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Considering the hypersonic aerospace vehicle, with high dynamic, strong varying parameters, strong nonlinear, strong coupling,
and the complicated flight environment, conventional flight control methods based on linear system may become invalid. To the
high precision and reliable control problem of this vehicle, nonlinear flight control strategy based on neural network robust adaptive
dynamic inversion is proposed. Firstly, considering the nonlinear characteristics of aerodynamic coefficients varying with Mach
numbers, attack angle, and sideslip angle, the complete nonlinear 6-DOFmodel of RBV is established. Secondly, based on the time-
scale separation, using the nonlinear dynamic inversion control strategy achieves the pseudolinear decoupling of RBV. And then,
using the neural networkwith single hidden layer approximates the dynamic inversion error for systemmodel uncertainty. Next, the
external disturbance and network approximating error are suppressed by robust adaptive control. Finally, using Lyapunov’s theory
proves that all error signals of closed loop system are uniformly bounded finally under this control strategy. Nonlinear simulation
verifies the feasibility and validity of this control strategy to the RBV control system.

1. Introduction

To meet the development of space research, space tourism,
and military requirement and achieve the goal of speediness,
high reliability, reusability, and low cost, the hypersonic aero-
space vehicle especially reusable launch vehicle, RLV, emerges
[1–6].

Reusable boosted vehicle (RBV) experiences the sub-
sonic, transonic, and supersonic phase during the whole
flight, which the aerodynamic coefficients, dynamic pressure,
and flight altitude acute change, especially in the large
attitude adjusting phase with supersonic and large angle
of attack. Considering the imprecise aerodynamic model,
abominable flight condition at the high altitude, great system
perturbation, and interference, gain scheduling and PID
control strategy based on linearized with small disturbances
cannot apply to the flight control system of RBV large attitude
adjusting phase design. It is necessary to design RBV control
system by using nonlinear control method.

Shtessel designed the sliding mode control system of
X-33 based on the time-scale separation principle, which
has achieved the great control performance [7–9]. On the
basis, the designer estimated the real-time perturbation and

interference through introducing the sliding mode observer,
which not only could suppress the buffeting, but also could
improve the robust performance of system. In case of solv-
ing the buffeting problem of sliding mode control method
effectively, it could be one of the efficient methods to solve
the uncertain nonlinear system.

Linear parameter varying (LPV) control methodology
[10] is an extension of 𝐻

∞
control theory [11, 12] to the

linear varying parameter system. To the nonlinear flight con-
trol system, many scholars have studied the application
of LPV control methodology [13–15]. Nevertheless, using
LPV control methodology needs to transform the nonlinear
system to the LPV system, there is no uniform evaluation
criterion to judging the approximative transform.

Nonlinear dynamic inversion (NDI) is the general non-
linear control strategy and methodology. Snell et al. [16]
applied NDI to the supermaneuverable aircraft firstly. Buga-
jski and Enns [17] designed the universal architecture of flight
control system design, the core of which was the structure
block. Using the above method designed the control law
of the large angle of attack aircraft. The simulation results
verified that this methodology could satisfy the performance
requirement of supermaneuvering flight control, but it must
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Figure 1: Flight profile of RBV.

be pointed out that modeling error and serious unusual
aerodynamic effect cause the decreased robustness in the
NDI control law. Farland and D’Souza [18] designed the
attitude control system of lifting body reentry vehicle by
NDI. The writer indicated that, to the parameter perturba-
tion and external interference, using robust control theory
strengthens the robustness of system under the NDI. NDI
control methodology requires the accurate model. In fact it
is impossible. Hence, it is necessary to combine the other
control methods to eliminate the influence of inaccurate
model.

2. Flight Timing and Trajectory of RBV

The RBV in this paper is the reusable vehicle which uses
the rocket back to the launch site. Its flight processes as
follows: after the separation from the disposable core stage
(upper stage), RBV adjusts the attitude under RCS system
in the tail during the sliding by inertia itself. When attitude
angle of RBV reaches about 180∘, the adjust phase finishes,
and the head of RBV points to the direction of returning
to the launch site. After the adjusting phase, with secondary
ignition of RBV rocket engine (restricting the overload of
secondary shut-off point), varying thrust regulator is used to
adjust the flight velocity to satisfy the constraint condition of
reentry. Afterwards, the vehicle experiences the fixed attitude

dropping phase and the adjusting attitude phase and then
enters the energy management and autonomous landing
phase. The flight timing and trajectory of the RBV are shown
in Figure 1.

Reusable boosted vehicle (RBV) experiences the sub-
sonic, transonic, and supersonic phase during the whole
flight, which the aerodynamic coefficients, dynamic pressure,
and flight altitude change acutely. For this, the differences
of the dynamic characteristics of RBV are significant during
all of the flight phase. Besides that, there is a great different
between the aerodynamic characteristics of RBV and the
conventional vehicle. This paper focuses on the large attitude
adjusting phase after the RBV separating between the core
stages. To implement the high reliability and precision of
RBV, the nonlinear model is built according to the flight
environment.

3. RBV System Modeling

This paper examines the problem of a nonaxisymmetric
airframe which is flown in a large angle of attack. In the
trajectory tracking problem (see Figure 2, body coordinate
system of RBV), and the guidance law produces acceleration
commands in the body 𝑦 and 𝑧 axes based on nominal
trajectory. These acceleration commands can be converted
into commands in roll angle and angle of attack, which are
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Figure 2: Body coordinate system of RBV.

fed into the autopilot. The task of the controller is to track
commands in angle of attack and roll angle, while keeping
sideslip angle small. There are many examples of angle of
attack autopilots in the literature. The reader is referred to
[16, 19] for treatments of autopilots that control angle of
attack.

3.1. Dynamic Model for Attitude Adjusting Phase of RBV.
Considering the assumption of designing the flight control
system of X-33 [20], HOPE-X Series [21–23], the rigid-body
nonlinear equations of motion for RBV of constant mass
based on the body coordinate system of RBV and According
to the coordinate system definition of [24], the rigid-body
nonlinear equations of motion for RBV of constant mass is
as follows:

Ω̇ = f
𝑠
(Θ,Ω) + g

𝑠2
(Θ,Ω)w + g

𝑠1
(Θ,Ω) 𝛿,

ẇ = f
𝑓
(Θ,Ω,w) + g

𝑓
(Θ,Ω,w)M

𝑐
,

(1)

whereΩ = [𝛼 𝛽 𝛾]
𝑇 and w = [𝑤

𝑥
𝑤
𝑦

𝑤
𝑧
]
𝑇 are the system

state variable and then Ω = [𝛼 𝛽 𝛾]
𝑇 are also the system

output; 𝛿 = [𝛿aero 𝛿rcs]
𝑇 andM

𝑐
= [𝑀

𝑐𝑥
𝑀
𝑐𝑦

𝑀
𝑐𝑧
]
𝑇 are the

control variable; Θ = [𝑉 𝛾V 𝜓 𝜃] is the parameter vector;
f
𝑠
(Θ,Ω) = [𝑓

𝛼
𝑓
𝛽

𝑓
𝛾
]
𝑇 and f

𝑓
(Θ,Ω,w) =

[𝑓𝑤
𝑥

𝑓
𝑤
𝑦

𝑓
𝑤
𝑧
]
𝑇

are the nonlinear differential function;
g
𝑠2
(Θ,Ω) ∈ R3×3 and g

𝑓
(Θ,Ω,w) ∈ R3×3 are the control

matrix; g
𝑠1
(Θ,Ω) represents the deflections of aerodynamic

surfaces and control moment of RCS.

3.2. Aerodynamic Data Model of RBV. In order to design
the flight control system of RBV in this paper conveniently,
aerodynamic data models of RBV are built in the velocity
coordinate system, and body coordinate system respectively
[25].

Aerodynamic coefficient in the velocity coordinate sys-
tem is as follows:

𝐶
𝑥
= 𝐶

𝑥0
(𝛼, 𝛽,Ma) + 𝐶

𝑥𝛼
(𝛼,Ma) 𝛼

+ 𝐶
𝑥𝛿aero

(𝛼, 𝛽,Ma, 𝛿aero) 𝛿aero + Δ𝐶
𝑥
(𝛼,Ma) ,

𝐶
𝑦
= 𝐶

𝑦0
(𝛼, 𝛽,Ma) + 𝐶

𝑦𝛼
(𝛼,Ma) 𝛼

+ 𝐶
𝑦𝛿aero

(𝛼, 𝛽,Ma, 𝛿aero) 𝛿aero + Δ𝐶
𝑦
(𝛼,Ma) ,

𝐶
𝑧
= 𝐶

𝑧0
(𝛼, 𝛽,Ma) + 𝐶

𝑧𝛽
(𝛼, 𝛽,Ma) 𝛽

+ 𝐶
𝑧𝛿aero

(𝛼, 𝛽,Ma, 𝛿aero) 𝛿aero + Δ𝐶
𝑧
(𝛼,Ma) ,

(2)

whereΔ (⋅) is the termof aerodynamic perturbation;Ma is the
Machnumber;𝛿aero is the commandof aerodynamic surfaces.

Aerodynamic moment coefficient in the body coordinate
system:

𝑚
𝑥
= 𝑚

𝑥0
(𝛼, 𝛽,Ma)

+ (
𝑏

2𝑉
𝑚
𝑥𝑤
𝑥

(𝛼,Ma
𝑎
) 𝑤

𝑥
+

𝑏

2𝑉
𝑚
𝑥𝑤
𝑦

(𝛼,Ma) 𝑤
𝑦
)

+ 𝑚
𝑥𝛽

(𝛽,Ma) 𝛽 + 𝑚
𝑥𝛿aero

(𝛼, 𝛽,Ma, 𝛿aero)

+ Δ𝑚
𝑥
(𝛼,Ma) ,

𝑚
𝑦
= 𝑚

𝑦0
(𝛼, 𝛽,Ma) + 𝑚

𝑦𝛿aero
(𝛼, 𝛽,Ma, 𝛿aero) 𝛿aero

+
𝑏

2𝑉
(𝑚

𝑦𝑤
𝑦

(𝛼,Ma) 𝑤
𝑦
+

𝑏

2𝑉
𝑚
𝑦𝑤
𝑥

(𝛼,Ma) 𝑤
𝑥
)

+ 𝑚
𝑦𝛽

(𝛽,Ma) 𝛽 + Δ𝑚
𝑦
(𝛼,Ma) ,

𝑚
𝑧
= 𝑚

𝑧0
(𝛼, 𝛽,Ma) + 𝑐

2𝑉
𝑚
𝑧𝑤
𝑧

(𝛼,Ma) 𝑤
𝑧

+ 𝑚
𝑧𝛿aero

(𝛼, 𝛽,Ma, 𝛿aero) 𝛿aero

+ 𝑚
𝑧𝛼

(𝛼,Ma) 𝛼 + Δ𝑚
𝑧
(𝛼,Ma) ,

(3)

where Δ (⋅) is the term of aerodynamic perturbation; 𝑏 is the
span; 𝑐 is the mean aerodynamic chord.

4. Robust Adaptive Inversion Control
Based on Neural Network

4.1. Single Hidden Layer Neural Network. The structure of the
single hidden layer [26, 27] is shown in Figure 3, the input and
output of which are defined:

x = [𝑏
𝑉

x𝑇]
𝑇

, (4)

kad (W,V, x) = W𝑇

𝜎 (V𝑇x) , (5)



4 Abstract and Applied Analysis

V W

𝜎(z1)

𝜎(z2)

∑

∑

∑

x1

xn1

bW

bV

𝜎(zn2 )

�ad1

�ad2

�adn3

Figure 3: The structure of the single hidden neural network.

where x ∈ R𝑛1×1 is the input of neural network, which belongs
to the certain compact set Dx; the output of neural network
is kad ∈ R𝑛3×1; V ∈ R(𝑛1+1)×𝑛2 and W ∈ R(𝑛2+1)×𝑛3 are the
weight of the input layer to hidden layer and the hidden layer
to the output layer, respectively; 𝑛

1
, 𝑛
2
, and 𝑛

3
are the number

of the input, the neurons in the hidden layer, and the output
respectively.

Action function 𝜎 (⋅) is chosen Sigmoid function and

𝜎 (𝑧) = [𝑏
𝑊

𝜎 (𝑧
1
) 𝜎 (𝑧

2
) ⋅ ⋅ ⋅ 𝜎 (𝑧

𝑛
2

)]
𝑇

, (6)

where

z = V𝑇x. (7)

In addition, the offset term 𝑏
𝑉
, 𝑏
𝑊

≥ 0 in (4) and (6),
the objective of which is to contain the threshold value of
neurons in the hidden layer and to contain the output layer
to the weight matrix, to implement the real-time adjusting of
the threshold value of neurons.

4.2. Nonlinear Dynamic Inversion. The basic idea of the
nonlinear dynamic inversionmethod [28–30] is to transform
the dynamics of nonlinear system to a linear one through the
inverse system of the controlled object and then implement
the integrated system under the theory of the linear system.
The general nonlinear system is described as follows:

ẋ = f (x, u) ,

y = h (x) ,
(8)

where x ∈ R𝑛 is the system state variable;u ∈ R𝑚 is the system
control variable; y ∈ R𝑙 is the system output variable.

The objective of control system design of nonlinear
system as (8) is to seek the control input u, through which the
system output y could track the expected output and time-
varying trajectory y

𝑑
according to the certain precision and

ensure the all the state variable of the closed loop be bounded.

Yr
d I

Y
F(x, u)

uF−1(x, )K
−E+Yd

−
��

Figure 4: The diagram of dynamic inversion control method.

Performing the derivation to (8),

Y =

[
[
[
[
[

[

𝑦
(𝑟
1
)

1

𝑦
(𝑟
2
)

2

...
𝑦
(𝑟
𝑝
)

𝑝

]
]
]
]
]

]

= F (x, u) , (9)

u = F−1 (x, k) . (10)

Under the above control, the result of the 𝑖th output
subsystem is as follows:

𝑦
(𝑟
𝑖
)

𝑖
= V

𝑖
, (11)

where V
𝑖
is called pseudocontrol input variable generally. The

conventional nonlinear system in (8) could be transformed
the linear system in (11) through (9)∼(10).

Defining the tracking error 𝑒
𝑖
= 𝑦

𝑖
−𝑦

𝑑𝑖
and choosing the

pseudocontrol variable:

V
𝑖
= 𝑦

(𝑟
𝑖
)

𝑑𝑖
− 𝑘

𝑖𝑟
𝑖

𝑒
(𝑟
𝑖
−1)

𝑖
− ⋅ ⋅ ⋅ − 𝑘

𝑖𝑟
𝑒
𝑖
. (12)

Hence, the dynamic equation of tracking error in the 𝑖th
closed loop subsystem is as follows:

𝑒
(𝑟
𝑖
)

𝑖
+ 𝑘

𝑖𝑟
𝑒
(𝑟
𝑖
−1)

𝑖
+ ⋅ ⋅ ⋅ + 𝑘

𝑖𝑟
𝑒
𝑖
= 0. (13)

Selecting the coefficients 𝑘
𝑖1
, 𝑘
𝑖2
, . . . , 𝑘

𝑖𝑟
𝑖

> 0 to configu-
rate all characteristic roots of 𝑠𝑟1 +𝑘

𝑖𝑟
𝑖

𝑠
𝑟
1
−1

+ ⋅ ⋅ ⋅ +𝑘
𝑖1
= 0 lying

on the open left plane, namely, to ensure the stability of the
𝑖th closed loop subsystem.The dynamic equation of tracking
error in the entire closed loop system is as follows:

Ė = −KE, (14)

where the definitions of K and E are referenced in [31].
The block diagram of dynamic inverse method is shown in
Figure 4.

4.3. System Control Strategy. In (8), there are many inexact
factors in the nonlinear system such as unmodeled dynamic,
parameter perturbation, and external disturbance. Consider-
ing that the nonlinear dynamic inversion needs the accurate
system model, the control strategy to counteract the model
uncertainty must be proposed to guarantee the system track-
ing performance based on the nonlinear dynamic inversion
method.
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Let the nominal value of F (x, u) be F̂ (x, u); (10) is:

F (x, u) = F̂ (x, u) + Δ (x, u) ,

u = F̂−1 (x, k) .
(15)

Transforming the system uncertainty to the system
inverse error Δ (x, k),

Δ (x, k) = F (x, F̂−1 (x, k)) − F̂ (x, F̂−1 (x, k)) . (16)

The dynamic equation of the tracking error in entire
closed loop system is

Ė = AE + BΔ (x, k) , (17)

where A = −K.
Use the nonlinear approximation of neural networkmaps

the inverse error Δ (x, k) resulting from the system uncer-
tainty to compensate the uncertain model [31]. Meanwhile,
the error caused by the approximation inverse error of the
neural network is suppressed by robust adaptive method.
Hence, the definition of the robust adaptive inverse control
strategy based on neural network is as follows:

u = F̂−1 (x,k) ,

k = Y𝑟
𝑑
+ ksc − kad + krb,

(18)

where

ksc = AE, (19)

where u is the actual system control input; k is the virtual
system control input; Y𝑟

𝑑
is the 𝑟 order derivative of system

reference input, which is similar to definition in [32]; ksc is the
static control compensator; kad is the neural network output;
krb is the robust adaptive term.

Under effecting of the control strategy (18), the dynamic
error equation of closed loop from (19) is

Ė = AE + B [kad − krb − Δ (x, k)] . (20)

The robust adaptive inversion control based on neural
network is shown in Figure 5.

Based on the above theory, the control law design of the
entire closed loop system is made up by the following three
steps:

(1) Firstly, the static compensator ksc designed by non-
linear dynamic inversion method is exponent stable
in the nominal neighborhood and satisfies the per-
formance requirements of closed loop system in the
nominal condition (i.e., Δ = 0);

(2) Secondly, according to the strong nonlinear mapping
ability of neural network, the inverse error Δ (x, k)
mapped by uncertainty Δ (x, u) is approximated by
neural network output kad when uncertainty condi-
tion exists.

(3) Finally, designing the robust adaptive control term krb
overcomes the influence of approximation error, then
a better adaptive robust performance of entire closed
loop system is achieved.

F̂
−1
(x, )

xRobust adaptive

y
Plantu

vrb

v
v

SCStatic
compensator

NN x

yr
d

+

+
+

yd

−
�ad

Figure 5: Robust adaptive inversion control based on neural
network.

5. Analysis and Design of Control System

Based on the control strategy in the above third chapter,
the neural network robust adaptive inversion control law is
designed. And then, the stability of the closed loop system
is proved strictly in the theory. Here, the input of SHLNN is
x = [E𝑇 x

𝑑
ẋ
𝑑
]
𝑇

, where E = x − x
𝑑
, x is the system state,

x
𝑑
is the expected system state, and kad is the neural network

output.

Assumption 1. Giving arbitrary 𝜓
∗

𝜀
> 0, there are the

ideal neural network weight matrixes V∗ and W∗ to make
the single hidden neural network uniform approximating
the inverse error function Δ(x, k) which is continuous and
derivable in the compact setDx. That is,

W∗𝑇

𝜎 (V∗𝑇x) = Δ (x, k) − 𝜀 (x) , (21)

where (x, k) ∈ Dx ⊂ R𝑛 × R; x = [1 x𝑇]
𝑇

; 𝜀(x) is the
approximation error and satisfies


𝜀 (x) ≤ 𝜓

∗

𝜀
. (22)

Assumption 2. Generally speaking, the ideal neural network
weight matrixes V∗ and W∗ are unknown and may be not
only. Therefore V∗ andW∗ can be defined:

{V∗,W∗

} = argmin
V,W

[

[

sup
x∈Dx

Δ − kad

]

]

, (23)

where

V
∗𝐹

≤ V W
∗𝐹

≤ W, (24)

where ‖ ⋅ ‖
𝐹
is Frobenius norm and V, W are the positive

constant.
For ideal weight matrixes V∗andW∗ being unknown, let

V̂ and Ŵ be defined to describe the estimated value of neural
network ideal weight matrix.V

0
and W

0
are the initial value

of network, where Ṽ = V̂ − V∗ and W̃ = Ŵ − W∗ are
the estimated error of neural network weight, respectively.
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Based on this estimated value, the online neural network
approximation kad is

kad = Ŵ𝑇

𝜎 (V̂𝑇x) . (25)

Now the dynamic error equation of closed loop system is

Ė = AE + B [Ŵ𝑇

𝜎 (V̂𝑇x) −W∗𝑇

𝜎 (V∗𝑇x) − krb − 𝜀 (x)] .
(26)

AsA is Hurwitz matrix, there exists only positive definite
matrix P with respect to the following Lyapunov function,
which satisfies

A𝑇P + PA = −Q, (27)

whereQ is an arbitrary positive definite matrix.
Considering the Taylor expansion of 𝜎(V∗𝑇x) in V̂𝑇x,

𝜎 (V∗x) = 𝜎 (V̂𝑇x) − 𝜎

(V̂𝑇x)V𝑇x + O(Ṽ𝑇x)

2

. (28)

Here, let z = V∗𝑇x, ẑ = V̂𝑇x

𝜎


(ẑ) = 𝑑𝜎 (z)
𝑑z

z=ẑ
=

[
[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ 0

𝜕𝜎 (𝑧
1
)

𝜕𝑧
1

⋅ ⋅ ⋅
𝜕𝜎 (𝑧

1
)

𝜕𝑧
𝑛
2

... d
...

𝜕𝜎 (𝑧
𝑛
2

)

𝜕𝑧
1

⋅ ⋅ ⋅

𝜕𝜎 (𝑧
𝑛
2

)

𝜕𝑧
𝑛
2

]
]
]
]
]
]
]
]
]

]z=ẑ

. (29)

Hence, Ŵ𝑇

𝜎(V̂𝑇x) −W∗𝑇

𝜎(V∗𝑇x) in (26) is changed to

Ŵ𝑇

𝜎 (V̂𝑇x) −W∗𝑇

𝜎 (V∗𝑇x)

= W̃𝑇

(�̂� − �̂�
V̂𝑇x) + Ŵ𝑇

�̂�
Ṽ𝑇x + w,

(30)

where

w = W̃𝑇

�̂�
V𝑇x −W∗𝑇

O
2

(Ṽ) . (31)

Synthesizing (30) and (31)

w = W∗𝑇

(�̂� − 𝜎) −W∗𝑇

�̂�
V̂𝑇x + Ŵ𝑇

�̂�
V∗𝑇x,

|w| ≤
V
∗𝐹


x ∗ ones (1, 𝑛

3
) ∗ Ŵ𝑇

�̂�
𝐹

+
W

∗


�̂�
V̂𝑇x +

W
∗1

,

(32)

where ‖ ⋅ ‖
𝐹
is Frobenius norm; ‖ ⋅ ‖ is Euclid norm; ‖ ⋅ ‖

1
is 1

norm; ones (1, 𝑛
3
) ∈ R1×𝑛3 is the 1 matrix. The upper bound

of 𝑤 is expressed as the following form:

|w| ≤ 𝜓
∗

𝑤
𝑠
𝑤
(V̂, Ŵ, x) , (33)

where

𝜓
∗

𝑤
= max {V

∗𝐹
,
W

∗ ,
W

∗1
} ,

𝑠
𝑤
(V̂, Ŵ, x) =


x ∗ ones(1, 𝑛

3
) ∗ Ŵ𝑇

𝐹
+

�̂�
V̂𝑇x + 1.

(34)

Substituting (26) byTaylor expansion of network approxi-
mation inverse error, the dynamic error equation of the closed
loop system is as follows:

Ė = AE + B [W̃𝑇

(�̂� − �̂�
V̂𝑇x) + Ŵ𝑇

�̂�
Ṽ𝑇x

+ w + krb − 𝜀 (x) ] .
(35)

Introducing the operator vec to the matrixM ∈ R𝑛×𝑚, in
order to analysis the following theory conveniently,

vecM = [col
1
(M)

𝑇 col
2
(M)

𝑇

⋅ ⋅ ⋅ col
𝑚
(M)

𝑇

]
𝑇

∈ R𝑛𝑚,
(36)

where col
𝑖
(M) is the 𝑖th column of the matrixM.

Let Z̃ = [
W̃ 0 0

0 Ṽ 0
0 0 �̃�

] , �̃� = 𝜓 − 𝜓
∗

max. Considering the com-

posite errors vector 𝜍 = [
E

vec Z̃ ] ∈ D
𝜍
, the compact set defined

as follows is

B
𝑅
= {𝜍 ∈ D

𝜍
: ‖𝜍‖ ≤ R} , R > 0. (37)

Assumption 3. B
𝑅
is the largest hypersphere in compact set

D
𝜍
and satisfies

𝑅 > 𝐶√
𝜆max (T)
𝜆min (T)

≥ 𝐶 > 0, (38)

where 𝜆max(T) and 𝜆min(T) are the maximum andminimum
characteristics value of the matrix T, respectively. And the T
is:

T =
1

2

[
[
[

[

P 0 0 0

0 Γ
−1

𝑊
0 0

0 0 Γ
−1

𝑉
0

0 0 0 𝛾
−1

𝜓

]
]
]

]

, (39)

where Γ
𝑊
and Γ

𝑉
are positive definite matrixes and 𝛾

𝜓
> 0.

Let V
𝑅
be the minimum value given by following function

𝑉 along the bound of hypersphere B
𝑅
:

𝑉 = 𝜍
𝑇T𝜍,

V
𝑅
= min
‖𝜍‖=𝑅

𝑉 (𝜍, 𝑡) = 𝑅
2

𝜆min (T) .
(40)

Define the following compact set:

Ω
𝑅
= {𝜍 ∈ B

𝑅
: 𝑉 ≤ V

𝑅
} . (41)

Theorem 4. To the nonlinear uncertain system composed by
(8), (15), and (18), the following designed control law based
on neural network robust adaptive dynamic inversion satisfies
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all the error signals 𝜍(𝑡) uniformly bounded considering the
conditions of Assumptions 1–3 when the initial value 𝜍(0) of
composite errors belongs to the compact set Ω

𝑅
. When 𝑡 > 𝑇

0
,

the trajectory of arbitrary initial error signals from Ω
𝑅
will

enter the boundary of Ω
𝐶
in the finite time, the final value of

which is 𝐶√𝜆max(T)/𝜆min(T),

u = F̂−1 (x, k) ,

k = Ẋ
𝑑
+ k

𝑠𝑐
− k

𝑎𝑑
+ k

𝑟𝑏
,

(42)

whereu is the actual system control input; k is the virtual system
control input; Ẋ

𝑑
is the derivative of system reference input;

k
𝑠𝑐
is the static control compensator; k

𝑎𝑑
is the neural network

output; k
𝑟𝑏
is the robust adaptive term, and

k
𝑠𝑐

= AE,

k
𝑎𝑑

= Ŵ𝑇

𝜎 (V̂𝑇x) ,

k
𝑟𝑏

= 𝜓𝑠
∗ tanh(

𝜉
𝑇

𝑠
∗

Υ
) ,

(43)

where A is Hurwitz matrix and 𝜉 = ETPB and B = I
𝑚
satisfy

(26). The following neural network adaptive law and robust
adaptive law are

̇̂V = −Γ
𝑉
[x𝜉Ŵ𝑇

�̂�


+ 𝜆
𝑉
(V̂ − V

0
)] ,

̇̂W = −Γ
𝑊

[(�̂� − �̂�
V̂𝑇x) 𝜉 + 𝜆

𝑊
(Ŵ −W

0
)] ,

�̇� = 𝛾
𝜓
[𝜉𝑠

∗ tanh(
𝜉
𝑇

𝑠
∗

Υ
) − 𝜆

𝜓
(𝜓 − 𝜓

0
)] ,

(44)

where 𝑠
∗

= 1 + 𝑠
𝑤
; 𝜓∗max = max{𝜓∗

𝜀
, 𝜓
∗

𝑤
}; 𝜓 is the estimated

value of𝜓∗max;𝜓0 is the initial value of𝜓; �̃� = 𝜓−𝜓
∗

max; Γ𝑉 and
Γ
𝑊

are positive definite matrixes; 𝛾
𝜓

> 0, 𝜆
𝑉

> 0, 𝜆
𝑊

> 0,
and Υ > 0.

Proof. The Lyapunov function of system is

𝑉 =
1

2
E𝑇PE +

1

2
tr (W̃𝑇

Γ
−1

𝑊
W̃)

+
1

2
tr (Ṽ𝑇Γ−1

𝑉
Ṽ) +

1

2
�̃�𝛾
−1

𝜓
�̃� = 𝜍

𝑇T𝜍.
(45)

Solving the time derivative of (45) and using (27) and (35)
yield

�̇� = 𝜉 [W̃𝑇

(�̂� − �̂�
V̂𝑇x) + W̃𝑇

�̂�
Ṽ𝑇x − vrb + w − 𝜀 (x)]

−
1

2
E𝑇QE + tr (W̃𝑇

Γ
−1

𝑊

̇̃W) + tr (Ṽ𝑇Γ−1
𝑉

̇̃V) + �̃�𝛾
−1

𝜓

̇̃
𝜓.

(46)

BRR

ΩC
CΩR

BC

D𝜍

Figure 6: The geometric relation during sets.

Substituting the neural network robust adaptive dynamic
inversion control law (42)∼(45) to (46) yields

�̇� = −
1

2
E𝑇QE

+ 𝜉 [W̃𝑇

(�̂� − �̂�
V̂𝑇x) + Ŵ𝑇

�̂�
Ṽ𝑇x − vrb + w − 𝜀 (x)]

− tr [W̃𝑇

(�̂� − �̂�
V̂𝑇x) 𝜉 + 𝜆

𝑊
W̃𝑇

(Ŵ −W
0
)]

− tr [Ṽ𝑇x𝜉Ŵ𝑇

�̂�


+ 𝜆
𝑉
Ṽ𝑇 (V̂ − V

0
)]

+ �̃� [𝜉𝑠
∗ tanh(

𝜉
𝑇

𝑠
∗

Υ
) − 𝜆

𝜓
(𝜓 − 𝜓

0
)] .

(47)

Simplifying the above equation,

�̇� = −
1

2
E𝑇QE

− 𝜆
𝑊
tr (W̃𝑇

(Ŵ −W
0
)) − 𝜆

𝑉
tr (Ṽ𝑇 (V̂ − V

0
))

+ �̃� [𝜉𝑠
∗ tanh (𝜉

𝑇

𝑠
∗

) − 𝜆
𝜓
(𝜓 − 𝜓

0
)]

+ 𝜉 [w − vrb − 𝜀 (x)] .
(48)

Amplifying (48) according to the conditions of 𝑠∗ = 1+𝑠
𝑤

and 𝜓
∗

max = max{𝜓∗
𝜀
, 𝜓
∗

𝑤
} yields

�̇� ≤ −
1

2
E𝑇QE

− 𝜆
𝑊
tr (W̃𝑇

(Ŵ −W
0
)) − 𝜆

𝑉
tr (Ṽ𝑇 (V̂ − V

0
))

+ ‖𝜉‖ 𝜓
∗

max𝑠
∗

− 𝜉𝜓𝑠
∗ tanh(

𝜉
𝑇

𝑠
∗

Υ
)

+ �̃� [𝜉𝑠
∗ tanh(

𝜉
𝑇

𝑠
∗

Υ
) − 𝜆

𝜓
(𝜓 − 𝜓

0
)] .

(49)
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Ω𝛿RCS

Control
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V
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g−1f (x)
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+

+ + +

−−−−− VSCVSC

Slow loop controller

g−1s2 (x)
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Ωc
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loop
Slow
loop

wc

Ma
w

wc

wc

Figure 7: The structure diagram of RBV control system.

Simplifying (49) based on the given estimated error �̃� =

𝜓 − 𝜓
∗

max yields

�̇� ≤ −
1

2
E𝑇QE

− 𝜆
𝑊
tr (W̃ (Ŵ −W

0
)) − 𝜆

𝑉
tr (Ṽ𝑇 (V̂ − V

0
))

− 𝜆
𝜓
�̃� (𝜓 − 𝜓

0
) + 𝜓

∗

max [‖𝜉‖ 𝑠
∗

− 𝜉𝑠
∗ tanh(

𝜉
𝑇

𝑠
∗

Υ
)] .

(50)

Using the following inequality,

0 ≤
𝜁
 − 𝜁 tanh(

𝜁

Υ
) ≤ 𝜅

1
Υ. (51)

Simplifying (50) yields

�̇� ≤ −
1

2
𝜆min (Q) ‖E‖2

− 𝜆
𝑊
tr (W̃𝑇

(Ŵ −W
0
)) + 𝜓

∗

max𝜅1Υ

− 𝜆
𝑉
tr (Ṽ𝑇 (V̂ − V

0
)) − 𝜆

𝜓
�̃� (𝜓 − 𝜓

0
) ,

(52)

where 𝜆min(Q) is the minimum characteristics value ofQ.
Combining with [33, 34]:

�̇� ≤ −
1

2
𝜆min (Q) ‖E‖2

−
𝜆
𝑊

2


W̃

2

𝐹

−
𝜆
𝑉

2


Ṽ

2

𝐹

−

𝜆
𝜓

2

�̃�


2

+
𝜆
𝑊

2

W
∗

−W
0



2

𝐹
+

𝜆
𝑉

2

V
∗

− V
0



2

𝐹

+

𝜆
𝜓

2

𝜓
∗

max − 𝜓
0



2

+ 𝜓
∗

max𝜅1Υ.

(53)

Giving definitions as follows:

Z =
𝜆
𝑊

2

W
∗

−W
0



2

𝐹
+

𝜆
𝑉

2

V
∗

− V
0



2

𝐹

+

𝜆
𝜓

2

𝜓
∗

max − 𝜓
0



2

+ 𝜓
∗

max𝜅1Υ,

(54)

Z̃ = [

[

W̃ 0 0

0 Ṽ 0

0 0 �̃�

]

]

, 𝜆min =
1

2
min (𝜆

𝑊
, 𝜆
𝑉
, 𝜆
𝜓
) . (55)

Equation (55) can be written:

�̇� ≤ −
1

2
𝜆min (Q) ‖E‖2 + Z − 𝜆min


Z̃
2

𝐹

. (56)

From (56), it is obvious that �̇� < 0 when satisfying the
following inequality:

‖E‖ > √
2Z

𝜆min (Q)
= 𝐶

1
,


Z̃𝐹 > √

Z
𝜆min

= 𝐶
2
,

(57)

‖𝜍‖ ≥ max {𝐶
1
, 𝐶
2
} = 𝐶. (58)

From (57), it is obvious that if we satisfy the �̇� < 0,
(58) must be established, which indicates that there is a
compact set. In the out of the compact set, �̇� < 0 is
established. Defining the compact set proves that all of the
error signals are ultimately bounded. Defining the following
the hypersphere [35] firstly is

B
𝐶
= {𝜍 ∈ B

𝑅
: ‖𝜍‖ ≤ 𝐶} . (59)

There is �̇� < 0 beyond the compact set B
𝐶
. From (44), it

yields

B
𝐶
⊂ B

𝑅
. (60)
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Figure 8: The simulation curve of the whole flight based on the neural network robust adaptive inversion method.

Let V
𝐶
be themaximumof function𝑉 along the boundary

of the hypersphere B
𝐶
:

V
𝐶
= min
‖𝜍‖=𝐶

𝑉 (𝜍, 𝑡) = 𝐶
2

𝜆max (T) . (61)

The compact setΩ
𝐶
is

Ω
𝐶
= {𝜍 ∈ B

𝐶
: 𝑉 ≤ V

𝐶
} . (62)

From (38) and Figure 6, it can be proved that B
𝐶
⊂ Ω

𝐶
⊂

Ω
𝑅

⊂ B
𝑅
. If the composite initial errors 𝜍(0) ∈ Ω

𝑅
, all of

the error signals are ultimately bounded in the closed loop
system. According to the Lyapunov stability theorem, when
𝑡 > 𝑇

0
, the trajectory of arbitrary initial error signals fromΩ

𝑅

will enter the boundary ofΩ
𝐶
in the finite time, the final value

of which is 𝐶√𝜆max(T)/𝜆min(T). The proof is finished.
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6. Simulation and Validation of RBV

On the basis of robust adaptive dynamic inversion control
strategy in the above chapter and the established RBVmodel,
the simulation verifies the proposed control law of neural
network robust adaptive inversion validity.The perturbations
are added to the simulation.The attitude tracking commands
are produced by guidance module in simulation. When con-
sidering the uncertainty, the double loop system determined
by (1) is described as follows:

ẋ
𝑠
= Ω̇ = f

𝑠
+ g

𝑠2
w + Δ

𝑠
,

y
𝑠
= Ω = x

𝑠
,

ẋ
𝑓
= ẇ = f

𝑓
+ g

𝑓
M
𝑐
+ Δ

𝑓
,

y
𝑓
= w = x

𝑓
,

(63)

where Δ
𝑓

= [Δ𝑤
𝑥

Δ
𝑤
𝑦

Δ
𝑤
𝑧
]
𝑇

, Δ
𝑠

= [ Δ
𝛼

Δ
𝛽

Δ
𝛾
]
𝑇

represent the uncertain factors, like the parameter perturba-
tions and external interferences, in the fast loop, and slow
loop respectively. To simplifying the design, assuming that
Δ
𝑠
= 0, the neural network robust adaptive inversion control

law to the fast loop is given. As the influence of fast loop is
greater than the slow loop, the simplification is reasonable.
According to the control mode of fast loop and slow loop of
nonlinear dynamic inversion and the control law described in
(42), the control input and output of fast loop when Δ

𝑓
exists

are as follows:

w
𝑐
= g−1

𝑠
2

(Ω̇
𝑑
+ w

𝑠
e
Ω
− f
𝑠
) ,

M
𝑐
= g−1

𝑓
(ẇ
𝑑
+ w

𝑘
e
𝑤
− f
𝑓
+ vrbf − vadf) ,

(64)

where Ω̇
𝑑
, e
Ω
, w

𝑠
, f
𝑠
, ẇ
𝑑
, e
𝑤
, w

𝑘
, and f

𝑓
reference [31]. g−1

𝑠
2

and g−1
𝑓

exist during flight process of RBV; krbf, kadf represent
the robust adaptive term and approximation output of fast
loop, respectively. The structure diagram of RBV control
system is shown in Figure 7.

The parameter setting and initial condition of system
simulation reference [31].The simulation results of command
angle tracking during large attitude adjusting phase are
shown in Figure 8.

Figure 8 indicates the whole flight simulation curves of
RBV control system during the turn period and reentry phase
the [𝛼

𝑐
𝛽
𝑐

𝛾
𝑐
]
𝑇 produced from guidance module which is

the control system total input signals. The subscript “nn”
represents the simulation results proposed by neural network
robust adaptive inversion control law when aerodynamic
parameter perturbation exists. “𝑐” is the initial command
value. ‖𝑉‖, ‖𝑊‖ are the weight norm of neural network
matrixes.

Figure 8 presents the simulation curves of RBV flight
control based on neural network robust adaptive inversion.
From the curves of guidance command tracking, the system
output can track the change of system input finally. The
sideslip angle and roll angle have the tracking errors during
the attitude adjusting phase for 46.9 s, but both are in

the tolerance range. Besides, after accomplishing the adjust-
ing phase at 140 s, the thrust increasing produces some
oscillations, which have great influence on angle of attack,
but little to sideslip angle and roll angle. The errors of
sideslip angle and roll angle are in the tolerance range, and
when it is higher than 80 km, the error of angle of attack
has little influence on the final tracking effect. From above
figures, it can be proved that the final tracking accuracy
is high. Analyzing the weight norm and robust adaptive
coefficients, the neural network adaptive law is effective
and can eliminate the inverse errors. The network weight
coefficients not only represent the parameter perturbation
and the influence caused by parameter perturbation with
varying as system adaptive change, but also represent the
influence of eliminating the inverse errors which tended to
be stable.

7. Conclusions

According to the uncertainty of RBV model, the robust
adaptive inversion control strategy based on neural network
is proposed in this paper. The nonlinear simulation verifies
the validity to this methodology. Using Lyapunov theory
proves the ultimate uniformboundedness of RBV closed loop
control system. The simulation results indicate that when
aerodynamic moment parameter perturbation is 30%, this
methodology can reduce the requirement of RBV model
accuracy and improve the control system robustness during
the adjusting phase and reentry phase of RBV.
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