝐾
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= 𝐾
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= 𝐾
𝑦

= 0, (13)
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(𝐶
𝑢

)
2

(𝐶
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𝑤
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𝑥
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𝐶
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=
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𝑤
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𝑦
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= 𝐻
2
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1
, 𝑎
2
) ,
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and we have

𝐾
𝑢

= 𝐾
V
= 𝐾
𝑢
𝑤

= 𝐾
𝜃

= 0. (15)

Employing invariant transformation for boundary conditions
results in

𝐾
𝑡

= 𝐾
𝑦

= 0 (16)

𝐶
𝑢

= 1. (17)

Invoking (12) to (15) and (17) reduces to

𝐶
𝑥

= 𝐶
𝑦

, 𝐶
𝑡
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𝑦
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𝐶
𝑢
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= 𝐶
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𝑦
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𝑦
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{
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𝑦
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This group converts invariantly the differential equations of
(3) to (5) and the initial and boundary conditions (6a) and
(6b).

3.2.TheComplete Set of Absolute Invariants. Thecomplete set
of absolute invariants is as follows:

(i) the absolute invariants of the independent variables
(𝑥, 𝑦, 𝑡) are 𝜂 = 𝜂(𝑥, 𝑦, 𝑡);

(ii) the absolute invariants of the dependent variables
(𝑢, V, 𝑢

𝑤
, 𝜃) are

𝑔
𝑗
(𝑥, 𝑦, 𝑡 : 𝑢, 𝑢

𝑤
, V, 𝜃) = 𝐹

𝑗
(𝜂 (𝑥, 𝑦, 𝑡)) , 𝑗 = 1, 2, 3, 4.

(20)

The basic theorem in group theory asserts that a function
𝑔
𝑗
(𝑥, 𝑦, 𝑡 : 𝑢, 𝑢

𝑤
, V, 𝜃) is an absolute invariant of a two-

parameter group if it satisfies the following two first-order
linear differential equations:

13

∑

𝑖=1

(𝛼
𝑖
𝑆
𝑖
+ 𝛼
𝑖+1
)

𝜕𝑔

𝜕𝑆
𝑖

= 0,

13

∑

𝑖=1

(𝛽
𝑖
𝑆
𝑖
+ 𝛽
𝑖+1
)

𝜕𝑔

𝜕𝑆
𝑖

= 0, (21)

where 𝛼
1
= (𝜕𝐶

𝑥

/𝜕𝑎
1
)(𝑎
0

1
, 𝑎
0

2
), 𝛼
2
= (𝜕𝐾

𝑥

/𝜕𝑎
1
)(𝑎
0

1
, 𝑎
0

2
),

𝛽
1
= (𝜕𝐶

𝑥

/𝜕𝑎
2
)(𝑎
0

1
, 𝑎
0

2
), 𝛽
2
= (𝜕𝐾

𝑥

/𝜕𝑎
2
)(𝑎
0

1
, 𝑎
0

2
), and so

forth; (𝑎0
1
, 𝑎
0

2
) are the identity elements of the group.

The absolute invariant 𝜂(𝑥, 𝑦, 𝑡) of the independent vari-
ables (𝑥, 𝑦, 𝑡) is determined using (21):

(𝛼
1
𝑥 + 𝛼
2
)

𝜕𝜂

𝜕𝑥

+ 𝛼
3
𝑦

𝜕𝜂

𝜕𝑦

+ 𝛼
5
𝑡

𝜕𝜂

𝜕𝑡

= 0,

(𝛽
1
𝑥 + 𝛽
2
)

𝜕𝜂

𝜕𝑥

+ 𝛽
3
𝑦

𝜕𝜂

𝜕𝑦

+ 𝛽
5
𝑡

𝜕𝜂

𝜕𝑡

= 0,

(22)

where 𝛼
4
= 𝛽
4
= 𝐾
𝑦

= 0 and 𝛼
6
= 𝛽
6
= 𝐾
𝑡

= 0.
Elimination of 𝑦(𝜕𝜂/𝜕𝑦) and 𝜕𝜂/𝜕𝑥 from (22) yields

(𝜆
31
𝑥 + 𝜆
32
)

𝜕𝜂

𝜕𝑥

+ 𝜆
35
𝑡

𝜕𝜂

𝜕𝑡

= 0, (23a)

(𝜆
31
𝑥 + 𝜆
32
) 𝑦

𝜕𝜂

𝜕𝑦

+ (𝜆
15
𝑥 + 𝜆
25
) 𝑡

𝜕𝜂

𝜕𝑡

= 0, (23b)

where 𝜆
𝑖𝑗
= 𝛼
𝑖
𝛽
𝑗
− 𝛼
𝑗
𝛽
𝑖
and 𝑖, 𝑗 = 1, 2, 3, 4, 5. Invoking (21)

and definitions of 𝛼 and 𝛽we get 𝛼
5
= 2𝛼
3
and 𝛽

5
= 2𝛽
3
; thus

𝜆
35
= 𝛼
3
𝛽
5
− 𝛼
5
𝛽
3
will assuage to zero. Using (23a) we obtain

𝜕𝜂/𝜕𝑥 = 0 indicating that 𝜂 is dependent on 𝑦 and 𝑡. Solving
(23b), we get

𝜂 = 𝑦𝜋 (𝑡) , (24)

where 𝜋(𝑡) = 𝑎𝑡𝑏 and 𝑎 and 𝑏 are arbitrary constants.
Simultaneously, the absolute invariants of the dependent

variables 𝑢, V, 𝑢
𝑤
, and 𝜃 are obtained from the group transfor-

mation (19):

𝑔
1
(𝑥, 𝑦, 𝑡; 𝑢) = 𝑢 (𝜂) ,

𝑔
2
(𝑥, 𝑦, 𝑡; 𝑢) = 𝜃 (𝜂) .

(25)

𝑔
3
(𝑥, 𝑡; 𝑢

𝑤
) is obtained using (21) as

(𝛼
1
𝑥 + 𝛼
2
)

𝜕𝑔
3

𝜕𝑥

+ (𝛼
5
𝑡 + 𝛼
6
)

𝜕𝑔
3

𝜕𝑡

+ (𝛼
11
𝑢
𝑤
+ 𝛼
12
)

𝜕𝑔
3

𝜕𝑢
𝑤

= 0,

(26a)

(𝛽
1
𝑥 + 𝛽
2
)

𝜕𝑔
3

𝜕𝑥

+ (𝛽
5
𝑡 + 𝛽
6
)

𝜕𝑔
3

𝜕𝑡

+ (𝛽
11
𝑢
𝑤
+ 𝛽
12
)

𝜕𝑔
3

𝜕𝑢
𝑤

= 0.

(26b)

Eliminating terms of 𝜕𝑔
3
/𝜕𝑥 and 𝜕𝑔

3
/𝜕𝑡 from ((26a) and

(26b)) results in

𝑔
3
(𝑥, 𝑡; 𝑢

𝑤
) = 𝜙
1
(

𝑢
𝑤

𝜔 (𝑥, 𝑡)

) = 𝐸 (𝜂) . (27)

Similarly, for 𝑔
4
(𝑥, 𝑡; V),

𝑔
4
(𝑥, 𝑡; V) = 𝜙

2
(

V
Γ (𝑥, 𝑡)

) = 𝐹 (𝜂) , (28)

where 𝜔(𝑥, 𝑡), Γ(𝑥, 𝑡), 𝐸(𝜂), and 𝐹(𝜂) are functions to be
determined. Without loss of generality, the 𝜙’s in (27) and
(28) are selected to be identity functions; hence the functions
𝑢
𝑤
(𝑥, 𝑡) and V(𝑥, 𝑦, 𝑡) are expressed in terms 𝐸(𝜂) and 𝐹(𝜂) as

𝑢
𝑤
(𝑥, 𝑡) = 𝜔 (𝑥, 𝑡) 𝐸 (𝜂) , (29)

V (𝑥, 𝑦, 𝑡) = Γ (𝑥, 𝑡) 𝐹 (𝜂) . (30)

Since 𝜔(𝑥, 𝑡) and 𝑢
𝑤
(𝑥, 𝑡) are independent of y, whereas 𝜂 is

function of y, we conclude that 𝐸(𝜂) is equal to a constant
such as 𝐸

0
. Equation (29) yields

𝑢
𝑤
(𝑥, 𝑡) = 𝐸

0
𝜔 (𝑥, 𝑡) . (31)

Without loss of generality 𝐸
0
is equated to one.The functions

of Γ(𝑥, 𝑡) and𝜔(𝑥, 𝑡)will be determined later on, such that the
governing equations of (3) to (5) reduce to a set of ordinary
differential equations in 𝐸(𝜂), 𝐹(𝜂), and 𝑢(𝜂).

4. Reduction to a Set of Ordinary Problem

Now we define 𝜂 in general form of 𝜂 = 𝑦𝜋(𝑥, 𝑡). Invoking
(30) and (31) and (3) to (5),

𝑑𝐹

𝑑𝜂

+ 𝐶
1
𝜂

𝑑𝑢

𝑑𝜂

+ 𝐶
2
𝑢 = 0,

𝑛(

𝑑𝑢

𝑑𝜂

)

𝑛−1

𝑑
2

𝑢

𝑑𝜂
2
− [𝜂 (𝐶

3
+ 𝐶
4
𝑢) + 𝐶

5
𝐹]

𝑑𝑢

𝑑𝜂

− 𝐶
6
𝑢 − 𝐶
7
𝑢
2

+ 𝐶
8
𝜃 = 0,

𝑑
2

𝜃

𝑑𝜂
2
− Pr [𝑑𝜃

𝑑𝜂

{𝜂 (𝐶
10
+ 𝐶
11
𝑢) + 𝐶

12
𝐹} − 𝐶

9
𝑢𝜃] = 0.

(32)
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Constants of 𝐶
1
to 𝐶
12
are defined as follows:

𝐶
1
=

𝜔

Γ𝜋
2

𝜕𝜋

𝜕𝑥

𝐶
2
=

1

Γ𝜋

𝜕𝜔

𝜕𝑥

𝐶
3
=

1

𝜗𝜔
𝑛−1
𝜋
𝑛+2

𝜕𝜋

𝜕𝑡

𝐶
4
=

1

𝜗𝜔
𝑛−2
𝜋
𝑛+2

𝜕𝜋

𝜕𝑥

𝐶
5
=

Γ

𝜗𝜔
𝑛−1
𝜋
𝑛

𝐶
6
=

1

𝜗𝜔
𝑛
𝜋
𝑛+1

𝜕𝜔

𝜕𝑡

𝐶
7
=

1

𝜗𝜔
𝑛−1
𝜋
𝑛+1

𝜕𝜔

𝜕𝑥

𝐶
8
=

𝑥

𝜗𝜔
𝑛
𝜋
𝑛+1

𝑔𝛽𝑞
𝑤

𝑘√Re
𝑥

𝐶
9
=

𝜔

𝜗𝑥𝜋
2

𝐶
10
=

1

𝜗𝜋
3

𝜕𝜋

𝜕𝑡

𝐶
11
=

𝜔

𝜗𝜋
3

𝜕𝜋

𝜕𝑥

𝐶
12
=

Γ

𝜗𝜋

.

(33)

Now we obtain the exact value of constants as

𝐶
7

𝐶
8

= 1 → 𝜔 (𝑥) = (

𝑔𝛽𝑞
𝑤

𝑘√Re
𝑥

)

1/2

𝑥. (34)

From (31),

𝑢
𝑤
(𝑥) = (

𝑔𝛽𝑞
𝑤

𝑘√Re
𝑥

)

1/2

𝑥. (35)

For 𝐶
9
= 1, we have

𝜋 =

1

𝜗
1/2

(

𝑔𝛽𝑞
𝑤

𝑘√Re
𝑥

)

1/4

. (36)

According to the definition of similarity variable,

𝜂 = 𝑦(

𝑔𝛽𝑞
𝑤

𝜗
2
𝑘√Re

𝑥

)

1/4

. (37)

For 𝐶
2
= 1, we get

Γ = 𝜗
1/2

(

𝑔𝛽𝑞
𝑤

𝑘√Re
𝑥

)

1/4

. (38)

Using (30), the horizontal component of velocity is

V (𝜂) = 𝜗1/2 (
𝑔𝛽𝑞
𝑤

𝑘√Re
𝑥

)

1/4

𝐹 (𝜂) . (39)

As 𝜋 is invariant and 𝜔 is independent of time,

𝐶
1
= 𝐶
3
= 𝐶
4
= 𝐶
6
= 𝐶
10
= 𝐶
11
= 0. (40)

On the other hand, due to definitions of 𝜋, 𝜔, and Γ,

𝐶
12
= 1, 𝐶

5
= 𝐶
7
= 𝐶
8
= (𝜔𝜋)

1−𝑛

. (41)

Substituting the above constants in (32), they finally reduce
to

𝑑𝐹

𝑑𝜂

+ 𝑢 = 0, (42)

𝑛(𝜔𝜋)
𝑛−1

(

𝑑𝑢

𝑑𝜂

)

𝑛−1

𝑑
2

𝑢

𝑑𝜂
2
− 𝐹

𝑑𝑢

𝑑𝜂

− 𝑢
2

+ 𝜃 = 0, (43)

𝑑
2

𝜃

𝑑𝜂
2
− Pr(𝑑𝜃

𝑑𝜂

𝐹 + 𝑢𝜃) = 0. (44)

The new forms of boundary conditions are

𝐹 (0) = 0,

𝑢 (0) = 1, 𝑢 (∞) = 0,

𝜕𝜃 (0)

𝜕𝜂

= −1, 𝜃 (∞) = 0.

(45)

It can be proved that 𝜕𝜃(0)/𝜕𝜂 = −1. According to (2b) and
definition of 𝜃, (2b) will change into

𝜕𝜃 (𝑥, 0, 𝑡)

𝜕𝑦

=

−√Re
𝑥

𝑥

, (46)

where Re
𝑥
= 𝑢
𝑠
𝑥/𝜗 and 𝑢

𝑠
is average velocity in y direction.

Assuming 𝑢
𝑠
= 𝑢
𝑤
,

Re
𝑥
= 𝑥
2

𝜋
2

. (47)

Using chain rule operation,

𝜕𝜃 (0)

𝜕𝜂

𝜕𝜂

𝜕𝑦

=

−√Re
𝑥

𝑥

. (48)

So, according to Re
𝑥
and 𝜂, 𝜕𝜃(0)/𝜕𝜂 will be −1.

For instance, assuming 𝑛 = 1 for a case ofNewtonian fluid
flow, (43) will reduce to

𝑑
2

𝑢

𝑑𝜂
2
+

𝜂

2

𝑑𝑢

𝑑𝜂

− 𝑢 = − erfc(
√Pr
2

𝜂) , (49)

where

𝑢 (0) = 1, 𝑢 (∞) = 0. (50)
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Table 1: Comparison of present problem solution and case of Kassem [34] for Pr = 1, 2, 5, and 10 of Newtonian fluid.

Pr Kassem [34] Present work
𝜂 𝑢 (𝜂) Θ (𝜂) 𝑢 (𝜂) Θ (𝜂)

1

0.5 0.669 0.507 0.667 0.510
1 0.391 0.256 0.381 0.261
1.5 0.165 0.103 0.161 0.105
2 0.000 0.003 0.003 0.005

2

0.3 0.736 0.398 0.742 0.401
0.6 0.515 0.222 0.520 0.225
0.9 0.315 0.092 0.317 0.095
1.2 0.143 0.009 0.150 0.011

5

0.25 0.745 0.206 0.750 0.208
0.5 0.525 0.095 0.531 0.011
0.75 0.333 0.040 0.335 0.042
1 0.171 0.017 0.171 0.017

10

0.2 0.768 0.124 0.771 0.125
0.4 0.565 0.046 0.571 0.048
0.6 0.381 0.015 0.391 0.017
0.8 0.216 0.007 0.218 0.008
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Figure 2: Vertical velocity of Newtonian fluid at the vicinity of
stretching sheet for different values of Pr.

5. Results and Discussion

In this section, initially, results of Newtonian fluid flow over
stretching sheet are compared with Kassem [34]. Table 1
shows the results obtained by numerical solution of ODE
equation, (49), and [34] for power index, 𝑛 equal to unity
and Pr number of 1. There is a satisfying agreement among
the present evaluations. Complementary results for different
values of Pr are shown in Figures 2 and 3. It can be
understood that, as the fluid momentum diffusivity increases
with respect to the thermal diffusivity, large Pr numbers,
vertical velocity decreases. In other words, the velocity 𝑢(𝜂)
inside the boundary layer decreases with the increase of fluid
viscosity. Also, the temperature plot of boundary layer reveals
a decrease of temperature at the wall temperature for larger

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

𝜂

Pr = 1

Pr = 2

Pr = 5

Pr = 10

𝜃
(𝜂
)

Figure 3: Temperature of Newtonian fluid at the vicinity of
stretching sheet for different values of Pr.

Pr. So heat loss increases for larger Pr as the boundary layer
gets thinner.

For non-Newtonian case of the fluid, the vertical velocity
and temperature of fluid adjacent to the stretching sheet are
evaluated by solving (42) to (44) with the certain boundary
conditions of (45). Results of the shooting method solution
are illustrated in Figures 4 and 5 for Pr = 5. As the power
index increases, vertical velocity component encounters with
resistance to rise due to increased value of shear stress. But,
for lower power index, vertical component of velocity moves
faster due to reduced apparent viscosity. Similarly, thinner
thermal boundary layer for higher power index will increase
the amount of heat loss.
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Figure 4: Vertical velocity of non-Newtonian fluid at the vicinity of
stretching sheet for constant values of Pr = 5.
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Figure 5: Temperature of non-Newtonian fluid at the vicinity of
stretching sheet for constant values of Pr = 5.

6. Conclusion

Similarity solutions are performed for flow of power law
non-Newtonian fluid film on unsteady stretching surface
subjected to constant heat flux.The nonlinear coupled partial
differential equations (PDE) governing the flow and the
boundary conditions are transformed to a set of ordinary
differential equations (ODE) using two-parameter groups.
This technique reduces the number of independent variables
by two, and conclusively the obtained ordinary differential
equations are solved numerically for the temperature and
velocity using the shooting method. Results show that higher
Pr number and higher power index of non-Newtonian fluid
encounter with difficulty to move as faster as lower Pr and
power index. Enhanced amount of shear stress explains the
reason of the predicted flow.
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