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The optimal Kalman filtering problem is investigated for a class of discrete state delay stochastic systems with randomly multiple
sensor delays. The phenomenon of measurement delay occurs in a random way and the delay rate for each sensor is described
by a Bernoulli distributed random variable with known conditional probability. Based on the innovative analysis approach and
recursive projection formula, a new linear optimal filter is designed such that, for the state delay and randomly multiple sensor
delays with different delay rates, the filtering error is minimized in the sense of mean square and the filter gain is designed by
solving the recursive matrix equation. Finally, a simulation example is given to illustrate the feasibility and effectiveness of the
proposed filtering scheme.

1. Introduction

Over the past decades, the estimation/filtering problems have
received considerable attention due to their wide application
in many practical systems [1–5]. Accordingly, the optimal
state estimation/filtering problems have been one of the
mainstream research topics in the signal processing field
and a large number of results have been reported to design
the optimal estimators; see, for example, [6–9]. Generally
speaking, the aimof the optimal state estimation is to estimate
the internal state of a dynamic system based on the available
measurement data and the estimation principle is in the sense
of the minimum mean square error (MMSE). Note that the
dynamic behaviours of the engineering systems are described
by the internal state variable of the systems. Hence, it is
important to design the filter so as to further understand
and control a practical system and then achieve the desired
performance requirements [10–12]. It is worth mentioning
that, based on theMMSE principle and the projection theory,
the famous Kalman filter has been constructed in [13] for
linear discrete stochastic systems and the recursive estimation
method has been developed. Subsequently, many important
results have been published based on this pioneeringmethod.
Moreover, some effective yet easy-to-implement filtering

algorithms have been developed in [14, 15] for complex
dynamical systems with the prevalently network-induced
phenomena.

It is well known that the time delay is inevitable in many
industrial process systems [16–22]. Also, it is necessary to deal
with the time delay to improve the control performance for
the practical systems [23–26]. In the past years, a great deal of
effort has been devoted to address the problems of the optimal
state estimation for time delay systems. To mention a few,
by applying the state augmentation approach, the problem
of the optimal state estimation has been investigated in
[17] for linear discrete stochastic systems with measurement
delay. In [19–22], the optimal filters have been designed for
linear state delay systems. In particular, by using the state
augmentation approach, the optimal filter has been designed
in [19].Without using the state augmentation approach, a new
optimal filter has been constructed in [20] for linear discrete
state delay stochastic systems by applying the projection
theory and recursive projection formula. It should be noted
that the dimension of the proposed filter in [20] is the same as
the original system state and then the computational burden
can be reduced. Based on the method in [20], the problem of
optimal filtering has been studied in [21] for linear discrete
state delay systems under uncertain observations. In [22], an
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effective robust Kalman filter has been designed for a class of
uncertain state delay systemswith randomobservation delays
and missing measurements.

Due to the sudden changes in the environment and
unreliability of the communication network, the sensor mea-
surement of the systemmay experience the unexpected mea-
surement delays in reality [27–29]. However, it is worthwhile
mentioning that most of the published results have tackled
the deterministic delays only. In fact, it is necessary to deal
with the random sensor delays where the communication
transmission is commonly unreliable and the filtering per-
formance would be degraded. Recently, the problem of linear
minimum variance estimation has been investigated in [30]
by applying the state augmentation approach for systemswith
bounded random measurement delays and packet dropouts.
In [31], a new optimal filtering scheme has been developed for
networked control system subject to randomdelay andpacket
dropouts. By applying the quasi Markov-chain approach, the
optimal Kalman filtering problem has been studied in [32]
for networked control systems with random measurement
delays, packet dropouts, andmissingmeasurement. Recently,
the recursive filters have been designed in [33, 34] for
discrete-time systems with different delay rates. However, to
the best of authors’ knowledge, the problem of the linear
optimal filtering has not been thoroughly investigated for
discrete state delay systems with randomly multiple sensors
delay which constitutes our research motivation.

Motivated by the above discussions, in this paper, we
aim to investigate the linear optimal filtering problem for
a class of discrete state delay systems measured by multiple
sensors with different delay rates. The time delay exists in the
system state and themeasurement outputmay experience the
random one-step sensor delay probably due to the unreliable
communication transmissions. The considered phenomena
of multiple measurement delays are characterized by a
set of Bernoulli distributed random variables with known
conditional probabilities. Based on the MMSE estimation
principle, the linear optimal filter is designed which can
deal with the effects from the state delay and randomly
multiple sensor delays in a unified framework. The main
contribution of this paper is to make first attempt to design
the optimal filter for state delay systems with randomly
multiple sensor delays. Accordingly, a new filtering algorithm
is developed and filter gain is obtained recursively by the
solutions to the matrix equations. Without resorting to the
state augmentation approach, the dimension of the developed
filter is the same as the system state and then the proposed
filtering algorithm can reduce the computational burden.
Finally, a simulation example is shown to verify the feasibility
and usefulness of the proposed filtering approach.

Notations. The notations used throughout the paper are
standard. R𝑛 denotes the 𝑛-dimensional Euclidean space.
For a matrix 𝐴, 𝐴𝑇 represents its transpose. E{𝑥} represents
the expectation of a random variable 𝑥. 𝐼 and 0 represent
the identity matrix and the zero matrix with appropriate
dimensions, respectively. diag{𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑁
} stands for a

diagonal matrix with elements 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
in the diago-

nal. The Hadamard product is defined as [𝑇 ∘ 𝑆]
𝑝×𝑝

= [𝑡
𝑖𝑗
×

𝑠
𝑖𝑗
]
𝑝×𝑝

Matrices are assumed to be compatible for algebraic
operations if their dimensions are not explicitly stated.

2. Problem Formulation and Preliminaries

We consider the following class of linear discrete stochastic
systems with state delay:

𝑥
𝑘+1

= 𝐴
𝑘
𝑥
𝑘−𝑑

+ 𝐵
𝑘
𝜔
𝑘
, (1)

𝑧
𝑖

𝑘
= 𝐶
𝑖

𝑘
𝑥
𝑘
+ ]𝑖
𝑘
, (2)

𝑦
𝑖

𝑘
= 𝜆
𝑖

𝑘
𝑧
𝑖

𝑘
+ (1 − 𝜆

𝑖

𝑘
) 𝑧
𝑖

𝑘−1
, (3)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑥
𝑘
∈ R𝑛 is the state vector, 𝑑 is

the state delay, 𝑧𝑖
𝑘
∈ R𝑚 is the 𝑖th actual output, and 𝑦𝑖

𝑘
∈

R𝑚 is the measured output of the 𝑖th sensor. 𝜔
𝑘
∈ R𝑟 and

]𝑖
𝑘
∈ R𝑚 are uncorrelated zero-mean Gaussian white noises

with covariances 𝑄
𝑘
≥ 0 and 𝑅𝑖

𝑘
> 0, respectively. 𝐴

𝑘
, 𝐵
𝑘
,

and𝐶𝑖
𝑘
are knownmatrices with appropriate dimensions.The

random variables 𝜆𝑖
𝑘
obey the Bernoulli distribution and have

the following statistical properties:

𝑃 {𝜆
𝑖

𝑘
= 1} = E {𝜆

𝑖

𝑘
} = 𝛼
𝑖
,

𝑃 {𝜆
𝑖

𝑘
= 0} = 1 − E {𝜆

𝑖

𝑘
} = 1 − 𝛼

𝑖
,

(4)

where 𝑖 = 1, 2, . . . , 𝑁, 𝛼
𝑖
∈ [0, 1] are known positive scalars,

and 𝜆𝑖
𝑘
are uncorrelated with other noise signals.

Remark 1. In model (3), if 𝜆𝑖
𝑘
= 1, 𝑦𝑖

𝑘
= 𝑧
𝑖

𝑘
, it represents that

the 𝑖th sensor receives successfully the data at time instant 𝑘.
If 𝜆𝑖
𝑘
= 0, 𝑦𝑖

𝑘
= 𝑧
𝑖

𝑘−1
, it stands for the fact that there exists

one-step delay.

Setting

𝑧
𝑘
=

[

[

[

[

[

[

[

𝑧
1

𝑘

𝑧
2

𝑘

...
𝑧
𝑁

𝑘

]

]

]

]

]

]

]

, 𝐶
𝑘
=

[

[

[

[

[

[

[

𝐶
1

𝑘

𝐶
2

𝑘

...
𝐶
𝑁

𝑘

]

]

]

]

]

]

]

, ]
𝑘
=

[

[

[

[

[

[

[

]1
𝑘

]2
𝑘

...
]𝑁
𝑘

]

]

]

]

]

]

]

,

𝑦
𝑘
=

[

[

[

[

[

[

[

𝑦
1

𝑘

𝑦
2

𝑘

...
𝑦
𝑁

𝑘

]

]

]

]

]

]

]

, Λ
𝑘
=

[

[

[

[

𝜆
1

𝑘

𝜆
2

𝑘

d
𝜆
𝑁

𝑘

]

]

]

]

,

(5)

then, the systems (1)–(3) can be rewritten as follows:

𝑥
𝑘+1

= 𝐴
𝑘
𝑥
𝑘−𝑑

+ 𝐵
𝑘
𝜔
𝑘
, (6)

𝑧
𝑘
= 𝐶
𝑘
𝑥
𝑘
+ ]
𝑘
, (7)

𝑦
𝑘
= Λ
𝑘
𝑧
𝑘
+ (𝐼 − Λ

𝑘
) 𝑧
𝑘−1
. (8)
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Substituting (7) into (8), we have

𝑥
𝑘+1

= 𝐴
𝑘
𝑥
𝑘−𝑑

+ 𝐵
𝑘
𝜔
𝑘
, (9)

𝑦
𝑘
= Λ
𝑘
𝐶
𝑘
𝑥
𝑘
+ (𝐼 − Λ

𝑘
) 𝐶
𝑘−1
𝑥
𝑘−1

+ Λ
𝑘
]
𝑘
+ (𝐼 − Λ

𝑘
) ]
𝑘−1
.

(10)

It is not difficult to verify that the following statistical
properties are true:

Λ = E {Λ
𝑘
} = diag {𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑁
} ,

𝑅
𝑘
= E {]

𝑘
]𝑇
𝑘
} = diag {𝑅1

𝑘
, 𝑅
2

𝑘
, . . . , 𝑅

𝑁

𝑘
} ,

𝑅
𝑘−1

= E {]
𝑘−1

]𝑇
𝑘−1
} = diag {𝑅1

𝑘−1
, 𝑅
2

𝑘−1
, . . . , 𝑅

𝑁

𝑘−1
} .

(11)

The purpose of this paper is to design the linear optimal
filter of state 𝑥

𝑘+1
in the sense of minimum variance for the

discrete-time delay stochastic systems (1)–(3) based on the
observation sequence {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
}.

3. Main Results

In order to facilitate the subsequent developments, we intro-
duce the following definitions.

Definition 2. Let 𝑥
𝑖|𝑘

= 𝑥
𝑖
− 𝑥
𝑖|𝑘
. Then, define Φ

𝑘(𝑖,𝑗)
=

E{𝑥
𝑖|𝑘
𝑥
𝑇

𝑗|𝑘
}, where 𝑖 ̸= 𝑗. Particularly,𝑃

𝑖|𝑘
= Φ
𝑘(𝑖,𝑖)

= E{𝑥
𝑖|𝑘
𝑥
𝑇

𝑖|𝑘
},

when 𝑖 = 𝑗. In addition,Φ
𝑘(𝑖,𝑗)

= Φ
𝑇

𝑘(𝑗,𝑖)
.

Definition 3. Define Θ
(𝑘,𝑗)

= E{𝑥
𝑘
𝑥
𝑇

𝑗
}, where 𝑘 ̸= 𝑗. Particu-

larly, Θ
(𝑘,𝑘)

= E{𝑥
𝑘
𝑥
𝑇

𝑘
}, when 𝑘 = 𝑗. Also, Θ

(𝑘,𝑗)
= Θ
𝑇

(𝑗,𝑘)
.

Then, Θ
(𝑘,𝑘)

can be calculated as follows:

Θ
(𝑘+1,𝑘+1)

= 𝐴
𝑘
Θ
(𝑘−𝑑,𝑘−𝑑)

𝐴
𝑇

𝑘
+ 𝐵
𝑘
𝑄
𝑘
𝐵
𝑇

𝑘
. (12)

Definition 4. Define Σ𝑡
𝑘
= Θ
(𝑘−𝑡,𝑘−𝑑)

, where 𝑡 = 0, 1, . . . , 𝑑.
Then, Σ𝑡

𝑘
can be calculated as follows:

Σ
𝑡

𝑘
= Θ
(𝑘−𝑡,𝑘−𝑑)

= 𝐴
𝑘−𝑡−1

Θ
(𝑘−𝑡−1−𝑑,𝑘−𝑑)

= 𝐴
𝑘−𝑡−1

(Σ
𝑑−𝑡−1

𝑘−𝑡−1
)

𝑇

,

(13)

where Σ𝑑
𝑘
= Θ
(𝑘−𝑑,𝑘−𝑑)

can be computed by (12).

Definition 5. Define a series of the matrices as follows:

Γ
𝑖

𝑘
= E {𝜀

𝑘
𝑥
𝑇

𝑘−𝑖
} , 𝑄

𝜀𝑘
= E {𝜀

𝑘
𝜀
𝑇

𝑘
} ,

𝐾
𝑖

𝑘
= E {𝑥

𝑘−𝑖
𝜀
𝑇

𝑘
}𝑄
−1

𝜀𝑘

= (Γ
𝑖

𝑘
)

𝑇

𝑄
−1

𝜀𝑘

,

Ψ
𝑖

𝑘
= Φ
𝑘(𝑘,𝑘−𝑖+1)

, Π
𝜇

(𝑘,𝑗)
= E {𝑥

𝑘+1−𝑗
𝑥
𝑇

𝑘−𝑗−𝜇
} ,

Ω
𝜇

(𝑘,𝑗)
= Φ
𝑘(𝑘+1−𝑗,𝑘−𝑗−𝜇)

, Ξ
𝑖

𝑘
= Φ
𝑘(𝑘−𝑑,𝑘−𝑖+1)

,

(14)

where 𝜀
𝑘
= 𝑦
𝑘
− 𝑦
𝑘|𝑘−1

is the innovation sequence.

Next, we are ready to introduce the following lemmas
which will be used for the further developments.

Lemma 6. Ψ𝑖
𝑘
and Ξ𝑖

𝑘
satisfy the following recursive equation:

Ψ
𝑖

𝑘
= 𝐴
𝑘−1
Ξ
𝑖−1

𝑘−1
− 𝐾
𝑘
Γ
𝑖−1

𝑘
, 𝑖 = 2, . . . , 𝑑 + 1, (15)

Ξ
𝑖

𝑘
=

{
{

{
{

{

(Ψ
𝑑+2−𝑖

𝑘−𝑑+1
)

𝑇

−

𝑖−2

∑

𝜌=0

𝐾
𝑑−𝜌

𝑘−𝜌
Γ
𝑖−𝜌−1

𝑘
, 𝑖 = 2, . . . , 𝑑,

𝑃
𝑘−𝑑|𝑘

, 𝑖 = 𝑑 + 1,

(16)

where𝐾0
𝑘
= 𝐾
𝑘
, Ψ1
𝑘
= 𝑃
𝑘|𝑘
, and Ξ1

𝑘
= (Ψ
𝑑+1

𝑘
)
𝑇.

Proof. From (10), we can define the innovation sequence by
the projection theory as follows:

𝜀
𝑘
= 𝑦
𝑘
− Λ𝐶
𝑘
𝑥
𝑘|𝑘−1

− (𝐼 − Λ)𝐶
𝑘−1
𝑥
𝑘−1|𝑘−1

= (Λ
𝑘
− Λ)𝐶

𝑘
𝑥
𝑘
+ Λ𝐶
𝑘
𝑥
𝑘|𝑘−1

− (Λ
𝑘
− Λ)𝐶

𝑘−1
𝑥
𝑘−1

+ (𝐼 − Λ)𝐶
𝑘−1
𝑥
𝑘−1|𝑘−1

+ Λ
𝑘
]
𝑘
+ (𝐼 − Λ

𝑘
) ]
𝑘−1
.

(17)

By the definitions of Ψ𝑖
𝑘
and Ξ𝑖

𝑘
, the following equations can

be obtained:

Ψ
1

𝑘
= 𝑃
𝑘|𝑘
, Ξ

1

𝑘
= (Ψ
𝑑+1

𝑘
)

𝑇

, Ξ
𝑑+1

𝑘
= 𝑃
𝑘−𝑑|𝑘

. (18)

Subsequently, by employing the projection theory, the
recursive equations can be obtained as follows:

𝑥
𝑘|𝑘
= 𝑥
𝑘|𝑘−1

+ 𝐾
𝑘
𝜀
𝑘
,

𝐾
𝑘
= E {𝑥

𝑘
𝜀
𝑇

𝑘
} [E {𝜀

𝑘
𝜀
𝑇

𝑘
}]

−1

,

(19)

𝑥
𝑘−𝑖+1|𝑘

= 𝑥
𝑘−𝑖+1|𝑘−1

+ 𝐾
𝑖−1

𝑘
𝜀
𝑘
,

𝐾
𝑖−1

𝑘
= E {𝑥

𝑘−𝑖+1
𝜀
𝑇

𝑘
} [E {𝜀

𝑘
𝜀
𝑇

𝑘
}]

−1

.

(20)

Then, the following equation can be obtained by (19) and (20):

Φ
𝑘(𝑘,𝑘−𝑖+1)

= Φ
𝑘−1(𝑘,𝑘−𝑖+1)

− 𝐾
𝑘
E {𝜀
𝑘
𝑥
𝑇

𝑘−𝑖+1|𝑘−1
}

− E {𝑥
𝑘|𝑘−1

𝜀
𝑇

𝑘
} (𝐾
𝑖−1

𝑘
)

𝑇

+ 𝐾
𝑘
E {𝜀
𝑘
𝜀
𝑇

𝑘
} (𝐾
𝑖−1

𝑘
)

𝑇

.

(21)

Noting that the following fact is true.

E {Λ
𝑘
− Λ} = 0, 𝑥

𝑘−𝑖+1|𝑘−1
⊥ 𝑥
𝑘|𝑘−1

,

𝑥
𝑘−𝑖+1|𝑘−1

⊥ 𝑥
𝑘−1|𝑘−1

.

(22)

We can establish the following equation:

E {𝜀
𝑘
𝑥
𝑇

𝑘−𝑖+1|𝑘−1
} = E {𝜀

𝑘
(𝑥
𝑘−𝑖+1|𝑘−1

+ 𝑥
𝑘−𝑖+1|𝑘−1

)
𝑇

}

= E {𝜀
𝑘
𝑥
𝑇

𝑘−𝑖+1
} = Γ
𝑖−1

𝑘
.

(23)

Substituting𝐾
𝑘
of (19) into (21) leads to

Φ
𝑘(𝑘,𝑘−𝑖+1)

= Φ
𝑘−1(𝑘,𝑘−𝑖+1)

− 𝐾
𝑘
Γ
𝑖−1

𝑘
. (24)
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Similarly, we have

Φ
𝑘−𝜌(𝑘−𝑑,𝑘−𝑖+1)

= Φ
𝑘−𝜌−1(𝑘−𝑑,𝑘−𝑖+1)

− 𝐾
𝑑−𝜌

𝑘−𝜌
Γ
𝑖−𝜌−1

𝑘−𝜌
. (25)

From (9), we have

𝑥
𝑘
= 𝐴
𝑘−1
𝑥
𝑘−𝑑−1

+ 𝐵
𝑘−1
𝜔
𝑘−1
. (26)

Taking projection on both sides of (26), one has

𝑥
𝑘|𝑘−1

= 𝐴
𝑘−1
𝑥
𝑘−𝑑−1|𝑘−1

. (27)

Subtracting both sides of (27) by (26) yields

𝑥
𝑘|𝑘−1

= 𝐴
𝑘−1
𝑥
𝑘−𝑑−1|𝑘−1

+ 𝐵
𝑘−1
𝜔
𝑘−1
. (28)

Since 𝜔
𝑘−1

⊥ 𝑥
𝑘−𝑖+1|𝑘−1

, the following equation can be
derived:

Φ
𝑘−1(𝑘,𝑘−𝑖+1)

= 𝐴
𝑘−1
Φ
𝑘−1(𝑘−𝑑−1,𝑘−𝑖+1)

. (29)

By the definitions of Ψ𝑖
𝑘
and Ξ𝑖

𝑘
, substituting (29) into (24)

yields

Ψ
𝑖

𝑘
= 𝐴
𝑘−1
Ξ
𝑖−1

𝑘−1
− 𝐾
𝑘
Γ
𝑖−1

𝑘
. (30)

According to (25), we can obtain the following equation:

Ξ
𝑖

𝑘
= (Ψ
𝑑+2−𝑖

𝑘−𝑑+1
)

𝑇

−

𝑖−2

∑

𝜌=0

𝐾
𝑑−𝜌

𝑘−𝜌
Γ
𝑖−𝜌−1

𝑘
, 𝑖 = 2, . . . , 𝑑. (31)

Therefore, (15) can be derived by (18) and (30). Moreover, it
follows from (18) and (31) that (16) holds. Then, the proof of
this lemma is complete.

Lemma 7. For 𝑗 = 0, 1 and 𝜇 = 0, 1, . . . , 𝑑−1,Π𝜇
(𝑘,𝑗)

andΩ𝜇
(𝑘,𝑗)

satisfy the following recursive equations:

Π
𝜇

(𝑘,𝑗)
= 𝐴
𝑘−𝑗
(Σ
𝜇

𝑘−𝑗
)

𝑇

, (32)

Ω
𝜇

(𝑘,𝑗)
=

{

{

{

𝐴
𝑘
Ξ
𝜇+1

𝑘
, 𝑗 = 0,

Ψ
𝜇+2

𝑘
, 𝑗 = 1,

(33)

where Σ𝜇
𝑘−𝑗

is computed by (13) and Ψ
𝜇+2

𝑘
and Ξ

𝜇+1

𝑘
are

calculated by (15) and (16), respectively.

Proof. From (9), we have

𝑥
𝑘+1−𝑗

= 𝐴
𝑘−𝑗
𝑥
𝑘−𝑗−𝑑

+ 𝐵
𝑘−𝑗
𝜔
𝑘−𝑗
. (34)

By the fact that 𝑥
𝑘−𝑗−𝜇

⊥ 𝜔
𝑘−𝑗

as well as the definitions of
Π
𝜇

(𝑘,𝑗)
and Σ𝑡

𝑘
, we have

E {𝑥
𝑘+1−𝑗

𝑥
𝑇

𝑘−𝑗−𝜇
} = 𝐴

𝑘−𝑗
E {𝑥
𝑘−𝑗−𝑑

𝑥
𝑇

𝑘−𝑗−𝜇
} ,

Π
𝜇

(𝑘,𝑗)
= 𝐴
𝑘−𝑗
Θ
(𝑘−𝑗−𝑑,𝑘−𝑗−𝜇)

= 𝐴
𝑘−𝑗
(Σ
𝜇

𝑘−𝑗
)

𝑇

.

(35)

Thus, (32) is true.

At the same time, by the definition ofΩ𝜇
(𝑘,𝑗)

, we have

Ω
𝜇

(𝑘,0)
= Φ
𝑘(𝑘+1,𝑘−𝜇)

, 𝑗 = 0, (36)

Ω
𝜇

(𝑘,1)
= Φ
𝑘(𝑘,𝑘−1−𝜇)

, 𝑗 = 1. (37)

For (36), by the same idea of (29) and the definition of Ξ𝑖
𝑘
, it

can be obtained that

Ω
𝜇

(𝑘,0)
= Φ
𝑘(𝑘+1,𝑘−𝜇)

= 𝐴
𝑘
Φ
𝑘(𝑘−𝑑,𝑘−𝜇)

= 𝐴
𝑘
Ξ
𝜇+1

𝑘
. (38)

For (37), by the definition of Ψ𝑖
𝑘
, it can be obtained that

Ω
𝜇

(𝑘,1)
= Φ
𝑘(𝑘,𝑘−1−𝜇)

= Ψ
𝜇+2

𝑘
. (39)

Therefore, it can be shown that (33) holds according to (38)
and (39). The proof of this lemma is complete.

Lemma 8. For 𝑗 = 0, 1, one has

Φ
𝑘−1(𝑘−𝑗,𝑘−𝑖)

= {

𝐴
𝑘−1
Ξ
𝑖

𝑘−1
, 𝑗 = 0,

Ψ
𝑖

𝑘−1
, 𝑗 = 1.

(40)

Proof. When 𝑗 = 0, by the same line of (29) and the definition
of Ξ𝑖
𝑘
, we obtain

Φ
𝑘−1(𝑘,𝑘−𝑖)

= 𝐴
𝑘−1
Φ
𝑘−1(𝑘−𝑑−1,𝑘−𝑖)

= 𝐴
𝑘−1
Ξ
𝑖

𝑘−1
. (41)

When 𝑗 = 1, by the definition of Ψ𝑖
𝑘
, we have

Φ
𝑘−1(𝑘−1,𝑘−𝑖)

= Ψ
𝑖

𝑘−1
. (42)

Therefore, it follows from (41) and (42) that (40) is true. The
proof of this lemma is complete.

Lemma 9 (see [35]). Let 𝑇 = [𝑡
𝑖𝑗
]
𝑝×𝑝

be a real matrix and
𝑆 = diag{𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑝
} a diagonal random matrix. Then

E {𝑆𝑇𝑆
𝑇

} =

[

[

[

[

[

[

[

[

E {𝑠2
1
} E {𝑠

1
𝑠
2
} ⋅ ⋅ ⋅ E {𝑠

1
𝑠
𝑝
}

E {𝑠
2
𝑠
1
} E {𝑠2

2
} ⋅ ⋅ ⋅ E {𝑠

2
𝑠
𝑝
}

...
... d

...
E {𝑠
𝑝
𝑠
1
} E {𝑠

𝑝
𝑠
2
} ⋅ ⋅ ⋅ E {𝑠2

𝑝
}

]

]

]

]

]

]

]

]

∘ 𝑇,

(43)

where ∘ is the Hadamard product.

Now, we are ready to design the linear recursive optimal
filter for systems (9)-(10) by employing the observation
sequence {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
}. Based on the above lemmas and

motivated by [22], we have the following theorem.
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Theorem 10. The recursive optimal filter for systems (9)-(10)
is given as follows:

𝑥
𝑘+1|𝑘+1

= 𝑥
𝑘+1|𝑘

+ 𝐾
𝑘+1
𝜀
𝑘+1
, (44)

𝜀
𝑘+1

= 𝑦
𝑘+1

− Λ𝐶
𝑘+1
𝑥
𝑘+1|𝑘

− (𝐼 − Λ)𝐶
𝑘
𝑥
𝑘|𝑘
, (45)

𝐾
𝑘+1

= [𝑃
𝑘+1|𝑘

𝐶
𝑇

𝑘+1
Λ + 𝐴

𝑘
Ξ
1

𝑘
𝐶
𝑇

𝑘
(𝐼 − Λ)]𝑄

−1

𝜀𝑘+1
, (46)

𝑄
𝜀𝑘+1

= Λ𝐶
𝑘+1
𝑃
𝑘+1|𝑘

𝐶
𝑇

𝑘+1
Λ + (𝐼 − Λ)𝐶

𝑘
𝑃
𝑘|𝑘
𝐶
𝑇

𝑘
(𝐼 − Λ)

+ Λ𝐶
𝑘+1
Ω
0

(𝑘,0)
𝐶
𝑇

𝑘
(𝐼 − Λ)

+ (Λ𝐶
𝑘+1
Ω
0

(𝑘,0)
𝐶
𝑇

𝑘
(𝐼 − Λ))

𝑇

+ Λ𝑅
𝑘+1
Λ + (𝐼 − Λ) 𝑅

𝑘
(𝐼 − Λ)

+H
1
+H
2
−H
3
−H
𝑇

3
,

(47)

𝑃
𝑘+1|𝑘+1

= 𝑃
𝑘+1|𝑘

− 𝐾
𝑘+1
[Λ𝐶
𝑘+1
𝑃
𝑘+1|𝑘

+ (𝐼 − Λ)𝐶
𝑘
(𝐴
𝑘
Ξ
1

𝑘
)

𝑇

] ,

(48)
𝑥
𝑘+1|𝑘

= 𝐴
𝑘
𝑥
𝑘−𝑑|𝑘

, (49)

𝑃
𝑘+1|𝑘

= 𝐴
𝑘
𝑃
𝑘−𝑑|𝑘

𝐴
𝑇

𝑘
+ 𝐵
𝑘
𝑄
𝑘
𝐵
𝑇

𝑘
, (50)

𝑥
𝑘−𝑑|𝑘

= 𝑥
𝑘−𝑑|𝑘−𝑑

+

𝑑−1

∑

𝜌=0

𝐾
𝑑−𝜌

𝑘−𝜌
𝜀
𝑘−𝜌
, (51)

𝑃
𝑘−𝑑|𝑘

= 𝑃
𝑘−𝑑|𝑘−𝑑

−

𝑑−1

∑

𝜌=0

𝐾
𝑑−𝜌

𝑘−𝜌
Γ
𝑑−𝜌

𝑘−𝜌
, (52)

where

Γ
𝑖

𝑘
=

{

{

{

Λ𝐶
𝑘
Ω
0

(𝑘−1,0)
+ (𝐼 − Λ)𝐶

𝑘−1
𝑃
𝑘−1|𝑘−1

, 𝑖 = 1,

Λ𝐶
𝑘
Ω
𝑖−1

(𝑘−1,0)
+ (𝐼 − Λ)𝐶

𝑘−1
Ω
𝑖−2

(𝑘−1,1)
, 𝑖 = 2, . . . , 𝑑,

H
1
= Λ (𝐼 − Λ) ∘ 𝐶

𝑘+1
Θ
(𝑘+1,𝑘+1)

𝐶
𝑇

𝑘+1
,

H
2
= Λ (𝐼 − Λ) ∘ 𝐶

𝑘
Θ
(𝑘,𝑘)

𝐶
𝑇

𝑘
,

H
3
= Λ (𝐼 − Λ) ∘ 𝐶

𝑘+1
Π
0

(𝑘,0)
𝐶
𝑇

𝑘

(53)

and 𝐾𝑑−𝜌
𝑘−𝜌

is computed by Definition 5, Γ𝑑−𝜌
𝑘−𝜌

is computed by
(53),Θ

(𝑘,𝑘)
and Ξ1

𝑘
are calculated by (12) and (16), respectively,

Π
0

(𝑘,0)
andΩ0

(𝑘,0)
are computed by Lemma 7, andH

1
,H
2
, and

H
3
are calculated by Lemma 9.

Proof. By the projection formula, we have

𝑥
𝑘+1|𝑘+1

= 𝑥
𝑘+1|𝑘

+ 𝐾
𝑘+1
𝜀
𝑘+1
, (54)

𝐾
𝑘+1

= E {𝑥
𝑘+1
𝜀
𝑇

𝑘+1
}𝑄
−1

𝜀𝑘+1
. (55)

According to (10), we have the innovation equation as follows:

𝜀
𝑘+1

= 𝑦
𝑘+1

− Λ𝐶
𝑘+1
𝑥
𝑘+1|𝑘

− (𝐼 − Λ)𝐶
𝑘
𝑥
𝑘|𝑘

= (Λ
𝑘+1

− Λ)𝐶
𝑘+1
𝑥
𝑘+1

+ Λ𝐶
𝑘+1
𝑥
𝑘+1|𝑘

− (Λ
𝑘+1

− Λ)𝐶
𝑘
𝑥
𝑘
+ (𝐼 − Λ)𝐶

𝑘
𝑥
𝑘|𝑘

+ Λ
𝑘+1

]
𝑘+1

+ (𝐼 − Λ
𝑘+1
) ]
𝑘
.

(56)

Note that E{Λ
𝑘+1
−Λ} = 0, ]

𝑘+1
, and ]

𝑘
are uncorrelated with

other terms. Then, we have

𝑄
𝜀𝑘+1

= E {𝜀
𝑘+1

⋅ 𝜀
𝑇

𝑘+1
}

= Λ𝐶
𝑘+1
𝑃
𝑘+1|𝑘

(Λ𝐶
𝑘+1
)
𝑇

+ (𝐼 − Λ)𝐶
𝑘
𝑃
𝑘|𝑘
[(𝐼 − Λ)𝐶

𝑘
]
𝑇

+ Λ𝐶
𝑘+1
Φ
𝑘(𝑘+1,𝑘)

[(𝐼 − Λ)𝐶
𝑘
]
𝑇

+ (Λ𝐶
𝑘+1
Φ
𝑘(𝑘+1,𝑘)

[(𝐼 − Λ)𝐶
𝑘
]
𝑇

)

𝑇

+ Λ𝑅
𝑘+1
Λ
𝑇

+ (𝐼 − Λ) 𝑅
𝑘
(𝐼 − Λ)

𝑇

+H
1
+H
2
−H
3
−H
𝑇

3
,

(57)

where

H
1
= E {(Λ

𝑘+1
− Λ)𝐶

𝑘+1
𝑥
𝑘+1
𝑥
𝑇

𝑘+1
𝐶
𝑇

𝑘+1
(Λ
𝑘+1

− Λ)
𝑇

} ,

H
2
= E {(Λ

𝑘+1
− Λ)𝐶

𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑘
(Λ
𝑘+1

− Λ)
𝑇

} ,

H
3
= E {(Λ

𝑘+1
− Λ)𝐶

𝑘+1
𝑥
𝑘+1
𝑥
𝑇

𝑘
𝐶
𝑇

𝑘
(Λ
𝑘+1

− Λ)
𝑇

} .

(58)

By applying Lemma 9, the followingH
1
can be obtained:

H
1
= E {(Λ

𝑘+1
− Λ)𝐶

𝑘+1
𝑥
𝑘+1
𝑥
𝑇

𝑘+1
𝐶
𝑇

𝑘+1
(Λ
𝑘+1

− Λ)
𝑇

}

=

[

[

[

[

[

E {(𝜆1
𝑘+1

− 𝛼
1
)

2

} ⋅ ⋅ ⋅ E {(𝜆1
𝑘+1

− 𝛼
1
) (𝜆
𝑁

𝑘+1
− 𝛼
𝑁
)}

... d
...

E {(𝜆𝑁
𝑘+1

− 𝛼
𝑁
) (𝜆
1

𝑘+1
− 𝛼
1
)} ⋅ ⋅ ⋅ E {(𝜆𝑁

𝑘+1
− 𝛼
𝑁
)

2

}

]

]

]

]

]

∘ 𝐶
𝑘+1
Θ
(𝑘+1,𝑘+1)

𝐶
𝑇

𝑘+1

= diag {𝛼
1
(1 − 𝛼

1
) , 𝛼
2
(1 − 𝛼

2
) , . . . , 𝛼

𝑁
(1 − 𝛼

𝑁
)} ∘ 𝐶

𝑘+1
Θ
(𝑘+1,𝑘+1)

𝐶
𝑇

𝑘+1

= (diag {𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑁
} diag {1 − 𝛼

1
, 1 − 𝛼

2
, . . . , 1 − 𝛼

𝑁
}) ∘ 𝐶

𝑘+1
Θ
(𝑘+1,𝑘+1)

𝐶
𝑇

𝑘+1

= Λ (𝐼 − Λ) ∘ 𝐶
𝑘+1
Θ
(𝑘+1,𝑘+1)

𝐶
𝑇

𝑘+1
.

(59)



6 Abstract and Applied Analysis

By the same derivation ofH
1
, we have

H
2
= Λ (𝐼 − Λ) ∘ 𝐶

𝑘
Θ
(𝑘,𝑘)

𝐶
𝑇

𝑘
,

H
3
= Λ (𝐼 − Λ) ∘ 𝐶

𝑘+1
Π
0

(𝑘,0)
𝐶
𝑇

𝑘
.

(60)

Then, by the definitions ofΠ𝜇
(𝑘,𝑗)

andΩ𝜇
(𝑘,𝑗)

,H
1
,H
2
,H
3
, and

(47) can be obtained.
By the orthogonality of the projection and E{Λ

𝑘+1
−Λ} =

0, 𝑥
𝑘+1|𝑘

⊥ 𝑥
𝑘+1|𝑘

, 𝑥
𝑘+1|𝑘

⊥ 𝑥
𝑘|𝑘
, we have

E {𝑥
𝑘+1
𝜀
𝑇

𝑘+1
} = E {𝑥

𝑘+1
(𝑥
𝑘+1|𝑘

𝐶
𝑇

𝑘+1
Λ + 𝑥

𝑘|𝑘
𝐶
𝑇

𝑘
(𝐼 − Λ))}

= E {𝑥
𝑘+1|𝑘

(𝑥
𝑘+1|𝑘

𝐶
𝑇

𝑘+1
Λ + 𝑥

𝑘|𝑘
𝐶
𝑇

𝑘
(𝐼 − Λ))}

= Φ
𝑘(𝑘+1,𝑘+1)

𝐶
𝑇

𝑘+1
Λ + Φ

𝑘(𝑘+1,𝑘)
𝐶
𝑇

𝑘
(𝐼 − Λ) .

(61)

Along the same method of the derivation of (29) as well as
the definition of Ξ𝑖

𝑘
, we obtain

Φ
𝑘(𝑘+1,𝑘)

= 𝐴
𝑘
Φ
𝑘(𝑘−𝑑,𝑘)

= 𝐴
𝑘
Ξ
1

𝑘
. (62)

Substituting (57), (61), and (62) into (55) yields (46).
On the other hand, according to (54), we have

𝑥
𝑘+1|𝑘+1

= 𝑥
𝑘+1|𝑘

− 𝐾
𝑘+1
𝜀
𝑘+1
. (63)

And then

𝑃
𝑘+1|𝑘+1

= 𝑃
𝑘+1|𝑘

+ 𝐾
𝑘+1
𝑄
𝜀𝑘+1
𝐾
𝑇

𝑘+1
− E {𝑥

𝑘+1|𝑘
𝜀
𝑇

𝑘+1
}𝐾
𝑇

𝑘+1

− 𝐾
𝑘+1

E {𝜀
𝑘+1
𝑥
𝑇

𝑘+1|𝑘
} .

(64)

By the same line of (21), (48) can be obtained.
Thirdly, the following equations can be obtained by the

same line of the derivation of (27) and (28):

𝑥
𝑘+1|𝑘

= 𝐴
𝑘
𝑥
𝑘−𝑑|𝑘

, (65)

𝑥
𝑘+1|𝑘

= 𝐴
𝑘
𝑥
𝑘−𝑑|𝑘

+ 𝐵
𝑘
𝜔
𝑘
. (66)

By the fact that 𝜔
𝑘
⊥ 𝑥
𝑘−𝑑|𝑘

, it can be deduced that

𝑃
𝑘+1|𝑘

= 𝐴
𝑘
𝑃
𝑘−𝑑|𝑘

𝐴
𝑇

𝑘
+ 𝐵
𝑘
𝑄
𝑘
𝐵
𝑇

𝑘
. (67)

Therefore, (49) and (50) can be obtained by (65) and (67).
Subsequently, the following derivations are given to

obtain 𝑥
𝑘−𝑑|𝑘

and 𝑃
𝑘−𝑑|𝑘

. By using the projection theory, we
have

𝑥
𝑘−𝑑|𝑘

= 𝑥
𝑘−𝑑|𝑘−1

+ 𝐾
𝑑

𝑘
𝜀
𝑘
. (68)

Then

𝑃
𝑘−𝑑|𝑘

= 𝑃
𝑘−𝑑|𝑘−1

− 𝐾
𝑑

𝑘
Γ
𝑑

𝑘
. (69)

Hence, it follows from (68) and (69) that we have (51) and
(52).

Finally, note that

Γ
𝑖

𝑘
= E {𝜀

𝑘
𝑥
𝑇

𝑘−𝑖
} = Λ𝐶

𝑘
Φ
𝑘−1(𝑘,𝑘−𝑖)

+ (𝐼 − Λ)𝐶
𝑘−1
Φ
𝑘−1(𝑘−1,𝑘−𝑖)

.

(70)

When 𝑖 = 1, we have

Γ
1

𝑘
= Λ𝐶
𝑘
Φ
𝑘−1(𝑘,𝑘−1)

+ (𝐼 − Λ)𝐶
𝑘−1
𝑃
𝑘−1|𝑘−1

. (71)

When 𝑖 ̸= 1, by (40) and (33), the following recursive equa-
tions can be obtained:

Φ
𝑘−1(𝑘,𝑘−𝑖)

= Ω
𝑖−1

(𝑘−1,0)
, Φ

𝑘−1(𝑘−1,𝑘−𝑖)
= Ω
𝑖−2

(𝑘−1,1)
. (72)

From (70), (71), and (72), we have (53). The proof of this
theorem is now complete.

Remark 11. In Theorem 10, the linear recursive optimal filter
is designed for the addressed discrete state delay stochastic
systems with random multiple sensor delays. A unified
framework is established to address complexities from the
state delay and the random multiple sensor delays. The
proposed filtering algorithm is of a recursive form suitable
for online applications. On the other hand, it is worth
mentioning that the proposed linear optimal filter can be
reduced to the traditional Kalman filter when Λ = 𝐼.

Remark 12. Note that there has not been much work con-
cerning the design of the optimal filter for systems with
state delay and randomly multiple sensor delays. It is well
known that, due to the uncertain influence of the practical
environment, it is the case and more reasonable to deal
with the problem of sensor measurements with different
delay rates. Hence, we have made the first attempt to tackle
the optimal filtering problem for discrete stochastic systems
subject to the state time delay and randomly multiple sensor
delays with different delay rates. Compared with the existing
results, the developed filtering algorithm can better deal with
the engineering practice in amore effective way especially for
the case of the different delay rates.

According to Theorem 10, a new recursive algorithm can
be established to obtain the linear optimal filter for the
addressed discrete state time delay stochastic systems. The
following algorithm shows how to design the linear optimal
recursive filter in Theorem 10.
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Algorithm 13. The steps of the design of the linear optimal
recursive filter are shown as follows:

Step 1. Give the following initial values Θ
(−𝑑,−𝑑)

, . . . , Θ
(0,0)

;
𝑥
−𝑑
, . . . , 𝑥

0
; 𝑥
−𝑑|−𝑑

, . . . , 𝑥
0|0
; 𝑃
−𝑑|−𝑑

, . . . , 𝑃
0|0
; Γ
1

0
, . . . , Γ

𝑑

0
;

Ψ
1

0
, . . . , Ψ

𝑑

0
and Ξ1

0
, . . . , Ξ

𝑑

0
.

Step 2. In the time period of [𝑘 − 𝑑, 𝑑], by the value of the
previous time, Φ

𝑘−1(𝑘−𝑗,𝑘−𝑑)
can be computed.

Step 3. Substituting (40) into (53), we can obtain Γ𝑖
𝑘
. Also, 𝐾𝑖

𝑘

can be computed by (53).

Step 4. Calculate Ψ𝑖
𝑘
by substituting (53) into (15). Calculate

𝑥
𝑘−𝑑|𝑘

and 𝑃
𝑘−𝑑|𝑘

by (51) and (52). Calculate 𝑥
𝑘+1|𝑘

and 𝑃
𝑘+1|𝑘

by substituting (51) and (52) into (49) and (50).

Step 5. ComputeΘ
(𝑘,𝑘)

by (12). Σ𝑡
𝑘
is calculated by substituting

(12) into (13). Then, (32) is computed by (12) and (13).

Step 6. Substituting (15) and (53) into (16), we have Ξ𝑖
𝑘
. Then,

(33) is computed by (15) and (16).

Step 7. CalculateH
1
,H
2
andH

3
. SubstitutingH

1
,H
2
,H
3
,

(50), and (33) into (47), we obtain 𝑄
𝜀𝑘+1

.

Step 8. Substituting (16) and (47) into (46) and (48), we have
𝐾
𝑘+1

and 𝑃
𝑘+1|𝑘+1

, respectively.

Step 9. Substituting (51), (49), (46) into (45) and (44), we
obtain the optimal estimation 𝑥

𝑘+1|𝑘+1
.

Remark 14. According to the above algorithm, the filter gain
𝐾
𝑘+1

can be computed recursively. It is worth pointing out
that, when deriving the filter gain, additional efforts should
be made to derive the terms 𝑃

𝑘+1|𝑘+1
and 𝑄

𝜀𝑘+1
due to

the simultaneous consideration of the randomly multiple
sensor delays and the state delay. After having obtained these
terms, the filter gain 𝐾

𝑘+1
can be constructed and then the

estimation 𝑥
𝑘+1|𝑘+1

can be computed. In the following, an
illustrative example will be provided to show the feasibility
of the proposed filtering scheme.

4. An Illustrative Example

In this section, a numerical example is proposed to show the
feasibility and effectiveness of the developed main results.

Consider the following linear discrete-time delay stochas-
tic systems:

𝑥
𝑘+1

= 𝐴
𝑘
𝑥
𝑘−2

+ 𝐵
𝑘
𝜔
𝑘
,

𝑧
𝑖

𝑘
= 𝐶
𝑖

𝑘
𝑥
𝑘
+ ]𝑖
𝑘
,

𝑦
𝑖

𝑘
= 𝜆
𝑖

𝑘
𝑧
𝑖

𝑘
+ (1 − 𝜆

𝑖

𝑘
) 𝑧
𝑖

𝑘−1
,

(73)

where

𝐴
𝑘
=
[

[

0.35 −0.15 0.15

0.35 0 0.1

0 0.2 0.1

]

]

, 𝐵
𝑘
=
[

[

1.5

2

2.5

]

]

,

𝐶
1

𝑘
=
[

[

0.9

0

0

]

]

𝑇

, 𝐶
2

𝑘
=
[

[

0

0.85

0

]

]

𝑇

, 𝐶
3

𝑘
=
[

[

0

0

0.8

]

]

𝑇

(74)

and 𝑥
𝑘
= [𝑥

𝑘,1
𝑥
𝑘,2

𝑥
𝑘,3
]

𝑇, 𝜔
𝑘
, and ]𝑖

𝑘
, 𝑖 = 1, 2, 3, are

uncorrelated zero-mean Gaussian white noises with covari-
ances 0.2 and 0.1, respectively.

Let

Θ
(−2,−2)

= Θ
(−1,−1)

= Θ
(0,0)

= diag {1, 1, 1} ,

𝑃
−2|−2

= 𝑃
−1|−1

= 𝑃
0|0
= diag {5, 5, 5} ,

𝑥
−2
= [−0.3 −0.1 0.1]

𝑇

, 𝑥
−1
= [−0.2 0 0.2]

𝑇

,

𝑥
0
= [−0.1 0.1 0.3]

𝑇

, 𝑥
−2|−2

= [−0.4 −0.2 0]

𝑇

,

𝑥
−1|−1

= [−0.3 −0.1 0.1]

𝑇

,

𝑥
0|0
= [−0.2 0 0.2]

𝑇

,

Γ
1

0
= Γ
2

0
= diag {1, 1, 1} , Ψ

1

0
= Ψ
2

0
= diag {1, 1, 1} ,

Ξ
1

0
= Ξ
2

0
= diag {1, 1, 1} , E {𝜆

1

𝑘
} = 𝛼
1
= 0.95,

E {𝜆
2

𝑘
} = 𝛼
2
= 0.9, E {𝜆

3

𝑘
} = 𝛼
3
= 0.95

(75)

and letMSE𝑖 denote themean-square error for the estimation
of 𝑥
𝑘,𝑖
, that is, (1/𝑀)∑𝑀

𝑗=1
(𝑥
(𝑗)

𝑘,𝑖
− 𝑥
(𝑗)

𝑘|𝑘,𝑖
)

2

, where 𝑖 = 1, 2, 3 and
𝑀 is the number of simulation test.

According to Theorem 10, the linear optimal recursive
filter can be constructed by applying the innovative analysis
approach and MMSE estimation principle. The values of the
filter gains are given as in Table 1. The simulations are shown
in Figures 1–6. Among them, Figures 1, 2, and 3 plot the
log(MSE-𝑖) (𝑖 = 1, 2, 3) of the proposed filtering algorithm.
The actual system states and the newly designed estimation
are plotted in Figures 4, 5, and 6. From the simulations,
we can see that the proposed filter can estimate the system
state well irrespective of the state delay and the occurrence
of the randomly multiple sensor delays with different delay
rates. The reason is that, when deriving the recursive optimal
filter, we have made additional efforts to compensate the
effects from the randomly multiple sensor delays and state
delay.
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Table 1: Filter gains 𝐾
𝑘+1

.

𝑘 𝐾
𝑘+1

𝑘 = 0
[

[

[

3.7383 0.3829 −1.2625

3.3140 0.4513 −0.9463

2.8896 0.5198 −0.6302

]

]

]

𝑘 = 1
[

[

[

1.2523 0.2830 −0.1191

0.9912 0.4258 0.1461

0.7301 0.5686 0.4114

]

]

]

𝑘 = 2
[

[

[

0.7535 0.2712 0.0502

0.4415 0.4235 0.3401

0.1296 0.5758 0.6300

]

]

]

𝑘 = 3
[

[

[

−0.4412 0.4183 0.6398

0.6148 0.3916 0.2305

1.6707 0.3649 −0.1789

]

]

]

𝑘 = 4
[

[

[

0.4101 0.3031 0.1925

0.4747 0.4138 0.2985

0.5392 0.5245 0.4045

]

]

]

...
...
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Figure 1: log(MSE1).

5. Conclusion

The problem of linear optimal estimation has been investi-
gated for discrete state delay stochastic systems measured by
multiple sensors with different delay rates. Based on the inno-
vative analysis approach and MMSE estimation principle, a
new linear optimal filter has been constructed. Compared
with the state augmentation approach, the computational
burden of the proposed method has been decreased due to
the fact that the dimension of the filter is equal to the state
vector. Future research topics include the extension of the
proposed main results to the filter design for the data-driven
systems [36, 37] and the networked control systems [38–
42]. Also, it would be interesting to develop the smoother

0 10 20 30 40 50

0

10

20

30

40

50

k/time step

−50

−40

−30

−20

−10

Figure 2: log(MSE2).
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Figure 3: log(MSE3).
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Figure 4: The trajectories of 𝑥
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and 𝑥
𝑘|𝑘,1

.
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Figure 5: The trajectories of 𝑥
𝑘,2

and 𝑥
𝑘|𝑘,2

.
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Figure 6: The trajectories of 𝑥
𝑘,3

and 𝑥
𝑘|𝑘,3

.

to the addressed networked systems with different delays and
discuss the steady-state filter.
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